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Abstract

Supertree methods construct trees on a set of taxa (species) combining many smaller trees on the overlapping subsets of
the entire set of taxa. A ‘quartet’ is an unrooted tree over 4 taxa, hence the quartet-based supertree methods combine many
4-taxon unrooted trees into a single and coherent tree over the complete set of taxa. Quartet-based phylogeny
reconstruction methods have been receiving considerable attentions in the recent years. An accurate and efficient quartet-
based method might be competitive with the current best phylogenetic tree reconstruction methods (such as maximum
likelihood or Bayesian MCMC analyses), without being as computationally intensive. In this paper, we present a novel and
highly accurate quartet-based phylogenetic tree reconstruction method. We performed an extensive experimental study to
evaluate the accuracy and scalability of our approach on both simulated and biological datasets.
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Introduction

A phylogenetic tree of a group of species (taxa) describes the

evolutionary relationship among the species. The study of

phylogeny not only helps to identify the historical relationships

among a group of organisms, but also supports some other

biological research such as drug and vaccine design, protein

structure prediction, multiple sequence alignment and so on [1].

The ultimate goal of this research community is to infer the Tree of
Life, the phylogeny of all living organisms on earth, provided that

it exists.

Phylogenetic tree reconstruction by analyzing the molecular

sequences of different species can be regarded as the sequence-
based reconstruction of the phylogeny. Sequence-based phyloge-

netic methods are basically of three types [1]: (a) distance-based

methods, such as Neighbor Joining (NJ) [2], which has very fast

practical performance; (b) heuristics for either Maximum-Likeli-

hood (ML) [3] or Maximum-Parsimony (MP) [4], which are two

NP hard optimization problems; and (c) the Bayesian Markov

Chain Monte Carlo (MCMC) method, which, instead of a single

tree, produces a probability distribution of the trees or aspects of

the evolutionary history. Sequence-based methods are generally

highly accurate. However, these methods are computationally

intensive. As a result, these can only be applied on small to

moderate sized datasets if we want to provide results having an

acceptable level of accuracy within a moderate amount of time.

For larger datasets (few hundreds of taxa (species)), these methods

may need several weeks or months to provide results with an

acceptable level of accuracy [1]. As the amount of molecular data

is accumulating exponentially with the continuous advancement in

sequencing technologies, scientists are facing new computational

challenges to analyze these enormous amount of data. Therefore,

we are forced to rely on supertree methods, where smaller trees on

overlapping groups of species are combined together to get a single

larger tree. Supertree-based tree construction is a two-phase

method: in the first phase, many small trees on overlapping subsets

of taxa are constructed using a sequence-based method; and in the

next phase the small trees are summarized into a complete tree

over the full set of taxa.

Supertree methods are considered to be the likely solutions

towards assembling the Tree of Life. Hence, these methods have

drawn potential research interest in recent years. Supertree

methods have two major motivations: firstly, it gives us the

opportunity to achieve increased scalability and secondly, it is

more suitable to combine the phylogenetic analyses on different

types of data (e.g., molecular, morphological and gene-order data)

or species groups. The careful design of supertree methods may

allow us to work on very large (several hundreds taxa) datasets

more accurately and easily. The most widely used supertree

method is called the Matrix Representation with Parsimony

(MRP) [5,6]. MRP encodes all the small trees into a matrix using

the characters 0, 1 and ?. Then it uses Maximum-Parsimony (MP)

[4] to get a tree from the data matrix. MRP is considered to be the

most reliable supertree method to date. But since it uses an NP

hard problem to analyze the data matrix, it is not efficient for large

datasets.

Quartet amalgamation methods are supertree methods when

each of the the small trees to be combined is a quatret, i.e., an

unrooted tree having 4 taxa. Quartet is the most basic piece of

unrooted phylogenetic information. Quartet-based phylogenetic

inference has drawn significant attention from the research

community, and numerous quartet-based methods have been

developed over the last two decades. In this paper, we present a

novel and highly accurate quartet amalgamation technique. We
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conduct an extensive experimental study that demonstrates the

superiority of our algorithm over QMC [7–9], which is known as

the best quartet amalgamation method to date.

With the increasing abundance of molecular data, constructing

species trees from multilocus data has become the focus of

attention. But combining data on multiple loci is not a trivial task

due to the gene tree discordance [10–12]. The task is even more

complicated with the striking recognition that the most probable

rooted gene tree topology (under a coalescent model [12–18]) need

not match the species tree topology [19,20]. These are termed as

Anomalous gene trees (AGTs). AGTs occur because not all tree

topologies are equiprobable under the coalescent model

[18,21,22]. In fact, rooted AGTs exist for any species tree with

5 or more taxa. It has also been shown that rooted AGTs cannot

occur with a three taxa and a symmetric four taxa species tree

[19]. AGTs have also been studied for unrooted gene trees, and it

has been observed that for a species tree with four taxa, the most

probable rooted gene tree topologies have the same unrooted

topology as the species tree [23]. This observation indicates that

the most frequently occurring unrooted quartet is a consistent

estimate of the unrooted species tree [23]. Thus, quartet based

phylogeny can offer a sensible and statistically consistent approach

to combine multilocus data, despite gene tree incongruence and

AGTs [24,25]. Thus a highly accurate quartet amalgamation

approach will help to design species tree estimation methods that

are not susceptible to the gene tree discordance and AGTs.

Notably, as has already been mentioned above, the other

important advantage of quartet-based methods is that efficient

design of such inference algorithm can be scalable to very large

datasets (several hundreds or thousands of taxa).

Previous Works
Quartet-based phylogenetic tree reconstruction has been

receiving extensive attention in the literature for more than two

decades. Different approaches have been proposed and improved

time to time. Among these, the most prominent approaches are,

quartet puzzling (QP), quartet joining (QJ) and quartet max-cut

(QMC).

