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Abstract

Background: Tree nut consumption has been associated with reduced diabetes risk, however, results from randomized
trials on glycemic control have been inconsistent.

Objective: To provide better evidence for diabetes guidelines development, we conducted a systematic review and meta-
analysis of randomized controlled trials to assess the effects of tree nuts on markers of glycemic control in individuals with
diabetes.

Data Sources: MEDLINE, EMBASE, CINAHL, and Cochrane databases through 6 April 2014.

Study Selection: Randomized controlled trials $3 weeks conducted in individuals with diabetes that compare the effect of
diets emphasizing tree nuts to isocaloric diets without tree nuts on HbA1c, fasting glucose, fasting insulin, and HOMA-IR.

Data Extraction and Synthesis: Two independent reviewer’s extracted relevant data and assessed study quality and risk of
bias. Data were pooled by the generic inverse variance method and expressed as mean differences (MD) with 95% CI’s.
Heterogeneity was assessed (Cochran Q-statistic) and quantified (I2).

Results: Twelve trials (n = 450) were included. Diets emphasizing tree nuts at a median dose of 56 g/d significantly lowered
HbA1c (MD = 20.07% [95% CI:20.10, 20.03%]; P = 0.0003) and fasting glucose (MD = 20.15 mmol/L [95% CI: 20.27, 2
0.02 mmol/L]; P = 0.03) compared with control diets. No significant treatment effects were observed for fasting insulin and
HOMA-IR, however the direction of effect favoured tree nuts.

Limitations: Majority of trials were of short duration and poor quality.

Conclusions: Pooled analyses show that tree nuts improve glycemic control in individuals with type 2 diabetes, supporting
their inclusion in a healthy diet. Owing to the uncertainties in our analyses there is a need for longer, higher quality trials
with a focus on using nuts to displace high-glycemic index carbohydrates.
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Introduction

Tree nuts are a healthy source of vegetable protein [1],

unsaturated fatty acids [1,2], fibre [3], antioxidants [4], vitamins

(i.e. folic acid, vitamin B6, niacin, tocopherols), minerals (i.e.

magnesium, potassium, calcium), and phytochemicals (i.e. phytos-

terols) [5]. Over the last two decades, a large body of evidence

regarding tree nut consumption and related health outcomes has

emerged from both epidemiological and controlled trials [1]. A

recent large pooled analysis of two of the Harvard cohorts, as well

as a recent meta-analysis of prospective cohort studies support an

all-cause mortality benefit [6,7]. There is also strong evidence that

tree nuts lower LDL-cholesterol [8], which has resulted in an FDA

qualified health claim [9] and their inclusion in heart association

guidelines for cardiovascular risk reduction [10,11].

The data for diabetes related outcomes have not been as

consistent. Although some cohort studies show that frequent nut

consumption is associated with lower incidence of type 2 diabetes

[12,13], other cohort studies do not [14,15]. In addition, 2 recent

systematic review and meta-analysis of prospective cohort studies

showed no overall significant association between nut consump-

tion and type 2 diabetes risk [7,16], which was consistent with a

subgroup analysis of the PREDIMED trial that showed a non-

significant reduction in diabetes risk for individuals consuming a

Mediterranean diet supplemented with nuts in comparison to a

low fat diet [17]. There has been relatively few controlled trials

that have specifically investigated the effects of tree nuts on

glycemic control. Despite coronary heart disease being a major

cause of death in individuals with diabetes, consumption of tree

nuts alone have not been included as part of the recommendations

in most diabetes guidelines [18–20], with the exception of their

recent inclusion as part of various dietary/eating patterns (DASH,

Mediterranean, vegetarian and vegan, and low carbohydrate diets)

in American (ADA) and Canadian (CDA) diabetes association

clinical practice guidelines [19,20].

Primary prevention and management of diabetes through diet

and lifestyle modification remains the cornerstone of therapy

[21,22]. In order to provide better evidence-based guidance on the

role of tree nuts on glycemic control, a systematic review and

meta-analysis of randomized controlled dietary trials was per-

formed to assess the effect of tree nuts under isocaloric conditions

on the endpoints HbA1c, fasting glucose, fasting insulin, and

homeostasis model assessment of insulin resistance (HOMA-IR) in

individuals with diabetes. The primary outcome and measurement

of this study consists of a pooled analysis for each glycemic

endpoint.
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Methods

The Cochrane Handbook for Systematic Reviews of Interven-
tions was followed for the planning and conduct of this meta-

analysis [23]. Reporting followed the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) guidelines

[24]. The review protocol is available at ClinicalTrials.gov

(registration number: NCT01630980).

Data Sources and Searches
We searched the databases MEDLINE, EMBASE, CINAHL,

and the Cochrane Central Register of Controlled Trials through 6

April 2014 using the search strategy shown in Table S1. Manual

searches of references also supplemented the electronic search.

Study Selection
We included randomized controlled dietary trials that com-

pared a diet emphasizing intake of tree nuts (almonds, Brazil nuts,

cashews, hazelnuts, macadamia nuts, pecans, pine nuts, pistachios

and walnuts) [25] on HbA1c, fasting glucose, fasting insulin, and

HOMA-IR in comparison to diets without tree nuts matched for

energy (isocaloric) for a follow-up period $3 weeks in people with

diabetes. Trials that consisted of a non-randomized treatment

allocation, ,3 weeks of follow-up duration, non-isocaloric

comparisons, lacked a suitable control, were not conducted in

individuals with diabetes, or did not provide suitable endpoint data

were excluded. No restrictions were placed on language.

Data Extraction and Quality Assessment
Two investigators (EV and SB) independently reviewed all

reports that met the inclusion criteria. A standardized form was

used to extract relevant information on sample size, subject

characteristics (health status, gender, age, weight, etc.), study

setting, study design, level of feeding control, nut dose, nut type

and form (whole or meal form), comparator, macronutrient

breakdown of background diet(s), energy balance, follow-up

duration, and funding source. The mean 6 SD values were

extracted for HbA1c, fasting glucose, fasting insulin, and HOMA-

IR. Trials that did not report SD’s were derived from available

data (95% CI, P-values, t or F statistics, SE) using standard

formulae [23].

