
Synergistic Effect of Fadrozole and Insulin-Like Growth
Factor-I on Female-To-Male Sex Reversal and Body
Weight of Broiler Chicks
Mohammad Mohammadrezaei1, Majid Toghyani2, Abbasali Gheisari3, Mehdi Toghyani1,4,

Shahin Eghbalsaied1,2*

1 Young Researchers and Elite Club, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran, 2 Department of Animal Science, Khorasgan (Isfahan) Branch, Islamic

Azad University, Isfahan, Iran, 3 Department of Animal Science, Isfahan Research Center for Natural Resources and Agriculture, Isfahan, Iran, 4 Department of Animal

Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia

Abstract

The aim of this study was to investigate the effects of Fadrozole hydrochloride and recombinant human insulin-like growth
factor I (rhIGF-I) on female-to-male sex reversal, hatching traits, and body weight of broiler chickens. On the third day of
incubation, fertile eggs were randomly assigned to five experimental groups comprising (i) Fadrozole (0.1 mg/egg), (ii)
rhIGF-I (100 ng/egg), (iii) Fadrozole (0.1 mg/egg) + rhIGF-I (100 ng/egg), (iv) vehicle injection (10 mM acetic acid and 0.1%
BSA), and (v) non-injected eggs. Eggs in the rhIGF-I-injected groups showed the mode of hatching time at the 480th hour of
incubation, 12 hours earlier compared to the other groups, with no statistically significant difference in mortality and
hatchability. On Day 1 and 42 of production, 90% of genetically female chicks were masculinized using Fadrozole treatment,
while 100% female-to-male phenotypic sex reversal was observed in the Fadrozole+rhIGF-I group. Fadrozole equalized the
body weight of both genders, although rhIGF-I was effective on the body weight of male chicks only. Interestingly,
combined rhIGF-I and Fadrozole could increase the body weight in both sexes compared to the individual injections (P,
0.05). These findings revealed that (i) IGF-I-treated chicken embryos were shown to be an effective option for overcoming
the very long chicken deprivation period, (ii) the simultaneous treatment with Fadrozole and IGF-I could maximize the
female-to-male sex reversal chance, (iii) the increase in the body weight of masculinized chickens via Fadrozole could be
equal to their genetically male counterparts, and (iv) the IGF-I effectiveness, specifically along with the application of
aromatase inhibitors in female chicks, indicates that estrogen synthesis could be a stumbling block for the IGF-I action
mechanism in female embryos.
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Introduction

Sexual differentiation in the avian system is directed by the

presence or absence of the W chromosome, similar to the Y

chromosome in mammals [1]. Unlike mammals, genetically male

birds are homozygous (ZZ) and the females are heterozygous (ZW)

[2,3]. It is thought that, like in mammals, one or both of the

chicken sex chromosomes carry genes which control the cellular

decision-making process for gonad development, resulting in ovary

development in ZW hens and testis in ZZ roosters [4]. The onset

of gonadal sex differentiation in birds is sensitive to steroid

hormones [5]. Estrogen is required for ovarian development and

control proliferation of the left gonadal cortex [6]. Moreover, 17b-

Hydroxysteroid dehydrogenase and aromatase enzymes which are

responsible for the conversion of androgens to estradiol-17 b are

only detectable in the female embryos’ gonads [7]. Accordingly,

estradiol can be detected from E9 to E15 in female chicken

embryonic gonads by monitoring the production of estradiol-17b
[8].

The importance of aromatase is underscored by numerous

studies showing that aromatase inhibitors, such as Fadrozole,

induce female-to-male sex reversal in ZW females when admin-

istered before or during sexual differentiation [9–11]. After a

treatment on the third day of egg incubation with 1-methyl-

androstendion, a steroidal aromatase inhibitor, or with Fadrozole,

a nonsteroidal aromatase inhibitor, gonads of 12-day-old female

embryos looked like testis and exhibited different grades of sex

reversal [12]. In another study, the administration of Fadrozole

prior to the incubation indicated that gonads of the majority of

females had a visual appearance of testes at the hatching time [11].