Quartet puzzling (QP) [26] infers the phylogeny of n sequences

using a weighting mechanism. First, it computes the maximum-

likelihood values for the three topologies on every 4 taxa and uses

these values to compute the corresponding probabilities. Using

these probabilities as weights, the puzzling step constructs a

collection of trees over n taxa. Finally it returns a consensus tree

over n-taxa. TREE-PUZZLE [27] is a widely used program

package that implements QP. In 1997, Strimmer et al. [28]

extended the original QP algorithm by proposing three different

weighting schemes, namely, continuous, binary and discrete. Later

in 2001, Ranwez and Gascuel [29] proposed weight optimization

(WO), an algorithm which is also based on weighted 4-trees

inferred by using the maximum likelihood approach. WO uses the

continuous weighting scheme defined in [28] and it searches for a

tree on n taxa such that the sum of the weights of the 4-trees

induced by this tree is maximal [29]. Unlike QP, WO constructs a

single tree over n taxa; hence no consensus step is required.

Though the speed and accuracy of WO are better than that of QP,

its accuracy is lower than that of the methods based on

evolutionary distances or maximum likelihood. Quartet joining

(QJ) [30] was introduced in 2007 to overcome the limitations of

QP and WO in outperforming the distance based methods. QJ

provides the theoretical guarantee to generate the accurate tree if a

complete set of consistent quartets is present. On average QJ

outperforms QP and its performance is very close to the

performance of NJ [2], but QJ outperforms NJ on quartet sets

with low quartet consistency rate [30].

In 2008, Snir et al. [7] proposed a new quartet-based method,

short quartet puzzling (SQP). The experimental studies in [7]

shows that SQP provides more accurate trees than QP, NJ and

MP. It differs from the previous techniques in that it does not

require all three topologies of the quartets on every 4 taxa. It is

able to construct the output tree from a subset of all possible

quartets as input. This is a two-phase technique: the first phase

uses the randomized technique for selecting input quartets from all

possible 4-trees (estimated using ML), and the second phase uses

Quartet Max Cut (QMC) [7,8] technique for combining quartets

into a single tree. The experimental study conducted by Swenson

et al. [31] concludes that QMC performs better than the other

supertree methods and MRP for smaller (100-taxon and 500-

taxon) and high scaffold (i.e., high scaffold density) datasets. But

MRP outperforms QMC and other supertree methods on larger

and low scaffold (i.e., low scaffold density) datasets [31].

Subsequently, Snir and Rao presented a fast and scalable

implementation of QMC [9], where they reported the improve-

ment of QMC over MRP in terms of accuracy and running time.

Although MRP is the mostly used supertree method in practice,

the studies of [9,31] suggest that QMC is so far the best quartet-

based supertree method.

In this paper, we present a new quartet-based phylogeny

reconstruction algorithm, Quartet FM (QFM), which uses a

bipartition technique inspired from the famous Fiduccia and

Mattheyses (FM) algorithm for bipartitioning a hyper graph

minimizing the cut size [32]. As will be reported later, QFM is

highly accurate and scalable to large datasets (upto several

hundreds of taxa). We demonstrate the accuracy of QFM by

analyzing its performance on both simulated and biological

datasets. We have compared our method on simulated datasets

with Quartet MaxCut (QMC) [7–9], and showed the superiority

of our method over QMC in terms of the accuracy of the

estimated trees. To show the potential of our method, we also

analyzed a real biological dataset containing 25 species from 4
genera of birds (Amytornis, Stipiturus, Malurus and Clytomias).
We have demonstrated a qualitative analysis of our results on real

dataset based on the results of some rigorous previous studies on

the same dataset.

Problem Definition
We address the problem of Maximum Quartet Consistency

(MQC), which is a natural optimization problem. This problem

takes a quartet set Q as the input and finds a phylogenetic tree T
such that the maximum number of quartets in Q become

‘‘consistent’’ with T (or T ‘‘satisfies’’ the maximum number of

quartets). Now we formally define the problem.

Problem 1 Maximum Quartet Consistency.
Input: A multiset of quartets Q on a taxa set P.

Output: A phylogenetic tree T on P such that T satisfies the
maximum number of quartets of Q.

The Maximum Quartet Consistency (MQC) problem is an NP-

hard optimization problem [33]. Both exact and heuristic

approaches are available for the MQC problem in the literature

[34]. The running time of an exact algorithm grows exponentially

with the increase of number of taxa, since the number of possible

trees grows more than exponentially with the number of taxa [35].

So for larger datasets we have to resort to the heuristic solutions.

The focus of this work is on heuristic solutions for the MQC

problem as we aim to build the phylogenetic tree for several

hundreds of taxa.

Phylogenetic Tree Estimation from Quartets
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Results

We have conducted an extensive experimental study on both

simulated and biological datasets. We have evaluated the accuracy

of the trees estimated by QFM and compared the results to that of

QMC [9]. QMC is the most accurate quartet amalgamation

method developed to date, and was shown to be more accurate

than MRP [9]. We have reported RF (Robinson Foulds) [36] rates

of the estimated trees. RF rate is the mostly used error metric,

which is the ratio of the sum of the number of false positive and

false negative edges to a factor 2n{6, where n is the number of

taxa [1]. The false positive (FP) and false negative (FN) edges are

respectively, the edges which are absent in the true tree but present

in the estimated tree, and the edges which are present in the true

tree but absent in the estimated tree.

Simulated Datasets
To investigate the performance of our method on various model

conditions, we have generated quartet sets, taken uniformly at

random from model trees, by varying the number of taxa (n), the

number of quartets (q) and the percentage of consistent quartets (c)

with respect to the model tree (90% consistency level means that

10% quartets are flipped to disagree with the model tree). We have

generated model species trees with n~25, 50, 100, 200, 300, 400
and 500 taxa. To generate the model trees and the input quartet

sets, we have used the tool developed and used in [9]. The tool

takes as input the number of taxa (n), number of quartets (q) and

the consistency level (c), and returns the quartet sets accordingly.