The quality of each trial was assessed using the Heyland

Methodological Quality Score (MQS) where a maximum score of

13 points could be received on the basis of the trials methods,

sample, and intervention [26]. Trials receiving scores of $8 were

considered to be of higher quality. Disagreements on Heyland

MQS scores were reconciled by consensus. Study quality was not

assessed for those trials reported exclusively in a published abstract.

Trials were assessed for risk of bias using the Cochrane Risk of

Bias Tool [23]. Domains of bias assessed were sequence

generation, allocation concealment, blinding, outcome data, and

outcome reporting. Trials were marked as high risk of bias when

the methodological flaw was likely to have affected the true

outcome, low risk of bias if the flaw was deemed inconsequential to

the true outcome, and unclear risk of bias when insufficient

information was provided to permit judgment. All disagreements

were resolved by consensus. Authors were contacted for additional

information where necessary [27–30].

Data Synthesis and Analysis
Data were analyzed using Review Manager (RevMan), version

5.2 (The Nordic Cochrane Centre, The Cochrane Collaboration,

Copenhagen, Denmark) for primary analyses. The difference

between the intervention and control arm’s change from baseline

value was derived from each trial for the endpoints HbA1c, fasting

glucose, fasting insulin, and HOMA-IR. If change from baseline

values were not available, end-of-treatment values were used. For

trials containing multiple intervention or control arms a weighted

average was applied to combine them in order to create single

pair-wise comparisons and to mitigate the unit-of-analysis error.

Paired analyses were conducted for all crossover trials [31]. Where

necessary, a pooled correlation coefficient was derived and used

for calculation of an imputed SD for the between-treatment

difference for some crossover trials. Correlation coefficients

between baseline and end-of-treatment values within each

individual crossover trial were derived from the reported within

and between treatment SD according to a published formula [31].

These correlation coefficients were transformed into z-scores 6

SD, meta-analyzed using inverse-variance weighing, and back

transformed to derive the pooled correlation coefficient. Where we

could not derive a calculated pooled correlation coefficient for

imputing missing SDs we assumed a correlation coefficient of 0.5,

as it is a conservative estimate for an expected range of 0–1. A

correlation coefficient of 0.5 was assumed in the primary analysis

for HbA1c due to insufficient data and in the primary analyses for

fasting glucose and insulin owing to considerable heterogeneity

between the derived correlation coefficients (only 2 available

correlation coefficients available for pooling in both analyses). The

values derived from each trial were pooled and analyzed for each

endpoint (HbA1c, fasting glucose, fasting insulin, and HOMA-IR)

using the generic inverse variance method with random effects

models, which was used even in the absence of statistically

significant between-study heterogeneity, as they yield more

conservative summary effect estimates in the presence of residual

heterogeneity. Exceptions were made for the use of fixed-effects

models where there were ,5 included trials irrespective of

heterogeneity or small trials being pooled with larger more precise

trials in the absence of statistically significant between-study

heterogeneity. Data were expressed as mean differences (MD) with

95% CI. A two-sided p-value ,0.05 was set as the level of

significance for comparisons of MD.

Inter-study heterogeneity was tested using the Cochran Q-

statistic and quantified using the I2-statistic with a significance level

set at p-value ,0.10. An I2,50%, I2$50% and I2$75% were

considered to be evidence of ‘‘moderate’’, ‘‘substantial’’ and

‘‘considerable’’ heterogeneity, respectively [23]. Sources of

heterogeneity were explored using sensitivity and subgroup

analyses. To determine whether a single trial exerted an undue

influence on the overall results, sensitivity analyses were performed

in which each individual trial was removed from the meta-analysis

and the effect size recalculated with the remaining trials.

Sensitivity analyses were also undertaken using correlation

coefficients of 0.25, 0.50 and 0.75 to determine whether the

overall results were robust to the use of different derived

correlation coefficients in paired analyses of crossover trials. A

priori subgroup analyses (continuous and categorical) were

conducted for baseline values of HbA1c, fasting glucose, fasting

insulin and HOMA-IR within the intervention arm, nut type,

absolute fiber and saturated fat intake within the intervention arm,

difference in fiber and saturated fat intake between the interven-

tion and control arm, change in fiber and saturated fat intake from

baseline within the intervention arm, dose, design, follow-up, and

study quality (MQS). Post-hoc subgroup analyses were conducted

for the difference in percent carbohydrate intake between the

control and intervention arm (carbohydrate displacement), sex and

BMI. Meta-regression was performed to assess the significance of

the subgroup effects with STATA software, version 12.0

Tree Nuts and Glycemic Control
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(StataCorp, College Station, TX) with a significance level set at

p-value ,0.05.

Publication bias was investigated by visual inspection of funnel

plots and quantitatively assessed using Egger’s and Begg’s tests, where

a p-value ,0.05 was considered evidence of small study effects.

Results

Search Results
Figure 1 shows the flow of the literature. The search identified

a total of 1491 reports, 1447 of which were determined to be

irrelevant based on review of titles and abstracts. The remaining

44 reports were retrieved and reviewed in full, of which 33 were

excluded. A total of 11 reports containing 12 trials in 450

participants with diabetes [27–30,32–38] were selected for

analyses. Eight trials reported data for HbA1c (n = 274), 11 for

fasting glucose (n = 413), 9 for fasting insulin (n = 286), and 3 for

HOMA-IR (n = 107).

Trial Characteristics
Table 1 shows the characteristics of the 12 included trials

(n = 450). Trials were mainly conducted in outpatient settings

across 5 countries: United States (6 trials), Australia (2 trials), Iran

(2 trials), and 1 trial each from Canada and Taiwan. All trials were

randomized and more than half (58%) used a parallel design.