Recently, Li et al. [13] showed that injection of Fadrozole before

gonadal sex differentiation on the third day of incubation can

induce female-to-male sex reversal in broiler chickens. On the

other hand, the male-to-female chicken sex reversal can be

directed by the addition of estrogen [6] or aromatase over-

expression [1] during sexual differentiation, pointing out the

linearity in the aromatase-estrogen pathway.
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Insulin-like growth factors, IGF-1 and IGF-2, play essential

roles in mammalian and avian growth and development as a

mediator of growth hormone, either as endocrine or autocrine-

paracrine effectors [14]. The positive impact of in ovo adminis-

tration of IGF-I on embryonic and postnatal growth and

development, particularly skeletal muscles, is well documented in

broiler chicks and quails [15–17]. Although IGF-I has been fully

documented as a growth hormone in various species, its

interaction with aromatase/anti-aromatase has not been well

explored. It has been reported that IGF-I plays an important role

in the regulation of testicular steroid biosynthesis, testicular

growth, and development [18]. However, the regulation of

aromatase gene expression using IGF-I manipulation appears to

be different between mammalian Sertoli and granulosa cells

[19,20].

Male broiler chicks have a faster growth rate and better feed

efficiency than females and are thus of particular economic interest

for farmers. Even though acceptable sex reversal rate has been

achieved through aromatase inhibitors, female-to-male sex-

reversed chicks do not gain much weight compared to the

genetically male chickens [1,11]. Treatment of chicken embryos

by IGF-I, as an important growth inducer, could be effective for

overcoming the lower weight gain drawback of sex-reversed

chicks. However, IGF-I effectiveness on the body weight gain is

exclusively limited to the male chicks [16,21,22], and it still needs

to be investigated if inhibiting estrogen synthesis could trigger the

IGF-I efficiency in genetically female chicks. In addition, the

possible synergistic or antagonistic impacts of anti-aromatase and

IGF-I on chicken sex reversal have not been studied. Thus, the

objective of the current study was to investigate the effect of in ovo
administration of Fadrozole and recombinant human (rh) IGF-I

on female-to-male sex reversal and body weight of broiler chicks.

Hatching characteristics were also investigated to detect possible

detrimental treatment effects.

Materials and Methods

Ethical statements
On Day 4 of incubation, an in ovo injection was carried out

over a large distance from the embryo location to minimize the

physical damages done to the embryos. Eggs which did not hatch

until Day 22 of incubation were cracked by the staff, and the dead

embryos were used for genotyping. No mortality was observed

during the production period in all treatment groups. In each

measurement session, each chick was handled only for few minutes

to avoid unnecessary stress and improve chicken refinements. By

the end of Day 42 of production, chicks from all groups were

promptly and humanely killed by a panel of experts and used for

morphological evaluations. It should be borne in mind that the

researchers of the current study had recruited two enthusiastic,

well-trained, and skilled staff to thoroughly monitor the chicken’s

behavior and physical appearance, as well as feed and water

intakes throughout the production period. All the experimental

procedures were assessed and approved by the Institutional

Animal Care and Ethics Committee in Islamic Azad University,

Khorasgan Branch, Isfahan, Iran, and all national and institu-

tional guidelines were appropriately followed.

Experimental treatments and injection procedure
A total number of 550 fertilized commercial eggs coming from

the Ross broiler (308) chickens were collected and incubated under

standard conditions (temperature 37.560.2uC, relative humidity

6562%). On the third day of incubation, 85 hours following the

eggs being placed in the incubator, all the set eggs were candled

and the air sacks were located. Fertile eggs (6561.5 g) were

randomly divided into five groups with four replicates of 24 eggs;

namely i) a Fadrozole hydrochloride-injected (#F3806, Sigma-

Aldrich, Germany; 0.1 mg per egg) group, ii) a recombinant

human (rh) IGF-I injected (#SRP3069, Sigma-Aldrich, Germany;

100 ng per egg) group, iii) Fadrozole hydrochloride (0.1 mg per

egg) + rhIGF-I (100 ng per egg) injected group, iv) a vehicle

injected sham control group containing 10 mM acetic acid

(#A3686, PanReac AppliChem, Germany) and 0.1% Bovine

serum albumin (#A2153, Sigma-Aldrich, Germany), and v) a non-

injected control group. Prior to the injections, the shell surface was

wiped using 70% ethanol and a small tiny hole was drilled on the

surface of the air sack. Injections were made into the albumen

right under the air sack using 23-gauge needles cut to 13 mm, then

the holes were sealed with liquid paraffin and the eggs were

replaced in the incubator in order to be hatched.