For n~25, 50, 100, we have generated n1:5, n2 and n2:8 quartets.

We have not generated more quartets because n2:8 quartets have

been empirically shown to be enough to construct very accurate

phylogenetic trees [9]. Although n1:5 is a small number, we have

chosen this size to test the performance of both methods on a

comparatively smaller number of quartets as well. For 200, 300,

400 and 500-taxon model trees, we have generated datasets with

q~n1:5 and q~n2. For each size (q), we have varied the

percentage of consistent quartets (c) by making it 70%, 80%,

90%, 95% and 100%. Thus in total we have generated

45 z 40 ~ 85 model conditions. To test the statistical robustness,

we have generated 20 replicates of data for each of these model

conditions. For each model condition, we report the average RF

rate over the 20 replicates of data. We also report the standard

error, given by S=
ffiffi
(

p
N) where S is the standard deviation and N

is the number of datapoints (which is 20 in our experiments). The

standard errors are reported in Table S1 and Table S2 in File S1.

We have used Wilcoxon signed-rank test with a~0:05 to test the

statistical significance of the differences between QFM and QMC.

The results of the Wilcoxon T-test (p-values) are reported in Table

S3 in File S1.

Analyses on the Simulated Datasets
We now present the results on the simulated datasets mentioned

above. In each case, we have compared the average RF rate for

the trees estimated by QFM and QMC. The results for c~70%,

c~80%, c~90% and c~95% are summarized in Table 1.

Figure 1 shows the bar charts comparing the values presented in

Table 1. The results in Table 1 is presented in batches for

different values of n as follows. For n~25, 50, 100, we have three

rows, one each for q~n1:5, q~n2 and q~n2:8. For n~200, 300,

400, 500 we have two rows, one each for q~n1:5 and q~n2. The

topmost row of each batch of Table 1 shows the results when

q~n1:5 (from left to right, the consistency levels reported are 70%,

80%, 90%, 95%, respectively). For this (q~n1:5) case, both QMC

and QFM have performed poorly which implies that n1:5 quartets

are quite insufficient for accurate phylogeny reconstruction. This

can be attributed to the fact that n1:5 is a very small number

compared to 3|
n

4

� �
(i.e., the possible number of quartets).

However, as the consistency level (c) increases, QFM starts to

produce better trees than QMC; and very often the improvements

of QFM over QMC are statistically significant (see Table S3 in File

S1). This is very promising in the sense that, QFM can construct

more accurate trees than QMC even with very small number of

quartets. The second row of each batch of Table 1 shows the

results with n2 quartets. With n2 quartets, both QFM and QMC

begin to produce better trees than that of n1:5 quartets. However,

quadratic number of quartets is still not sufficient for reconstruct-

ing an accurate tree (which confirms the observation of [9]). But as

before, QFM is statistically significantly better than QMC in most

of the cases. The bottom most row of the first three batches in

Table 1 shows the results with n2:8 quartets. In this case, both

QFM and QMC reconstruct highly accurate species trees (error

rates are close to zero) even with 70% consistent quartets.

From these results, it is clear that QFM either matches the

accuracy of QMC or (in most cases) produces better trees than

QMC. QFM outperforms QMC in 55 cases out of the 68 model

conditions shown in Table 1, and in 33 cases the differences are

statistically significant (see Table S3 in File S1). QMC is better

than QFM on only 5 cases, but the differences between the two

methods are not statistically significant. For the rest 8 cases, both

QFM and QMC have equal error rates (these are mostly the

datasets with q~n2:8 quartets where both of them have been able

to reconstruct the true trees).

We have also evaluated QFM and QMC on the noise-free

model conditions, meaning that all the quartets are accurate

(c~100%). Table 2 demonstrates the results under the parameters

(n,q) with c~100%. Of the 17 model conditions analyzed, QFM

has been found to be better than QMC on 10 cases, and the

improvements are statistically significant in 5 cases (see Table S3 in

File S1). QMC is better than QFM in two cases but the differences

are not statistically significant. In 5 cases QFM and QMC have

identical accuracy.

Computational Issues
We have evaluated the running time and memory usage of

QFM and QMC. On smaller datasets, both QFM and QMC run

in few seconds. For example, on 25 taxa, QFM took between 3
seconds to 20 seconds (depending on the number of quartets), and

QMC took less than 2 seconds. Both of these methods are very fast

on the datasets with up to 200 taxa and with n2 quartets: QFM

took few minutes while QMC completed in few seconds. However,

QFM is much slower than QMC on the larger datasets. For

example, QFM took 11 hours for the largest datasets of our

experiment with 500 taxa and 250000 quartets, while QMC took

only one minute. We believe that this difference is due to the naive

implementation of our algorithm. QMC has been implemented in

a very efficient code, and it scales well on larger datasets. We are

currently working on improving our implementation using

advanced data structures. We are also parallelizing our divide

and conquer based approach.

We have also measured the memory usage by these methods.

Both QFM and QMC are memory efficient and use only few

megabytes of memory. For example, the peak memory usages by

QMC and QFM on the datasets with 500 taxa and 250000
quartets are 10 MB and 21 MB, respectively.

Phylogenetic Tree Estimation from Quartets
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Analyses on the Avian Biological Dataset (Australo-
Papuan Fairy-wrens)

We have further evaluated the performance of QFM on a real

avian biological dataset consisting of 25 birds. Since Avian

phylogeny is considered to be hard to reconstruct, we have chosen

this dataset as a good representative of real datasets. This dataset

consists of 18 gene trees on 25 species representing 4 genera of

birds (Amytornis, Stipiturus, Malurus and Clytomias) from

Australo-Papuan avian family Maluridae, obtained from Tree-

BASE [37]. This dataset has originally been used to study the

efficacy of species tree methods at the family level in birds, using

the Australo-Papuan Fairy-wrens (Passeriformes: Maluridae) clade

[38]. Due to the presence of substantial amount of incomplete

lineage sorting (ILS) [38], analyzing this family of birds is quite

challenging.