Participants tended to be middle aged (median age: 57 years

[range: 51–66 years]) with approximately an equal number of men

and women (ratio of women to men: 1.2). Median baseline

HbA1c, fasting glucose, fasting insulin, and HOMA-IR were 7.0%

(53 mmol/mol), 8.1 mmol/L, 108.3 pmol/L, and 5.7, respective-

ly. All trials were conducted in individuals with type 2 diabetes,

however, in one of the trials [28] it was not clear whether all

participants had diabetes. Mean diabetes duration varied from at

least 1 year [30,32,35,37] to ,7–8 years [33,34]; otherwise, it was

undeclared [27–29,36,38]. The majority of trials did not explicitly

provide information on how diabetes was defined stating only that

diabetes had to be previously diagnosed by a physician, and/or

treated for at least 1 year. Participants tended to be on

antihyperglycemic medications [7 trials [27,30,33–35,38]] but

not insulin [9 trials reported insulin therapy as part of their

exclusion criteria [27,30,32,34–38]]. Four trials stated participants

were to keep their medication use consistent throughout the trial

[30,33,34,38]; otherwise, it was not explicitly stated.

Laboratory measurements of glycemic endpoints across trials

varied. HbA1c was measured by high-performance liquid

chromatography (HPLC) in 1 trial [33], immunoassay in 3 trials

[27,30], ‘‘standard procedures’’ in 1 trial [35], or unspecified

methods in the remaining 3 trials [29,36,37]. Fasting glucose was

measured by enzymatic methods in 8 trials [27,28,30,32–34,38],

‘‘standard procedures’’ in 1 trial [35], or unspecified methods in

the remaining 2 trials [29,36]. Fasting insulin was measured by a

radioimmunoassay in 2 trials [28,30], an immunoassay in 4 trials

[27,32,34], ‘‘standard procedures’’ in 1 trial [35], or unspecified

methods in the remaining 2 trials [29,36]. HOMA-IR was

calculated according to the standard formula (insulin 6 glucose/

22.5) in 3 trials [28,34,35].

Tree nut type varied among the trials: 5 trials (42%) included an

intervention with almonds, 1 trial each with cashews, hazelnuts,

pistachios, and mixed nuts (including almonds, cashews, hazelnuts,

macadamia nuts, peanuts, pecans, pistachios, walnuts), and 3 trials

(25%) with walnuts. Tree nuts were consumed as whole nuts in

majority of the trials with the exception of 2 trials [27,34] where

tree nuts were provided in meal form as part of entrées and snack

foods (i.e. muffins, trail mix, deserts, etc.). The median dose was

,56 g/d (range: 28–85 g/d). The method of increasing tree nuts

while maintaining isocaloric comparisons between arms differed

across trial protocols: 3 trials replaced or emphasized reduction in

carbohydrate foods [28,29,33], 1 replaced sources of dairy (cheese)

[30], 1 exchanged tree nuts for protein-rich foods and oils/spreads

[37], 1 reduced portions of meats and amount of visible fats (i.e.

oils, margarines, and butter) [38], and 6 either did not specify, did

not provide specific instructions on food replacement, or

information was unavailable [27,32,34–36] The background diets

consisted of 32–60% energy (E) from carbohydrate, 15–29% E

protein, and 18–45% E fat with a median fiber and saturated fat

intake of 24.6 g/d (range: 11.4–32 g/d) and 7.4% E (range: 3–

12.5%E), respectively, in the comparator diets, and 27.6 g/d

(range: 16.5–35.6g/d) and 6.9% E (range: 3–10.9%E), respective-

ly, in the tree nut enriched diets. One trial was a weight reduction

intervention [28] and 1 trial provided the option of weight

reduction during the study period in those who wished to lose

weight [33]. In terms of feeding control, 4 trials (33%) were

metabolically controlled (i.e. all foods were provided) and 8 trials

(67%) provided test food supplements. The median follow-up

duration was 8 weeks (range: 4–48 weeks).

The majority of trials (75%) were considered to be of poor

quality (MQS,8). Absence of double-blinding and high dropout

rates contributed to lower scores (Table S2). Trials were judged as

having a ‘low’ or ‘unclear risk bias’ for majority of the domains

measured by the Cochrane Risk of Bias Tool. A few trials were

considered ‘high risk of bias’ due to incomplete outcome data

(Figure S1). Majority of the trials were funded by agency alone

(73%); 3 trials did not declare their source of funding [32,35,38]

and for 1 trial information was unavailable [29].

Hemoglobin A1c (HbA1c)
Figure 2 shows a forest plot of the pooled effect of tree nuts on

HbA1c in individuals with type 2 diabetes. Diets emphasizing tree

nuts significantly lowered HbA1c in comparison to control diets

(MD = 20.07% [95% CI: 20.10, 20.03%]; P = 0.0003) with no

significant evidence of inter-study heterogeneity (I2 = 37%;

P = 0.13). Systematic removal of individual trials did not alter

the results. Sensitivity analyses using different correlation coeffi-

cients in paired analyses of crossover trials (0.25 and 0.75) did not

alter the significance of the pooled effect size.

Table S3 and Figure S2 shows the results of continuous and

categorical subgroup analyses for the effect of tree nuts on HbA1c.

Meta-regression analyses did not reveal any statistically significant

subgroup effects.

Fasting glucose
Figure 3 shows a forest plot of the pooled effect of tree nuts on

fasting glucose in individuals with type 2 diabetes. Diets

emphasizing tree nuts significantly lowered fasting glucose in

comparison to control diets (MD = 20.15 mmol/L [95% CI:

20.27, 20.02 mmol/L]; P = 0.03) with no significant evidence of

inter-study heterogeneity (I2 = 35%; P = 0.12). Sensitivity analyses

showed that individual removal of any of the following 3 trials

changed the pooled effect size from significant to non-significant:

Jenkins et al. [33] (MD = 20.14 mmol/L [95% CI: 20.28,

20.00 mmol/L]; P = 0.05] with moderate inter-study heteroge-

neity (I2 = 41%; P = 0.08); Li et al. [34] (MD = 20.08 mmol/L

[95% CI: 20.23, 0.07 mmol/L]; P = 0.31) with no significant

evidence of inter-study heterogeneity (I2 = 31%; P = 0.16) and

Darvish Damavandi et al. [38] (MD = 20.13 mmol/L [95% CI:

20.26, 20.00 mmol/L]; P = 0.05) with no significant evidence of

inter-study heterogeneity (I2 = 31%; P = 0.16). Sensitivity analyses

using different correlation coefficients in paired analyses of
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crossover trials showed that a correlation coefficient of 0.25 did not

alter the significance of the pooled effect size, but a correlation

coefficient of 0.75 changed the pooled effect size from significant to

non-significant (MD = 20.14 mmol/L [95% CI: 20.36,

0.08 mmol/L]; P = 0.20) and resulted in moderate inter-study

heterogeneity (I2 = 48%; P = 0.04).