Hatching time and chicks body weight
To determine the period after which the incubated eggs hatched

(‘‘hatching time’’), the hatched chicks from each group was

recorded every 3 hours from 456 to 510 hours of incubation. To

follow the standards [23], all the chicks in each group were kept in

the hatchery until six hours after the last hatching event and then

they were sexed and reared for six weeks. Therefore, we could not

determine chicken gender at the exact time of hatching. The

hatched chicks were individually weighed and 8 chicks per

replicate were randomly distributed into floor pens covered by

sawdust as litter (10 birds/m2) and raised for 6 weeks. A corn-

soybean diet was formulated to meet or exceed the nutrient

requirements of broilers offered by the Ross Broiler Manual (2007)

for different periods provided ad libitum throughout the experi-

ment.

Phenotypic and genotypic sex determination
On the day of hatch, the phenotypic sex of randomly selected

hatched chicks was evaluated through vent sexing by expert staffs.

In summary, following squeezing the vent by fingers and expelling

the chick dropping, the vent was opened, and the presence of a

bump was considered as the male indicator. Afterwards, these

chicks were slaughtered and their liver samples were collected and

used to determine their sexual ZZ or ZW genotype. Next, all birds

reared for 6 weeks, and the presence or absence of the testis was

considered to determine the chicken phenotypic sex following

slaughter on Day 42 of production.

Genomic DNA was extracted from the liver samples collected

on the hatching day or Day 42 after hatch, and then the genetic

sex was identified by PCR from the CHD1 gene [24]. The

principle of identifying genetic sex via CHD1 was based on the

number of amplified fragments. That is, one or two bands are

detectable in genetically male or female chicks, respectively [25].

Serum biochemical parameters
On Day 1, 2.5 ml of blood was collected by puncturing the

heart from four randomly selected birds per replicate (16 chicks

per treatment). Blood samples were immediately aliquoted into

non-anticoagulant tubes and allowed to clot for 2 hours at 37uC.

Then the serum samples were isolated by centrifugation at

20006g for 10 minutes and stored at 220uC for later analysis.

Serum samples were thawed and glucose, total protein, and

triglyceride levels were determined using an auto analyzer

following the instructions of the corresponding reagent kit

(Autolab, PM 4000, Autoanalyzer Medical System, Rome, Italy).

Fadrozole and IGF-I Effect on Chick Sex and Weight
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Statistical analysis
The collected data of hatchability, sexual mortality, and the rate

of sex reversal were analyzed by x2 test. The data obtained from

serum biochemical parameters and productive performance

attributes of genetically male and female sexes were subjected to

the analysis of variance using the general linear model (GLM)

procedure in SAS 9.2 package (each sex in isolation). The Tukey

post-hoc test was used to assess any significant differences among

treatments in each sex. In addition, an independent t-test was used

to perform a mean comparison between genetically male and

female chicks in each group. Since the frequency distribution of

hatching time can be an important factor for the chicken quality

dispersion through the duration of early deprivation period,

further descriptive statistics including skewness and kurtosis were

measured by Microsoft Office Excel 2007. The P-value set at

#0.05 was considered as the significant level for mean compar-

isons. All values are presented as mean 6 SEM, unless indicated

otherwise.

Results

Hatching time, hatchability and mortality
In this study, we evaluated if the administration of Fadrozole

and IGF-I, alone or in combination, could affect the hatching

traits of broiler chickens. Along with the graphical distribution of

hatching time (Figure 1A), we measured skewness (Figure 1B),

which demonstrates the amount and direction of departure from

horizontal symmetry, and kurtosis (Figure 1C), which reflects the

mass movement of hatching time events at peak, tails, and

shoulders of the distribution [26]. In the control groups, hatching

occurred between 456 and 508 hours post-incubation (Figure 1A)

and its distribution was slightly left-skewed (Figure 1.B). Moreover,

the mode of hatching time was observed at the 492nd hour of

incubation in the control group. Fadrozole noticeably decreased

the kurtosis criterion of the frequency distribution (Figure 1.C),

without changing the skewed distribution. The mode of hatching

time was observed 12 hours earlier in IGF-I injected eggs,

irrespective of whether Fadrozole was present or not. However,

the complementation of Fadrozole with rhIGF-I slightly increased

the kurtosis and hatching events around the average. There were

no significant differences in hatchability among experimental

groups (Table 1). Embryo mortality was not statistically affected

by the treatments, although the number of dead female embryos

was higher than males in all experimental groups (Table 1).