We have decomposed every gene tree into its induced quartets

which is called embedded quartets [9,39]. Then, we have taken the

union of all these quartets (multiple copies of a quartet have been

retained). In this way we get 227,700 quartets. We have used these

quartets to estimate a species tree using our method (QFM). We

also ran QMC on this datasets. Both QFM and QMC returned

the same tree. The tree is shown in Figure 2.

Since we do not know the true trees for biological datasets, we

have compared the result obtained from QFM with biological

beliefs and other rigorous analyses. The tree returned by QFM

(which is identical to the tree estimated by QMC) is quite

interesting and consistent with the previous findings as discussed

below.

N QFM has been able to correctly identify the clusters associated

with the four genera of birds. Also, it has placed the group of

Amytornis birds as the sister to the rest of the family, and the group

of Stipiturus birds as the sister to Malurus and Clytomias birds.

These evolutionary relationships maintained by QFM are

supported by the findings of the previous studies [38,40,41].

N Amytornis: Using allozyme analysis, Christidis [41] has shown

that A. barbatus is the earliest diverged lineage in the Amytornis

genus. Same results have been obtained by a DNA sequencing

study in [42]. The sequence-based analysis of Lee et al. [38] also

have confirmed this. Our analyses with QFM also have found the

same pattern. Lee et al. [38] also have shown that A. housei should

be within the textilis complex, which is confirmed by our QFM

tree.

N Stipiturus: Evolutionary relationships within the Stipiturus
genus have been well studied [38,40,43]. Our study is consistent

Figure 1. Average RF rates of QFM and QMC on the simulated datasets. We show average RF rates (over 20 replicates of data) for each
model condition. We varied the number of taxa (n), number of quartets (q) and the percentage of consistency level (c). For a particular value of q and
c, the number of taxa is varied along the X-axis, the average RF rate is shown along the Y-axis, and the error bars represent the standard errors. From
left to right: the number of quartets are n1:5 , n2, and n2:8 . From top to bottom: 70%, 80%, 90% and 95% of the input quartets are consistent with the
model species tree. We did not run our method on n2:8 quartets when the number of taxa is more than 100, since these are computationally intensive
and QFM could not be run within a reasonable time limit. Moreover, these model conditions are less revealing and interesting since both QMC and
QFM can reconstruct the true species trees with n2:8 quartets.
doi:10.1371/journal.pone.0104008.g001
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with the previous findings: S. mallee and S. ruficeps are closer to

each other than they are to S. malachurus.
N Clytomyias and Malurus: C. insignis was placed to Stipiturus

species by [40]. However, in a more recent extensive multi-locus

study, Lee et al. [38] argued that C. insignis is closer to M. grayi.
Our study has also confirmed this fact. Also our study has

confirmed their [38] findings that M. alboscapulatus is closer to M.
melanocephalus than to M. leucopterus.

Lee et al. [38] showed that ILS is likely a general feature of the

genetic history of these avian species. Since quartets are not prone

to anomaly zone [19,23], quartet based analyses to resolve the

avian history is of high importance. Interestingly, both QMC and

QFM resolved the evolutionary history of these 18 birds similarly.

Therefore, we believe that this tree should be considered as a

reasonable hypothesis about the evolutionary history of this family

of birds.

Discussion

In this work we have presented a novel and highly accurate

quartet amalgamation technique, which we refer to as QFM. We

have demonstrated the superiority of our method over QMC,

which is known to be the best quartet amalgamation method to

date.

QFM is a new promising divide and conquer supertree method

having an algorithmic appeal. We have conducted an extensive

experimental study comparing QFM against QMC under

different model conditions by varying different parameters. For

almost all model conditions considered, QFM performs at least

equal but in most cases better than QMC. In line with the

experimental results shown in [9], we have found that quadratic

sampling of quartets is not sufficient for accurate supertree

construction. However, with n2:8 quartets, both QFM and QMC

can reconstruct very accurate trees indicating that it is possible to

reconstruct an accurate supertree from large number of quartets,

even with high amount of noise in the input data. QFM has also

been tested on real biological datasets and has been shown to

perform pretty well. The tree estimated by QFM has maintained

the important evolutionary relationships despite the presence of

incomplete lineage sorting. This is particularly interesting because

this suggests that we can use quartet-based technique to develop

species tree estimation method (from multi-locus data), which is

less susceptible to gene tree incongruence due to ILS.

Species tree estimation is frequently based on phylogenomic

approaches that use multiple genes from throughout the genome.

However, combining data on multiple genes is not a trivial task.

Genes evolve through biological processes that include deep

coalescence (also known as incomplete lineage sorting (ILS)),

duplication and loss, horizontal gene transfer etc. As a result the

individual gene histories can differ from each other [10]. Species

tree estimation in the presence of ILS is a challenging task.

Moreover, anomalous gene trees (AGTs) make this task even more

complicated [19,20]. It has been proven that AGTs cannot occur

in quartets and thus the most probable quartets induced by the

true gene trees represent the true species trees for the

corresponding four species [19,23], Therefore, quartets can be

used to design statistically consistent methods (methods that have

the statistical guarantee to construct the true species tree given

sufficiently large number of true gene trees) for constructing the

species tree from gene trees (which evolve with ILS) as follows.