Figure 1. Flow of the literature. Summary of search and selection process consists of the number of studies initially identified through database
and manual search, excluded based on title and abstract, reviewed in full, excluded after full review, and final number of trials included in the meta-
analysis.
doi:10.1371/journal.pone.0103376.g001
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Table 1. Trial Characteristics,

Study, Year (Reference) Participants* Mean Age, y (SD)
Mean Body Weight
or BMI (SD) { Setting ` Design

Feeding
Control 1

Lovejoy et al, 2002-HF [27] 30 T2D (13 M, 17 W) 53.8 (10.4) 33.0 (5.5) kg/m2 OP, USA C Met

Lovejoy et al, 2002-LF [27] 30 T2D (13 M, 17 W) 53.8 (10.4) 33.0 (5.5) kg/m2 OP, USA C Met

Wien et al, 2003 [28] 65 O (28 M, 37 W) OP, USA P Supp

Almond 53 (2) 113 (5) kg

Control 57 (2) 114 (5) kg

Tapsell et al, 2004 [37] 37 T2D (21 M, 16 W) OP, AUS P Supp

Walnut 57.7 (9.0) 87.6 (12.8) kg

Control 60.5 (8.2) 81.9 (11.2) kg

Tapsell et al, 2009 [36] 35 T2D (2) 54 (8.7) OP, AUS P Supp

Walnut 94.3 (18.1) kg

Control 93.9 (14.7) kg

Ma et al, 2010 [35] 22 T2D (2) 58.1 (9.2) 89.0 (15.5) kg OP, USA C Supp

Walnut

Control

Cohen et al, 2011 [30] 13 T2D (7 M, 6 W) OP, USA P Supp

Almond 66 (8.1) 96.1 (21.8) kg

Control 66 (8.7) 105.1 (29.6) kg

Jenkins et al, 2011 [33] 79 T2D (52 M, 27 W) OP, CAN P Supp

Mixed nuts 63 (9) 80 (15) kg

Control 61 (10) 83 (15) kg

Li et al, 2011 [34] 20 T2D (9 M, 11 W) 58 (8.94) 26.0 (3.13) kg/m2 OP, TWN C Met

Almond

Control

Darvish Damavandi et al, 2012 [32] 43 T2D (9 M, 34 W) OP, IRN P Supp

Cashew 51 (7.9) 72.1 (13.1) kg

Control 56 (5.7) 71.9 (9.7) kg

Darvish Damavandi et al, 2013 [38] 48 T2D (15 M, 33 W) 55.7 (7.74) OP, IRN P Supp

Hazelnut 72.13 (10.27) kg

Control 71.98 (9.58) kg

Sauder et al, 2013 [29] {{{ Pistachio
Control

28 T2D (2) 56.1 (7.67) 31.2 (6.02) kg/m2 2, USA C Met

Nut Dose, g/d (%E) || Nut Type" Comparator** Diet{{ Energy Balance Follow-Up MQS `` Funding
Sources 11

57–113 (,18.8) Almond High fat diet 48:15:37 Neutral 4 wk 5 Agency

57–113 (,18.8) Almond Low fat diet 60:15:25 Neutral 4 wk 5 Agency

84 (,47.7) Almond Self-selected
complex CHO’s

Negative 24 wk 8 Agency

32:29:39 53:29:18

30 (,9.8) Walnut Low fat/modified fat diet Neutral 6 month 6 Agency

44:22:32 41:23:33

30 (,9.8) Walnut Low fat diet Neutral 12 month 7 Agency

41:21:34 42:24:29

56 (,20.7) Walnut Ad libitum diet Neutral 8 wk 5 N/A

39:17:45 43:19:38

28 (,17.8) |||| Almond Cheese sticks N/A Neutral 12 wk 7 Agency

50–100 (,25) Mixed nuts "" NCEP Step 2 diet+Muffin Neutral*** 12 wk 8 Agency

41:18:41 46:19:35

56 (20) Almond NCEP Step 2 diet Neutral 4 wk 5 Agency
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Table 1. Cont.

Study, Year (Reference) Participants* Mean Age, y (SD)
Mean Body Weight
or BMI (SD) { Setting ` Design