Rate of sex reversal
Following the hatch, a randomly selected sample of chicks from

each group underwent phenotypic and genotypic sexing using vent

sexing and PCR-based procedures, respectively (Table 2). Even

though allocation of fertilized eggs to each group was carried out

randomly, a high level of genotypic sex ratio distortion was

observed among different groups. Genotypic and phenotypic

sexing were in complete agreement for the control, sham injection,

and rhIGF-I groups. However, this consistency was not observed

for the chicks in either of Fadrozole administrated groups (P#

0.05). Fadrozole injection on Day 3 of incubation led to 89.5%

female-to-male sex reversal, while Fadrozole combined with

rhIGF-I completely reversed the female phenotype. To see if the

female-to-male sex reversal is a stable or transient phenomenon,

chickens on 42 days of production from each group were further

used for phenotypic and genotypic sexing (Table 3). In agreement

with the Day 1, sex-reversal data, 90% of genetically female chicks

were masculinized using Fadrozole manipulation on Day 42 of

production. Additionally, the synergistic effect of rhIGF-I and

Fadrozole, 100% female-to-male sex reversal, was also verified at

the end of production period.

Serum biochemical parameters
The treatment effects on serum constituents which were tested

on the day of hatching are summarized in Table 4. Birds from

both male and female genotypes which received the rhIGF-I had

significantly higher serum protein (g/100 ml), triglyceride (mg/dl)

and glucose (mg/dl) concentrations compared to the other groups

(P#0.05). However, no significant difference was observed

between genetically male and female chicks in all groups for the

evaluated biochemical parameters.

Post-hatch productive performance
The body weight of genetically male and female chicks on Day

1 and 42 of production are presented in Figure 2. Initial body

weight at Day 1 was not significantly different between males and

females in the control groups (Figure 2A). Fadrozole injection

increased the weight of females, with slight impact on the male

body weight. On the other hand, IGF-I supplementation

considerably improved the male weight gain without changing

the female average weight. This resulted in significant difference

between male and female body weight in this group. The

combined application of Fadrozole and IGF-I further improved

the Day 1 body weight of both males and females compared to

other groups. Following up the body weight till Day 42 of

production (Figure 2B) indicated that unlike Day 1 weight records,

there were significant different between male and female chicks in

both non-injected and sham injection control groups. At this stage,

Fadrozole increased the average weight of male chicks as much as

that of the female chicks. This was the only group in which females

showed numerically higher weight compared to the male chicks.

In accordance with the Day 1 records, IGF-I significantly affected

only the male chicks, with no considerable effect on females. Thus,

Fadrozole attenuated the weight differences between the two

genders, while IGF-I intensified the male weight gain. In

accordance with the Day 1 data, simultaneous administration of

Fadrozole and IGF-I increased Day 42 body weight of both males

and females equally.

Discussion

In the current study, chicken embryos were treated with

recombinant human IGF-I and Fadrozole, as a nonsteroidal anti-

aromatase reagent, on Day 3 of incubation. We evaluated the

simultaneous and separate effects of these two compounds on

female-to-male sex reversal and body weight on the Day 1 and 42

of production as well as the hatching traits. Strong similarity of

human and chicken IGF-I protein sequence [27,28], very high

affinity of rhIGF-I to the chicken IGF-I receptors [29], and

successful usage of rhIGF-I for improving chicken body weight

[16,22] persuaded us to use rhIGF-I in the current study. We

showed that IGF-I combination with Fadrozole could enhance

female-to-male sex reversal, shorten hatching time, and increase

chicken body weight.