First, we compute the quartets induced by the gene trees. For

every four species, there are three possible quartets. Given

sufficiently large number of true gene trees, the most probable

quartets (the most frequently occurring quartets) on every four

Table 2. Comparison of QFM and QMC under the noise-free model conditions.

n q Average RF rate

c = 100%

QFM QMC

25 125 0.444 0.515

25 625 0.056 0.052

25 8208 0 0

50 354 0.661 0.666

50 2500 0.140 0.140

50 57164 0 0

100 1000 0.777 0.797

100 10000 0.269 0.274

100 398108 0 0

200 2829 0.848 0.881

200 40000 0.424 0.424

300 5197 0.887 0.907

300 90000 0.506 0.499

400 8000 0.897 0.930

400 160000 0.554 0.555

500 11181 0.903 0.937

500 250000 0.590 0.606

Average RF rates of QFM and QMC over the 20 replicates of data under the noise-free model conditions (c~~100%). We varied the number of taxa (n) and the number of
quartets (q). Results are shown in bold face where QFM is better than QMC.
doi:10.1371/journal.pone.0104008.t002
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species represent the true species trees for those four species. Thus

combining the most probable quartets to get a single and coherent

species tree is an statistically consistent approach for species tree

estimation. In this context, we can formalize the maximum

weighted quartet satisfiability problem as follows.

N Input: A set S of weighted quartets.

N Output: The species tree T such that T maximizes the

summation of the weights of the satisfied quartets in S.

We can define the weight of a quartet q as the proportion of the

gene trees that induce q. We can also incorporate the branch

lengths in defining the weights. One major advantage of QFM is

that it can readily be adapted to take a set of weighted quartets as

input without making any change in its algorithmic constructs.

Therefore, we think QFM is an important contribution to the

phylogenomic analyses, in particular for estimating species trees

from a set of gene trees where gene trees can be discordant from

each other due to ILS.

Another advantage of QFM lies in its flexibility in choosing the

partition score function (see ‘‘Partition Score’’ section). QFM can

be customized to take different scoring functions (i.e., s{v, s=v,

etc.) without making any change in the algorithmic construct. We

have observed that QFM may not give the same result for different

scoring functions for the same dataset. So for different datasets, we

may obtain better results by adapting different suitable scoring

functions. Thus QFM provides us with the flexibility to change the

scoring function as needed. In future we shall try to make our

algorithm self-adaptable to the appropriate scoring function by

analyzing different characteristics of the input datasets. Notably, as

has already been discussed above, one shortcoming of the current

implementation of QFM is that it is not as fast as QMC.

Materials and Methods

In this section we present our heuristic algorithm, namely, the

Quartet FM (QFM) algorithm. Our algorithm employs a quartet
based supertree reconstruction technique that involves a bipartition

method inspired by the Fiduccia Mattheyses (FM) bipartition

technique [32].

Basics
A quartet ((A,B),(C,D)) is consistent with a tree T if in T , there

is an edge (or path in general) separating A and B from C and D.

For any four taxa, only one quartet (out of 3 possible quartets) will

be consistent with a tree T . In Figure 3 among the three quartets,

Figure 2. The 25 species avian phylogeny, representing 4 genera of birds from Maluridae family, estimated by QFM using the
227,700 embedded quartets in 18 gene trees. The evolutionary relationships maintained by this tree are supported by the findings of the
previous studies [38,40,41,43].
doi:10.1371/journal.pone.0104008.g002
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quartet q1 is consistent with tree T as there exists an edge in T

such that it separates A and C from B and D. Other two quartets

are inconsistent with T as no such edge exists in T .

A bipartition of an unrooted tree T is formed by taking any

edge in T , and writing down the two sets of taxa that would be

formed by deleting that edge. Let T be a tree over the taxa set P.

Now, if we take an internal edge e of T and delete e, then we get

two subtrees, namely, Ta and Tb. Let Pa and Pb be the sets of taxa

of Ta and Tb respectively. We shall denote such bipartition by (Pa,

Pb). Thus an internal edge in T corresponds to a bipartition of P.

A quartet q~((A,B),(C,D)) is satisfied with respect to a

bipartition (Pa,Pb) if taxa A and B reside in one part and taxa C

and D reside in the other. A satisfied quartet is consistent with T .

The quartet q is said to be violated with respect to a bipartition

(Pa,Pb) when taxa A and C (or A and D) reside in one part and

taxa B and D (or B and C) reside in the other part. On the other

hand, q is said to be deferred with respect to a bipartition (Pa,Pb) if

any three of its four taxa reside in one part and the fourth one

resides in the other.

A tree T over a taxa set P is said to be a star, if T has only one

internal node and there is an edge from the internal node incident

to each taxon t[P. We shall refer to such a tree as a depth one tree.

Divide and conquer approach
We follow a divide and conquer approach similar to QMC [7–

9]. Let, Q be a set of quartets over a set of taxa, P. We aim to

construct a tree T on P, satisfying the largest number of input

quartets possible. The divide and conquer approach recursively

creates bipartition of the taxa set, where each bipartition

corresponds to an internal edge in the tree under construction.

QMC uses a heuristic bipartition technique which is based on

finding a maximum cut (MaxCut) in a graph over the taxa set,

where the edges represent the input quartets [9]. On the other

hand, our algorithm uses a heuristic bipartition algorithm inspired

by the famous Fiduccia and Mattheyses (FM) [32] bipartition

algorithm.

Divide. At each recursive step, we partition the taxa set P into

two sets Pa and Pb. We shall describe the bipartitioning algorithm

in ‘‘Method of Bipartition’’ section. After the algorithm partitions

the taxa set, it augments both parts (Pa and Pb) with a unique

dummy (artificial) taxon. This taxon will play a role while

returning from the recursion. After the addition of the dummy

taxon to the sets Pa and Pb, we subdivide the quartet set Q into

two sets, Qa and Qb. A quartet set Qi takes those quartets

((a,b),(c,d)) from Q such that either all four taxa a, b, c and d or

any three thereof belong to Pi (here i[fa,bg). In other words,

satisfied or violated quartets with respect to the partition (Pa,Pb)
are not considered to be included in either Qa or Qb. Moreover, in

every deferred quartet, where three taxa are in the same part, the

other taxon is renamed by the name of the dummy taxon, and the

quartet continues to the next step. Thus we get, two (Qi,Pi) pairs:

(Qa,Pa) and (Qb,Pb). We then recurse on both pairs (Qa,Pa) and

(Qb,Pb) if Qi is non-empty and DPi D w 3. If either Qi is empty or

DPi D ƒ 3, we return a depth one tree over the taxa set Pi.