Feeding
Control 1

47:17:37 57:17:27

30 (10) Cashew Regular diet Neutral 8 wk 3 N/A

53:16:33 57:16:27

29 (10) Hazelnut Regular diet Neutral 8 wk 4 N/A

55:16:31 60:17:25

,71 (20) Pistachio Low fat diet – 4 wk – –

51:17:33 55:18:27

BMI = body mass index; C = crossover; CHO = carbohydrate; E = energy; HF = high fat; HOMA-IR = homeostasis model assessment of insulin resistance; IP = inpatient;
LF = low fat; M = men; Met = metabolic feeding control; MQS = Heyland Methodological Quality Score; N/A = not available; NCEP = National Cholesterol Education
Program; O = obese and overweight; OP = outpatient; P = parallel; SD = standard deviation; Supp = supplement feeding control; T2D = type 2 diabetes; W = women;
wk = week; y = years.
*The number of participants listed for each trial in this column is the number of participants that completed the trial and therefore the number used in our analyses. The
baseline characteristics reported by these trials were based on the number of participants listed here with the exception of 3 trials, Tapsell et al. [36], Ma et al. [35], and
Darvish Damavandi et al. [38] where the values for mean age and/or mean body weight or BMI were derived from the number of participants present at baseline, a
number that was different from the number of participants that completed the trial due to a per-protocol with drop-outs analysis. The number of participants present at
baseline for these trials are as follows: Tapsell et al. [36], n = 50; Ma et al. [35], n = 24; Darvish Damavandi et al. [38], n = 50; Sauder et al. [29], n = 30.
{Baseline body weight or weight (kg) while receiving the control treatment in cross over trials, and baseline body weight in each treatment group in parallel trials.
Baseline BMI values (kg/m2) are only reported when no data on weight were available.
`Countries are abbreviated using three letter country codes (ISO 3166-1 alpha-3 codes).
1Metabolic feeding control (Met) was the provision of all meals, snacks, and study supplements (tree nuts) consumed during the study under controlled conditions.
Supplement feeding control (Supp) was the provision of study supplements only.
|| Doses and % E (energy) preceded by ‘‘,’’ represent values calculated on the basis of average reported energy intake of participants and average reported energy
values of tree nuts from the USDA National Nutrient Database [59].
"All nut types were provided in whole form with the exception of 2 trials: Lovejoy et al. [27] and Li et al. [34], which incorporated tree nuts into various entrées and
snack foods (i.e. muffins, trail mixes, deserts, etc.).
**Comparators refers to 1) reference food(s) energy matched in exchange for tree nuts or 2) isocaloric control diet similar to the intervention diet but without tree nuts.
{{Planned energy from Carbohydrate:Protein:Fat. Measured energy end values from carbohydrate, protein, and fat are reported only if the study did not state the
planned energy of prescribed diets.
``Trials with a MQS score $8 were considered to be of higher quality.
11Agency funding is that from government, university, or not-for-profit health agency sources. None of the trialists declared any conflicts of interest with the exception
of Jenkins et al. [33] and Darvish Damavandi et al. [32].
|||| In this study participants randomized into the almond group were instructed to consume this dose 5 days/week.
""Mixed nuts included almonds, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pistachios, walnuts.
***43% of the participants were obese and wished to lose weight; although this was not a weight loss study, they were given advice on portion size and fat intake to
help them meet their weight-reduction objective.
{{{Data for this study was limited since the study’s conferences abstract and correspondence with the authors were the only sources of available data.
doi:10.1371/journal.pone.0103376.t001

Figure 2. Forest plot of randomized controlled trials investigating the effect of diets supplemented with tree nuts on HbA1c in
individuals with type 2 diabetes. Pooled effect estimate (diamond) for HbA1c (%). Data are expressed as weighted mean differences (MD) with
95% CIs, using the generic inverse-variance fixed effects model. Paired analyses were applied to all crossover trials. Inter-study heterogeneity was
tested by the Cochran Q-statistic and quantified by I2 at a significance level of P,0.10. n = number of participants in each treatment group.
doi:10.1371/journal.pone.0103376.g002
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Table S4 and Figure S3 shows the results of continuous and

categorical subgroup analyses for the effect of tree nuts on fasting

glucose. Meta-regression analyses did not reveal any statistically

significant subgroup effects.

Fasting insulin
Figure 4 shows a forest plot of the pooled effect of tree nuts on

fasting insulin in individuals with type 2 diabetes. Diets emphasizing

tree nuts had no significant overall effect on fasting insulin in

comparison to control diets (MD = 23.42 pmol/L [95% CI:

210.06, 3.21 pmol/L]; P = 0.31) with substantial evidence of

inter-study heterogeneity (I2 = 72%; P = 0.0004). Systematic remov-

al of individual trials did not alter the results. Sensitivity analyses

using different correlation coefficients in paired analyses of crossover

trials (0.25 and 0.75) did not alter the significance of the pooled

effect size.

Figure 3. Forest plot of randomized controlled trials investigating the effect of diets supplemented with tree nuts on fasting
glucose in individuals with type 2 diabetes. Pooled effect estimate (diamond) for fasting glucose (mmol/L). Data are expressed as weighted
mean differences (MD) with 95% CIs, using the generic inverse-variance fixed effects model. Paired analyses were applied to all crossover trials. Inter-
study heterogeneity was tested by the Cochran Q-statistic and quantified by I2 at a significance level of P,0.10. n = number of participants in each
treatment group.
doi:10.1371/journal.pone.0103376.g003

Figure 4. Forest plot of randomized controlled trials investigating the effect of diets supplemented with tree nuts on fasting insulin
in individuals with type 2 diabetes. Pooled effect estimate (diamond) for fasting insulin (pmol/L). Data are expressed as weighted mean
differences (MD) with 95% CIs, using the generic inverse-variance random-effects model. Paired analyses were applied to all crossover trials. Inter-
study heterogeneity was tested by the Cochran Q-statistic and quantified by I2 at a significance level of P,0.10. n = number of participants in each
treatment group.
doi:10.1371/journal.pone.0103376.g004
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Table S5 and Figure S4 shows the results of continuous and

categorical subgroup analyses for the effect of tree nuts on fasting

insulin. Meta-regression analyses did not reveal any statistically

significant subgroup effects.

Homeostasis model assessment of insulin resistance
(HOMA-IR)

Figure 5 shows a forest plot of the pooled effect of tree nuts on

HOMA-IR in individuals with type 2 diabetes. Diets emphasizing

tree nuts had no significant effect on HOMA-IR in comparison to

control diets (MD = 20.24 [95% CI: 20.51, 0.04]; P = 0.10) with

considerable evidence of inter-study heterogeneity (I2 = 87%;

P = 0.0005). Sensitivity analyses showed that removal of the trial

Ma et al. (27) changed the pooled effect size from non-significant

to significant (MD = 20.63 [95% CI: 20.98, 20.27]; P = 0.0005)

with substantial evidence of inter-study heterogeneity (I2 = 65%;

P = 0.09).

Table S6 and Figure S5 shows the results of continuous and

categorical subgroup analyses for the effect of tree nuts on

HOMA-IR. Meta-regression analyses did not reveal any statisti-

cally significant subgroup effects.