Female-to-male sex-reversal
Sex-reversal was the main agenda of this project. Determination

of chicken gender was carried out based on vent phenotype and

ZW genotype on the first day of production. Based on phenotype

and genotype sexing being in complete agreement, neither sham

injection nor rhIGF treatment induced sex-reversal. By contrast,

Fadrozole effectively converted females to male chicks with 90%

efficiency. The obtained results for Day 1 was consistent with

Fadrozole and IGF-I Effect on Chick Sex and Weight
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previous reports on aromatase-inhibitors [30,31]. Aromatase, the

key enzyme responsible for estrogen synthesis [32], expresses

specifically in the female chicken gonads on the Day 5 of

incubation, the time of gonadal sex differentiation [32,33]. Thus,

estrogen synthesis during chicken embryonic stages is restricted to

female [32], although the expression of estrogen receptors

commences prior to the gonadal differentiation, on Day 4.5 in

both male and female chicks [4,32,33]. The difference in

expression pattern of P450 AROM, CYP19 gene, could be

attributed to alternate active promoters in different tissues [34].

Recently, it has been shown that aromatase over-expression prior

to sex differentiation can induce male-to-female chicken sex

reversal [1]. We further evaluated the post-hatch stability of the

sex-reversal and repeated our early results on Day 42 of

production. Stability of chicken sex-reversal by anti-aromatases

has been controversial among researchers and was suggested to be

anti-aromatase dose-dependent [30,31]. However, we found that

using low dosage of an anti-aromatase, irreversible female-to-male

sex-reversal could be achieved. This discrepancy might partly be

due to the differences in the quality and activity of Fadrozole

produced by different companies.

Even though IGF-I did not lead to sex-reversal in this study,

100% of genetically female chicks associated with male charac-

teristics when a combination of IGF-I and Fadrozole was injected

in ovo. The masculine phenotypes were permanently observed in

the genetically female chicks through 42 days of production.

Application of growth hormones (GH) improved spermatogenesis,

serum testosterone, estradiol and serum IGF-I [35]. Further

studies clearly proved that the GH mechanism of action is

mediated through IGF-I synthesis [36]. Following IGF-I treatment

of humans and mice suffering from primary growth hormone

resistance, serum IGF-I level increased drastically and led to a

Figure 1. Distribution frequencies of the chicken hatching time. (A) Graphical presentation of hatching time in Control, Sham injection
control, Fadrozole (0.1 mg), IGF-I (100 ng), Fadrozole (0.1 mg) + IGF-I (100 ng) groups. All injections were carried out on Day 3 of egg incubation over
a long distance from the embryo location. (B) Skewness and (C) kurtosis criteria of the distribution frequencies.
doi:10.1371/journal.pone.0103570.g001
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substantial increase in serum LH, FSH and testicular testosterone

[37,38]. Moreover, polymorphisms in androgen receptor [39],

estrogen receptors [40] and aromatase [39,40] genes have been

shown effective on human sperm concentration and motility. In

addition to FSH and LH, IGF-I is thus an essential requirement

for sexual development and testicular function (see [41] for a

review). The mechanism of action for IGF-I effects on the

reproduction system has not been fully understood but could

involve regulation of the aromatization process [19,42]. The

administration of IGF-I reduced aromatase gene expression in

Sertoli cells through interfering with either the production or the

degradation of mRNAs [19]. It had similar effects to FSH in terms

of increasing cellular proliferation, lactate production as well as

glucose and amino acid transfer [43]. FSH can quickly down-

regulate the IGF-I binding protein 3 (IGFBP-3) gene expression

and increase IGF-I activity [43]. Moreover, the IGF-I inhibitory

effect of IGFBP-3 is dose-dependent and can be surpassed by

higher concentration of IGF-I [43]. This anti-aromatase activity of

IGF-I in Sertoli cells is in contrast to enhancing aromatase activity

in granulosa cells [42]. IGF-I treatment of human and mouse

granulosa cells increased estradiol synthesis [20,44,45] and

P450AROM activity [46]. It has also been confirmed that the

IGFBP-3 action mechanism could attenuate FSH-stimulated

estrogen and progesterone in the granulosa cell [47]. Moreover,

changes in androstenedione levels following IGF-I manipulation

also differed in females versus males [37,48]. Chicken gonads are

uncommitted until Day 4.5, retaining the potential to be either

ovary or testis. If the aromatase-stimulating activity of IGF-I takes

place in chicken granulosa cells [1], it should interfere with the

anti-aromatase activity of Fadrozole treatment and subsequently

decreases the female-to-male sex reversal chance. However, the

female-to-male sex-reversal event was favored by the simultaneous

treatment of IGF-I and the anti-aromatase agent in this study.