Conquer. On returning from the recursion, at each step, we

have two trees, Ta (corresponding to (Qa,Pa)) and Tb (corre-

sponding to (Qb,Pb)). These two trees are rerooted at the dummy

taxon. Then the dummy taxon is removed from each tree and the

two roots are joined by an internal edge.

Figure 4 describes the high level divide and conquer algorithm.

Let Q be the input quartet set and P be the corresponding taxa

set. Assume that Q = f((1,2),(3,4)), ((1,3),(2,4)), ((2,3),(4,5)),

Figure 3. Quartet consistency with a tree T. Among the three quartets, only q1 = ((A, C), (B,D)) is consistent with T because T has an internal
edge that separates taxa A and C from taxa B and D in T .
doi:10.1371/journal.pone.0104008.g003
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((1,2),(5,6)), ((3,4),(5,6)), ((1,3),(5,6))g, and hence P~f1,2,3,
4,5,6g. First, P is partitioned into two sets, Pa~f1,2,3,Xg and

Pb~f4,5,6,Xg by using the bipartition technique described in

‘‘Method of Bipartition’’ section. Here, X is the dummy taxon.

The bipartition (Pa,Pb) satisfies quartets q3 : ((2,3),(4,5)),
q4 : ((1,2),(5,6)) and q6 : ((1,3),(5,6)) from Q. So these quartets

will not be considered in the next level. Qa takes q1 : ((1,2),(3,4))
and q2 : ((1,3),(2,4)) as three of the taxa of q1 and q2 reside in Pa.

We replace the taxon which does not belong to Pa with the

dummy taxon X . Hence we get Qa~f((1,2),(3,X )),((1,3),(2,X ))g.
Similarly we get Qb~f((X ,4),(5,6))g. Next we recurse on (Qa,Pa)
and (Qb,Pb), and Pa and Pb are partitioned further into (Paa

,Pab
)

and (Pba
,Pbb

), respectively. The partition (Paa
,Pab

) satisfies

((1,2),(3,X )) and violates ((1,3),(2,X )) in Qa and (Pba
,Pbb

) satisfies

the only quartet in Qb. So the quartet sets for the next level are

empty and hence no more recursion is required. We return a depth
one tree for each of the taxa sets Paa

, Pab
, Pba

and Pbb
. The returned

trees are merged by removing the dummy taxon of that level and

joining the branches of the dummy taxa. In Figure 4, the upper half

shows the divide steps. The depth one trees are returned when no

more recursion is required. The lower half of Figure 4 shows how

the trees are returned and merged as the recursion unfolds (conquer

step). Thus we get the final merged tree (((1,2),3),(4,(5,6))) (shown

at the bottom of Figure 4) satisfying 5 quartets in total. The satisfied

quartets are q1, q3, q4, q5 and q6.

Method of Bipartition
The most crucial part of our algorithm is the bipartition (divide

step) technique. Here, we differ from QMC [7–9] and adopt a new

bipartition technique inspired by the famous Fiduccia and

Figure 4. Divide and conquer approach. Divide: At each step, the input set of taxa of this step is partitioned into two sets and an unique dummy
taxon is added to both sets. The input quartet set is then partitioned into two sets according to the bipartition of the set of taxa. So we get two (taxa
set, quartet set) pairs, which are input to the successive divide steps. If at any step, the quartet set gets empty or the size of the taxa set becomes less
than or equal to 3, a depth one tree over the taxa set is returned. Conquer: At each step, there are two trees corresponding to the divide calls initiated
at this step. These two trees are joined on the dummy taxon introduced at this step during divide. For example, the leftmost two depth one trees,
when returned to its caller, are joined on the dummy taxon Y .
doi:10.1371/journal.pone.0104008.g004

Phylogenetic Tree Estimation from Quartets

PLOS ONE | www.plosone.org 9 August 2014 | Volume 9 | Issue 8 | e104008



Mattheyses (FM) algorithm for bipartitioning a hyper graph

minimizing the cut size [32]. In divide and conquer based

phylogenetic tree construction, the bipartition of the taxa set

corresponds to an internal edge of the tree under construction. An

internal edge, in turn, plays a role to make quartets to be satisfied

or violated against the bipartition. So we adopt a different

bipartition technique from that used in QMC, with an objective to

get better results.

Our bipartition algorithm takes a pair of taxa set and a quartet

set (P, Q) as input. It partitions P into two sets, namely, Pa and Pb

with an objective that (Pa, Pb) satisfies the maximum number of

quartets from Q. The algorithm starts with an initial partition and

iteratively searches for a better partition. We will use a heuristic

search to find the best partition. Before we describe the steps of the

algorithm, we describe the algorithmic components.

Partition Score. We assess the quality of a partition by assigning

a partition score. We use a scoring function, Score(Pa,Pb,Q), such that

the higher score will indicate a better partition. This function checks

each q[Q against the partition (Pa,Pb) and determines whether q is

satisfied, violated or deferred. We define the score function in terms

of the number of satisfied and violated quartets. Let s and v denote

the number of satisfied and violated quartets. Then, two natural

ways of defining the score function are: 1) taking the difference

between the number of satisfied and violated quartets (s{v), and 2)

taking the ratio of the number of satisfied and violated quartets

(s=1zv). As num In this paper, we used s{v as the score function.