Publication bias
Figure 6 (A–D) shows the funnel plots for each glycemic

endpoint. Visual inspection of funnel plots revealed asymmetry for

fasting insulin, suggesting study effects favouring the tree nut

intervention. Egger’s and Begg’s tests did not reveal significant

evidence of publication bias for any of the primary analyses. With

one exception, these tests should be interpreted with caution, as

they were based on ,10 trials.

Discussion

To our knowledge this is the first systematic review and meta-

analysis of randomized controlled trials to assess the effect of tree

nut consumption on HbA1c, fasting glucose, fasting insulin, and/

or HOMA-IR in individuals with type 2 diabetes. We included 12

randomized controlled dietary trials looking at the effect of tree

nuts on these 4 endpoints in 450 predominantly middle-aged

adults. Pooled analyses showed an overall significant lowering of

HbA1c of 20.07% and fasting glucose of 20.15 mmol/L at a

median dose of 56 g/d over a median duration of ,8 weeks.

Although significant advantages for fasting insulin and HOMA-IR

were not seen, the direction of effect favoured the tree nut

intervention.

There is limited existing research looking at the ability of nuts to

improve glycemic control over the long term. Previous studies

looking at dietary patterns including nuts, such as the Mediter-

ranean and the Dietary Approaches to Stop Hypertension (DASH)

dietary pattern, are consistent with our findings. In a systematic

review of 5 randomized controlled trials [39], as well as several

individual randomized controlled trials [40–43] including people

with type 2 diabetes, a Mediterranean dietary pattern emphasizing

nuts showed decreases in HbA1c (from 20.1% to 20.6% absolute

reduction), fasting glucose, and the need for antihyperglycemic

drugs over a 4 year period [40,44] in comparison to a conventional

dietary pattern. Improvements in other markers related to

glycemic control, such as the adiponectin/leptin ratio, have also

been reported [45]. Similar findings were found regarding the

DASH dietary pattern emphasizing nuts, where a randomized

controlled trial conducted in people with type 2 diabetes showed

that compared with a control diet (matched for a moderate sodium

intake), the DASH dietary pattern was able to improve HbA1c

(an absolute reduction of 21.2%) and fasting glucose

(20.92 mmol/L) over an 8 week period [46].

The ability of tree nuts to improve glycemic control may relate

to a carbohydrate displacement mechanism by which tree nuts

reduce the glycemic load of the diet by displacing high glycemic-

index carbohydrates. Of the 3 trials that showed a significant

lowering in HbA1c, the two trials contributing the greatest amount

of weight to the analysis (.80% collectively) [29,33] investigated

the effect of tree nuts as a means of displacing carbohydrate by $

5% of energy [33]. The addition of similar trials in future meta-

analyses would be expected to strengthen our results, however, it is

not clear whether this lowering would reach a clinically

meaningful threshold of $0.3% [10]. Other proposed factors

relate to the micro- and macronutrient profile of nuts, such as

magnesium and monounsaturated fat (MUFA) content. Magne-

sium content of tree nuts can range from 121–376 mg and MUFA

from 9–59 g per 100 g [1], providing approximately between 30%

to 94% and 14% and 91% of the Daily Value (DV) for magnesium

and total fat, respectively [47]. Meta-analyses of prospective

cohort studies and randomized double-blind controlled trials

looking at magnesium intake in individuals with type 2 diabetes

support decreases in diabetes risk [48,49], as well as benefits for

glycemic control [50]. Magnesium is thought to play a key role in

insulin-mediated glucose uptake [51,52], where animal studies

have shown poor intracellular magnesium concentrations to result

Figure 5. Forest plots of randomized controlled trials investigating the effect of diets supplemented with tree nuts on HOMA-IR in
individuals with type 2 diabetes. Pooled effect estimate (diamond) for homeostasis model assessment of insulin resistance (HOMA-IR). Data are
expressed as weighted mean differences (MD) with 95% CIs, using the generic inverse-variance fixed-effects model. Paired analyses were applied to
all crossover trials. Inter-study heterogeneity was tested by the Cochran Q-statistic and quantified by I2 at a significance level of P,0.10. n = number
of participants in each treatment group.
doi:10.1371/journal.pone.0103376.g005
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in defective tyrosine-kinase activity at the insulin-receptor level

and therefore impairing insulin action [52,53]. Similarly, in a

meta-analysis of randomized controlled trials looking at the effects

of MUFA on glycemic control in individuals with abnormal

glucose metabolism, diets high in MUFA were shown to

significantly reduce HbA1c [54]. Human trials and animal studies

suggest that MUFA may also be involved in the insulin-signaling

pathway by playing a role in membrane translocation of glucose

transporters in skeletal muscle, as well as by buffering b-cell

hyperactivity and insulin resistance [54–56]. Although our results

do not show significant improvements in insulin resistance by

HOMA or fasting insulin levels, there were a limited number of

trials and a significant amount of heterogeneity present in the

primary analyses. In addition, neither endpoint is a good marker

of peripheral insulin sensitivity [57]. Overall, these proposed

mechanisms suggest that carbohydrate displacement, magnesium

and MUFA content of nuts may be contributing factors in

facilitating the effect seen on glycemic control.

Heterogeneity was not explained by majority of the subgroup

analyses, where only two subgroups, follow-up and study design in

the categorical subgroup analyses for HbA1c, approached

significance. Trials of $12 weeks showed a greater lowering-effect

of tree nuts on HbA1c than trials of ,12 weeks. These results

suggest that tree nut consumption over a longer period (from 12

weeks to 24 months among available trials) may lead to greater

improvements in glycemic control. Similarly, trials using a parallel

design showed a greater lowering-effect of tree nuts on HbA1c

than those using a crossover design. The smaller effect of tree nuts

in crossover designs may be attributed to carry-over effects [23]. In

our meta-analysis, all 5 trials with a crossover design contained a

washout period ranging from 1–8 weeks. Since HbA1c reflects

mean glycemia for the previous 3 months [58], it is not certain

whether this is long enough to diminish any potential carry-over

effects.