Chicken body weight
We further investigated if the sex-reversal event is associated

with the chicken body weight gain. Fadrozole significantly

increased the initial body weight of genetically female chicks.

Estrogen enhances skeletal muscle catabolism, while testosterone

increases skeletal muscle anabolism [49]. The positive effects of

androgens on muscle mass could be mediated through IGF-I

expression in avian muscles [50]. It is noteworthy that in our study

Fadrozole also significantly increased the post-hatch body weight

of genetically male chicks. To our knowledge, this is the first report

on stimulating the male chicken weight gain by using an anti-

aromatase agent. Fadrozole-treated embryos, with or without

IGF-I, were the only group in which no significant difference was

observed between genetically male and female chicks by the end of

Day 42 of the production period. Even though lack of expression

[32,33] or very weak expression [7,51] of the aromatase gene was

observed in the early embryonic stages of male chick gonads, its

considerable expression was recorded in the chicken matured testis

[33] and human early prepubertal testis [52]. Therefore, the anti-

aromatase compounds are less likely to be helpful during sex

differentiation, and possible auxiliary effects probably occur during

the post-differentiation period after Day 9.5. We injected

Fadrozole and IGF-I compounds over a wide region in the

embryo position, rather than in its adjacent area. This should have

decreased the bulk access and uptake of these reagents at the

sexual differentiation stage and extend their availability in the

chicken egg media. With respect to the latter, a series of protease

inhibitors, including ovomucoid [53], ovostatin [54] or ovoma-

croglubulin [55], ovoinhibitors [53,56], and chicken cystatin

(Barrett, 1981), exist in chicken egg albumen [see [57] for review].

These protease inhibitors can strongly inhibit various types of

proteases [see [57] for review], protect the injected proteins from

degradation assays and extend their half-life.

IGF-I substantially increased male chick body weight at Day 1

and subsequently Day 42 of production. IGF-I plays a crucial role

in the growth and development during embryonic period as well as

post-hatch period [58]. Over the past years, the role of IGF-I as a

potent mitogen which can stimulate satellite cell activation has also

been illustrated [59–61]. IGF-I receptors are distributed in various

organs, including brain, pituitary, gonads, and reproductive tracts

[41]. This suggests that every component of hypothalamic-

pituitary-gonad axis could be the action site for IGF-I through

endocrine and paracrine systems [41]. However, in agreement

with previous publications [16,21,22], IGF-I impact was restricted

to the male chicks. This indicates the presence of very strong

interaction between sexual hormones and IGF-I. Estrogen

synthesis is the key difference between chicken genders [32,33].

If estrogen blocks the IGF-I receptors or induces the IGFBP-3,

inhibiting estrogen synthesis by aromatase inhibitors should de-

escalate the insensibility of genetically female embryos to IGF-I

protein. Interestingly, results of this study clearly showed that this

hypothesis could be true and genetically female embryos, which

received both Fadrozole and IGF-I, had significantly higher body

weight compared to those which received either IGF-I or

Fadrozole. Despite intense research in other areas, such as the

nervous system [62] and cancer [63–65], the exact IGF-I/estrogen

interaction underlying weight gain has not been fully elucidated.

In summary, synergistic effects of Fadrozole and IGF-I on sex-

reversal and weight gain of broiler chicks, could be promising for

further improving the broiler chicks industry, as well as finding

new therapeutic systems in assisted reproductive technologies

(ART) [66] or growth disorders.

Hatching characters
Along with the sex-reversal and weight gain of chicks, we

evaluated if the IGF-I and Fadrozole effects can influence the

hatching traits, as important factors in the chicken hatchery

section. Our results confirm that hatchability and mortality traits

were not affected by the treatment groups. However, application

of higher doses of Fadrozole led to remarkable decrease in

hatchability [10,11,31,67]. The non-significant effect of treatment

groups on mortality and hatchability might be partly due to the

injection site. Genotypic sexing of dead embryos revealed that the

number of dead female embryos was higher than that of the male

counterparts. This finding confirms previous reports of higher

early death in female embryos in some bird species [13,68].