We can also use some other complicated score functions defined in

terms of the number of satisfied, violated and deferred quartets (i.e.,

Score(Pa,Pb,Q)~f (s,v,d), where d denotes the number of

deferred quartets). In our preliminary experimental study, we have

explored different score functions and observed that s{v gives

better performance in most of the cases. Notably, although in some

cases other functions (e.g., s=1zv, s{vzs=dzs=1zv) achieve

better results than s{v (results are not shown in this paper), none of

them is consistently better than s{v.

Gain Measure. Let (Pa,Pb) be a partition of set of taxa P.

Let t[P be a taxon and without loss of generality we assume that

t[Pa. Let (Pa, Pb ) be the partition after moving the taxa t from Pa to

Pb. That means, Pa ~Pa{t, and Pb ~Pb|t. Then we define the

gain of the transfer of the taxon t with respect to (Pa,Pb), denoted by

Gain(t,(Pa,Pb)), as Score(Pa, Pb , Q){Score(Pa,Pb,Q).
Singleton Bipartition. A bipartition (Pa,Pb) of P is singleton

if DPaD ~1 or DPbD ~1. In our bipartition algorithm, we keep a

check for the singleton bipartition. We do not allow our bipartition

algorithm to return a singleton bipartition to avoid the risk of an

infinite loop.

Algorithm. Now we describe the bipartition algorithm which

we call MFM (Modified FM) Bipartition Algorithm. Let, (P, Q) be

the input to the bipartition algorithm, where P be a set of taxa and

Q be a set of quartets over the taxa set P. We start with an initial

Figure 5. An example iteration of the Bipartition Algorithm MFM. The locked taxa are shown in circles. At each step, the taxon which has the
maximum gain and will be transferred from its current partition to the other is indicated by a left arrow. (Pa0

, Pb0
) is the initial bipartition of this

iteration. Initially all taxa are free (i.e, not locked). The gain is computed for each free taxon of this step and the taxon (which is 3 here) with maximum
gain is transferred from its own partition to the other partition. Thus we get partition (Pa1

, Pb1
), where 3 is a locked taxon. In this way, only one taxon

is locked at a step and once a taxon is locked, it remains locked throughout the iteration. An iteration completes when all taxa get locked. Here, all
taxa get locked at (Pa6

, Pb6
).

doi:10.1371/journal.pone.0104008.g005
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bipartition (Pa0
,Pb0

) of P. The initial bipartitioning is done in four

steps.

N Step 1: We count the frequency of each distinct quartet in Q.

N Step 2: We then sort Q by the frequency count of the quartets

in a decreasing order.

N Step 3: Suppose after sorting Q~q1,q2, . . . ,qm, where

m~ DQD. Now we consider the quartets one by one in the sorted

order. Initially both Pa0
and Pb0

are empty.

Let q~((t1,t2),(t3,t4)) be a quartet in Q. If none of the 4 taxa

belongs to either Pa0
or Pb0

, then we insert t1 and t2 in Pa0
and t3

and t4 in Pb0
. Otherwise, if any of the 4 taxa exists in either Pa0

or

Pb0
we take the following actions to insert a taxon which doest not

exist in Pa0
or Pb0

. We maintain an insertion order. We consider

t1, t2, t3 and t4 respectively.

– To insert t1, we look for the partition of t2 (if t2 exists in any

part) and insert t1 into that partition. But if t2 does not exist in

either of the partitions, then we look for the partition of either t3 or

t4 (either of these two must exist in Pa0
or Pb0

) and insert t1 into

the other partition.

– To insert t2, we look for the partition of t1 and insert t2 into

that partition.

– To insert t3, we look for the partition of t4 (if t4 exists in any

part) and inset t3 into that partition. But if t4 does not exist in

either of the partitions, then we look for the partition of either t1 or

t2 and insert t3 into the other partition.

– To insert t4, we look for the partition of t3 and insert t4 into

that partition.

N Step 4: When we insert a taxon t to any part, we remove it

from P. After considering each q[Q and inserting taxa accord-

ingly, if P remains non-empty, we insert the remaining taxa to

either part randomly.

Obtaining (Pa0
,Pb0

), we search for a better partition iteratively.

At each iteration, we perform a series of transfers of taxa from one

partition set to the other to maximize the number of satisfied

quartets. At the beginning of an iteration, we set the status of all

the taxa as free. Then, for each free taxon t[P, we calculate

Gain(t,(Pa0
,Pb0

)), and find the taxon t1 with the maximum gain.

There can be more than one taxa with the maximum gain where we

need to break the tie. We will discuss this issue later. Next we

transfer t1 and set the status of this taxon as locked in the new

partition that indicates that it will not be considered to be

transferred again in this current iteration. This transfer creates the

first intermediate bipartition (Pa1
,Pb1

). The algorithm then finds the

next free taxon t2 with the maximum gain with respect to (Pa1
,Pb1

),
and transfer and lock that taxon to create another intermediate

bipartition (Pa2
,Pb2

). Thus we transfer all the free taxon one by one.

Let Q be the input quartet set and P be the corresponding taxa set.

Assume that Q = f((1,2),(3,4)), ((1,2),(5,6)), ((1,3),(2,4)),
((3,4),(5,6)), ((2,3),(4,5)), ((1,3),(5,6))g (same as used in Figure 4).

Hence, P~f1,2,3,4,5,6g. Following the steps of the initial biparti-

tion, we get the initial bipartition Pa0
~f1,2g and Pb0

~f3,4,5,6g.
Figure 5 shows the first iteration of the bipartition algorithm for this

particular example.