Several limitations exist in the present meta-analysis that

complicates the interpretation of our results. First, it is uncertain

whether the length of the follow-up period in these trials is enough

time for tree nuts to significantly alter glycemic control. HbA1c

levels reflect blood glucose levels in the preceding 3 months (,90

days or 12 weeks) [58], whereas more than half of the trials (54%)

were less than 12 weeks in duration. Second, there was evidence of

substantial and considerable between study heterogeneity in the

overall primary analyses for fasting insulin and HOMA-IR,

respectively, which was not explained by any of the a priori and

post-hoc subgroup analyses. In addition, majority of subgroup

analyses were underpowered and it was not possible to assess the

Figure 6. Publication bias funnel plots. Publication bias funnel plots for HbA1c (A), fasting glucose (B), fasting insulin (C), and HOMA-IR (D). The
solid line represents the pooled effect estimate expressed as the weighted mean difference for each analysis. The dashed lines represent pseudo-95%
confidence limits. P-values displayed in the top right corner of each funnel plot are derived from quantitative assessment of publication bias by
Egger’s and Begg’s tests.
doi:10.1371/journal.pone.0103376.g006
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effect of other factors that may influence glycemic control (i.e.

growing conditions of tree nuts) due to unavailability of data.

Third, the majority of the trials (81%) were of poor study quality

(MQS,8), however, no effect modification by study quality was

found in the subgroup analyses. Fourth, a portion of the trials

(27%) did not focus on glycemic control endpoints as their primary

outcome.

In conclusion, the present systematic review and meta-analysis

of randomized controlled trials shows that a daily median intake of

56 g (,2 ounces or ,K cup) of tree nuts over a median duration

of 8 weeks significantly reduces HbA1c and fasting glucose in

individuals with type 2 diabetes. Although significant advantages

were not seen for fasting insulin and HOMA-IR, the direction of

effect favoured tree nuts. The greatest advantages appear to be

seen in trials using tree nuts to displace high-glycemic index

carbohydrate to affect a low-glycemic load diet. To address the

sources of uncertainty in our analyses, there is a need for large,

longer, higher quality trials using tree nuts to lower the glycemic

load of the diet by displacing high-glycemic index carbohydrates

with a specific focus on glycemic endpoints as a primary outcome.

The inclusion of such trials in future meta-analyses will help guide

the development of nutrition recommendations and health claims,

as well as the planning of future trials. Overall, our data support

the inclusion of tree nuts as part of a healthy diet for the

management of glycemia in individuals with type 2 diabetes.

Supporting Information

Figure S1 Cochrane Risk of Bias Graph. Risk of bias

graph: review authors’ judgments about each risk of bias item

presented as percentages across all included studies (with the

exception of Sauder et al. [29]).

(TIFF)

Figure S2 Categorical a priori and post-hoc subgroup
analyses for HbA1c. CHO = carbohydrate; N = number of

subjects; MQS = Heyland Methodological Quality Score;

SFA = saturated fatty acid. Point estimates for each subgroup

level (diamonds) are the pooled effect estimates. The dashed line

represents the pooled estimate for the overall (total) analysis. The

residual I2 value indicates heterogeneity unexplained by the

subgroup. Pairwise between-subgroup mean differences (95%CIs)

for nut type were as follows: 0.15 [20.20, 0.49] (1 vs. 4); 0.18

[20.18, 0.55] (1 vs. 5); 0.04 [20.33, 0.40] (1 vs. 6); 20.03 [20.23,

0.16] (4 vs. 5); 0.11 [20.09, 0.31] (4 vs. 6); 0.14 [20.09, 0.37]

(5 vs. 6). Absolute intakes represent intakes within the treatment

arm. Between arm differences represent the difference between the

treatment (T) and control (C) arm (T–C). Within arm differences

represent the difference between end (E) and baseline (B) values

within the treatment arm (E–B). *Statistically significant between

subgroups (P,0.05).

(PDF)

Figure S3 Categorical a priori and post-hoc subgroup
analyses for fasting glucose. CHO = carbohydrate; N = num-

ber of subjects; MQS = Heyland Methodological Quality Score;

SFA = saturated fatty acid. Point estimates for each subgroup level

(diamonds) are the pooled effect estimates. The dashed line

represents the pooled estimate for the overall (total) analysis. The

residual I2 value indicates heterogeneity unexplained by the

subgroup. Pairwise between-subgroup mean differences (95%CIs)

for nut type were as follows: 20.81 [22.41, 0.79] (1 vs. 2); 20.65

[22.03, 0.73] (1 vs. 3); 0.23 [20.15, 0.61] (1 vs. 4); 0.73 [20.14,

1.60] (1 vs. 5); 0.09 [20.46, 0.64] (1 vs. 6); 20.16 [22.23, 1.91]

(2 vs. 3); 21.04 [22.64, 0.56] (2 vs. 4); 21.54 [23.32, 0.23]

(2 vs. 5); 20.90 [22.55, 0.75] (2 vs. 6); 20.88 [22.25, 0.49]

(3 vs. 4); 21.38 [22.97, 0.20] (3 vs. 5); 20.74 [22.17, 0.69]

(3 vs. 6); 20.50 [21.37, 0.36] (4 vs. 5); 0.14 [20.40, 0.68] (4 vs. 6);

0.64 [20.31, 1.59] (5 vs. 6). Absolute intakes represent intakes

within the treatment arm. Between arm differences represent the

difference between the treatment (T) and control (C) arm (T–C).

Within arm differences represent the difference between end (E)

and baseline (B) values within the treatment arm (E–B).

*Statistically significant between subgroups (P,0.05).

(PDF)

Figure S4 Categorical a priori and post-hoc subgroup
analyses for fasting insulin. CHO = carbohydrate; N =

number of subjects; MQS = Heyland Methodological Quality

Score; SFA = saturated fatty acid. Point estimates for each

subgroup level (diamonds) are the pooled effect estimates. The

dashed line represents the pooled estimate for the overall (total)

analysis. The residual I2 value indicates heterogeneity unexplained

by the subgroup. Pairwise between-subgroup mean differences

(95%CIs) for nut type were as follows: 213.00 [265.37, 39.37]

(1 vs. 2); 6.45 [238.57, 51.47] (1 vs. 4); 20.81 [219.98, 61.59]

(1 vs. 5); 219.45 [279.26, 40.36] (2 vs. 4); 231.81 [290.50,

22.88] (2 vs. 5); 214.36 [264.34, 35.63] (4 vs. 5). Absolute intakes

represent intakes within the treatment arm. Between arm

differences represent the difference between the treatment (T)

and control (C) arm (T–C). Within arm differences represent the

difference between end (E) and baseline (B) values within the

treatment arm (E–B). * Statistically significant between subgroups

(P,0.05).