Furthermore, the sex-reversed groups, similar to other groups, had

a higher mortality rate of genetically female compared to male

Figure 2. Body weight on Day 1 and 42 of production from in ovo exposed chicken embryos with Fadrozole and IGF-I. The impact of
chicken embryo treatment on Day 3 of incubation with Fadrozole (0.1 mg) and IGF-I (100 ng) on the average body weight (g) is depicted in (A) 1-day-
old and (B) 42-day-old chicks. For the data analysis, chicks were divided into male and female sub-groups, based on ZZ/ZW genotype. Mean
comparisons among five groups for each sex were carried out using Tukey post-hoc test in general linear model (GLM) procedure. In addition, mean
comparison between male and female sub-groups of each treatment was conducted using an independent t-test, and the significant differences are
denoted by an asterisk (*). abGroups with identical superscripts in each specific gender denote no significant difference (P$0.05).
doi:10.1371/journal.pone.0103570.g002
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embryos. These observations may further illustrate that the

difference in early embryonic survival rates of females and males

are likely due to the difference in the number of alleles for genes

which are located on the Z chromosome but are not involved in

the sexual differentiation.

Results from each 3-hour inspection period of hatchery

machine showed that the hatching time was left-skewed and

indicated abundance of late hatchers in the control groups.

Supplementation of Fadrozole into chicken eggs increased the

number of hatched chicks around the mode and afterwards

increased the number of late hatchers. The spread of hatching

time can be escalated up to 48 hours for late versus early hatchers

[23]. Therefore, practically, chicks are deprived from water and

feed for up to 72 hours post-hatching [69]. On the other hand,

early hatchers suffer more from being fasted compared to the late

hatchers [23], have slower growth rate and immune system

activity [69–71], and comprised the majority of low quality

chickens [70]. Moreover, the compulsory holdup feed access is a

main aggravating factor for long storage duration of hatched

chicks [70]. Therefore, increasing the number of late hatchers can

attenuate detrimental effects of the early deprivation period.

Inclusion of recombinant human IGF-I into chicken egg

albumen, with or without Fadrozole, noticeably advanced the

hatching time. Shortening the hatching window through setting

and hatching period was suggested as an important pathway to

attenuate possible detrimental effects of the quite long early

deprivation period [69]. The effects of IGF-I on shortening

hatching time could be attributed to accelerating embryo

development [23] and subsequently body weight gain of chicken

embryos. Since we needed to wait until all the eggs hatched and

then removed them from the incubator [23], we could not

differentiate the gender of chickens at the exact hatching time.

However, this could be worthy note to distinguish the gender effect

at the hatching time and assess the possible associations between

the gender, body weight and hatching time variables. Additionally,

the IGF-I and Fadrozole combination improved the symmetrical

shape of the distribution by decreasing the departure from

normality and slightly increased the mass of hatches around the

average. The more uniform hatching events through IGF-I plus

Fadrozole treatment were associated with the less dispersed body

weight at Day 1 of production. This could be of high importance

in broiler chicken industry, since the spread of the hatching time

and the maintenance condition following the hatch in the hatchery

machine is a crucial step in the production of Day 1 old chicks

[72]. In the current study, application of IGF-I substantially

advanced the hatching time and improved the spread of hatches.

In addition, comparison of serum biochemical parameters showed

that chicks received IGF-I had higher serum glucose and total

protein and fatty acids compared to other groups. These could be

indicated as higher metabolic rate, available energy sources and

healthy parameters [69] in the IGF-I treated chicks. Although

lower plasma glucose and T3 was observed in chicks from early

hatching period [23], IGF-1 treated chicks hatched earlier and

showed significantly higher serum biochemical parameters in the

current study. Taken together, in ovo treatment of chicken

embryos with IGF-I alleviated the newly hatched chick’s early

feeding problems in several ways, including shortened and

normalized hatching time, increased spread of hatch around the

average, and enhanced serum biochemical parameters of the

hatchers.
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