Table 3. Gain Summary.

k Taxon Gain CGain(k)

1 3 2 2

2 4 0 2

3 2 {2 0

4 1 {1 {1

5 5 {1 {2

6 6 2 0

The log table corresponding to the iteration shown in Figure 5. Here k represents the step number. The input partition to step k is (Pak{1
, Pbk{1

). The second column
shows the taxon that has the maximum gain at the corresponding step, and the third column shows the corresponding maximum gain. The fourth column shows the
cumulative gain of the gains listed in the third column. We observe that the cumulative gain gets maximum (2) after moving taxon 3 in step 1. So all the subsequent
moves of taxa are rolled back. The resultant partition of this iteration is (Pa1

, Pb1
) = (f1,2,3g,f4,5,6g), which is the initial partition for the next iteration of the iteration in

Figure 5.
doi:10.1371/journal.pone.0104008.t003

Table 4. Gain Summary.

k Taxon Gain CGain(k)

1 4 0 0

2 2 {2 {2

3 1 {1 {3

4 5 {1 {4

5 6 2 {2

6 3 2 0

The log table corresponding to the next iteration of the iteration shown in Figure 5. Here k represents the step number. The input partition to step k is (Pak{1
, Pbk{1

).
The second column shows the taxon that has the maximum gain at the corresponding step, and the third column shows the corresponding maximum gain. We observe
that the cumulative gain gets maximum (0) at step 1. So we rollback all the subsequent moves including the move at step 1 and return the initial partition
(f1,2,3g,f4,5,6g) of this iteration as the resultant bipartition of the bipartition algorithm. No more iteration is needed as the maximum cumulative gain of the current
iteration is not greater than zero.
doi:10.1371/journal.pone.0104008.t004
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Suppose that the taxa are locked in the following order:

ft1,t2, . . . ,tng. That is, t1 has been locked first, then t2, t3 and so

on. Let, the gain values of the corresponding partitions are:

Gain (t1,(Pa0
,Pb0

)), . . . ,Gain (tn,(Pan{1
,Pbn{1

)):

Now we define the cumulative gain up to the kth transfer as

CGain(k)~
Xk

i~1

Gain(ti,(Pai{1
,Pbi{1

)):

The maximum cumulative gain, MCGain(t1,t2, . . . ,tn) is

defined as

MCGain(ft1,t2, . . . ,tng)~max1 ƒ i ƒnCGain(i):

In each iteration, the algorithm finds the current ordering

(ft1, t2, . . . ,tng) of the transfers and saves this order in a log table

along with the cumulative gains (see Table 3 for example). Let tm be

the taxon in the log table corresponding to MCGain(ft1,t2, . . . ,tng).
This means that we obtain the maximum cumulative gain after

moving the mth taxon (with respect to the order stored in the log

table). Then we rollback the transfers of the taxa (tmz1, . . . ,tn) that

were moved after tm. Let the resultant partition after these rollbacks is

(Pa,Pb). This partition will be the initial partition for the next

iteration. In this way, the algorithm continues as long as the

maximum cumulative gain is greater than zero and returns the

resultant bipartition. Table 3 lists the order of locking, corresponding

gain and cumulative gain with respect to the iteration illustrated in

Figure 5. From Table 3 we note that we get the maximum

cumulative gain, 2, after moving taxon 3. Here, we also get the

maximum value of cumulative gain after moving taxon 4. We break

the tie arbitrarily. We consider the taxon for which we get the

maximum cumulative gain for the first time. For this example, we get

the maximum cumulative gain of 2 at taxon 3 for the first time. So we

rollback all the subsequent moves. The resultant partition after this

rollback is (f1,2,3g,f4,5,6g) (partition (Pa1
,Pb1

) in Figure 5).

Similarly, Table 4 lists the ordering of locking, corresponding gain

and cumulative gain with respect to the iteration which follows the

iteration illustrated in Figure 5. From Table 4 we get that the

maximum cumulative gain is 0. So the moves are rolled back and we

get the final resultant partition (f1,2,3g,f4,5,6g).
As we have mentioned earlier, we do not allow any transfer of

taxa that results into a singleton bipartition. Therefore, we need to

add some additional conditions. Also, there could be more than

one free taxa with the maximum gain, where we need to decide

which one to transfer. We consider the following cases to address

these issues. Let, M be a set of free taxa with the maximum gain.

N Case 1: DM D §1 and at least one corresponding bipartition is

not singleton. That means, there exists t[M such that transfer of t

does not result into a singleton bipartition. Let M�(M be the set

of taxa, that can be safely transferred without resulting in a

singleton bipartition. Note that, DM�D §1. If DM�D ~1, we transfer

the taxa t[M�. Otherwise, we have more than one taxa in M�. In

that case, we pick the taxon t[M�, for which the corresponding

bipartition (after transferring t) satisfies maximum number of

quartets (note that every taxa in M� has the same gain, but the

corresponding bipartitions do not necessarily satisfy the same

number of quartets). In the case of a tie, we choose one taxon at

random.

N Case 2: DM D §1 and transfer of each t[M results in a singleton

bipartition. In this case, we consider the set of taxa with the second

highest maximum gain. Let M ’ be the set of free taxa with the

second highest maximum gain. We then recursively check ‘Case 1’

and ‘Case 2’ on M ’. If we cannot find a taxon that can be

transferred without resulting into a singleton bipartition, we make

the status of all the free taxa locked and set their gain to zero.

At each divide step we have a (P,Q) pair as input. The

bipartition algorithm returns a bipartition (Pa,Pb) of the taxa set

P. We then divide Q into Qa and Qb and obtain (Pa,Qa) and

(Pb,Qb) pairs. Pa and Pb will be further bipartitioned in

subsequent divide steps. The pseudo-code of the bipartition

method MFM is given in Table S4 in File S1. Moreover, the run

time analyses of Algorithm MFM is described in File S1.

Supporting Information

File S1 Supplementary material. Additional tables, and the

pseudocode and time complexity of MFM bipartition algorithm

are presented.

(PDF)
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