(PDF)

Figure S5 Categorical a priori and post-hoc subgroup
analyses for HOMA-IR. CHO = carbohydrate; N = number of

subjects; MQS = Heyland Methodological Quality Score; SFA = -

saturated fatty acid. Point estimates for each subgroup level

(diamonds) are the pooled effect estimates. The dashed line

represents the pooled estimate for the overall (total) analysis. The

residual I2 value indicates heterogeneity unexplained by the

subgroup. Absolute intakes represent intakes within the treatment

arm. Between arm differences represent the difference between the

treatment (T) and control (C) arm (T–C). Within arm differences

represent the difference between end (E) and baseline (B) values

within the treatment arm (E–B). * Statistically significant between

subgroups (P,0.05).

(PDF)

Table S1 Search strategy. For all databases, the original

search was 23 May 2012; updated searches were performed 14

May 2013 and 6 April 2014.

(DOCX)

Table S2 Study Quality Assessment using the Heyland
MQS*. HF = high fat diet; LF = low fat diet; MQS = Methodo-

logical Quality Score. * The Heyland MQS assigns a score of 0 or

1 or from 0 to 2 over 9 categories of quality related to study design,

sampling procedures, and interventions for a total of 13 points.

Trials that scored $8 were considered to be of higher quality [25].

{ Randomization was scored 2 points for being randomized with

the methods described, 1 point for being randomized without the

methods described, or 0 points for being neither randomized nor

having the methods described. Blinding was scored 1 point for

being double-blind or 0 points for ‘‘other.’’ Analysis was scored 2

points for being intention-to-treat; all other types of analyses

scored 0 points. { Sample selection was scored 1 point for being

consecutive eligible or 0 points for being preselected or

indeterminate. Sample comparability was scored 1 point for being
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comparable or 0 points for not being comparable at baseline.

Follow-up was scored 1 point for being 100% or 0 points for ,

100%. 1 Treatment protocol was scored 1 point for being

reproducibly described or 0 points for being poorly described. Co-

interventions were scored 2 points for being described and equal, 1

point for being described but unequal or indeterminate, or 0

points for not being described. Treatment crossovers (where

participants were switched from the control treatment to the

experimental treatment) were scored 2 points for being ,10%, 1

point for being .10%, and 0 points for not being described. ||

Study quality for this study was not assessed since data for this

study was limited (the study’s conferences abstract and correspon-

dence with the authors were the only sources of available data).

(DOCX)

Table S3 Continuous a priori and post-hoc subgroup
analyses for HbA1c. BMI = body mass index; CHO = carbo-

hydrate; E = energy; M = males; N = number of subjects; No. = n-

umber; SFA = saturated fatty acid. b is the slope derived from

subgroup analyses on meta-regression analyses and represents the

treatment effect of tree nuts for each subgroup. The residual I2

value indicates heterogeneity unexplained by the subgroup.

Absolute intakes represent intakes within the treatment arm.

Between arm differences represent the difference between the

treatment (T) and control (C) arm (T–C). Within arm differences

represent the difference between end (E) and baseline (B) values

within the treatment arm (E–B). *Statistically significant between

subgroups (P,0.05).

(DOCX)

Table S4 Continuous a priori and post-hoc subgroup
analyses for fasting glucose. BMI = body mass index;

CHO = carbohydrate; E = energy; M = males; N = number of

subjects; No. = number; SFA = saturated fatty acid. b is the slope

derived from subgroup analyses on meta-regression analyses and

represents the treatment effect of tree nuts for each subgroup. The

residual I2 value indicates heterogeneity unexplained by the

subgroup. Absolute intakes represent intakes within the treatment

arm. Between arm differences represent the difference between the

treatment (T) and control (C) arm (T–C). Within arm differences

represent the difference between end (E) and baseline (B) values

within the treatment arm (E–B). * Statistically significant between

subgroups (P,0.05).

(DOCX)

Table S5 Continuous a priori and post-hoc subgroup
analyses for fasting insulin. BMI = body mass index;

CHO = carbohydrate; E = energy; M = males; N = number of

subjects; No. = number; SFA = saturated fatty acid. b is the slope

derived from subgroup analyses on meta-regression analyses and

represents the treatment effect of tree nuts for each subgroup. The

residual I2 value indicates heterogeneity unexplained by the

subgroup. Absolute intakes represent intakes within the treatment

arm. Between arm differences represent the difference between the

treatment (T) and control (C) arm (T–C). Within arm differences

represent the difference between end (E) and baseline (B) values

within the treatment arm (E–B). * Statistically significant between

subgroups (P,0.05).

(DOCX)

Table S6 Continuous a priori and post-hoc subgroup
analyses for HOMA-IR. BMI = body mass index; CHO = car-

bohydrate; E = energy; N = number of subjects; No. = number;

SFA = saturated fatty acid. b is the slope derived from subgroup

analyses on meta-regression analyses and represents the treatment

effect of tree nuts for each subgroup. The residual I2 value

indicates heterogeneity unexplained by the subgroup. Absolute

intakes represent intakes within the treatment arm. Between arm

differences represent the difference between the treatment (T) and

control (C) arm (T–C). Within arm differences represent the

difference between end (E) and baseline(B) values within the

treatment arm (E–B). * Statistically significant between subgroups

(P,0.05).

(DOCX)
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(DOC)

Protocol S1 Trial protocol.
(PDF)
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3. Salas-Salvadó J, Bulló M, Perez-Heras A, Ros E (2006) Dietary fibre, nuts and

cardiovascular diseases. Br J Nutr 96 Suppl 2: S46–51.
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