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Abstract

Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in
metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered
within restricted ranges of body mass, however, allometric EE curves exhibit ‘local linearity.’ Indeed, modern EE analysis
makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free
mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain
origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE
normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses
(e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models
may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies
reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of
individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-
intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate
intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the
underlying ‘latent’ allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of
physiological states that are not represented in the allometric EE literature but are well represented by published linear EE
analyses.
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Introduction

Discovering more effective pharmacological and behavioral

interventions to counter the burgeoning obesity and diabetes

epidemics will require new insights into the biobehavioral

regulation of energy balance. Contemporary research in energy

homeostasis includes a major focus on the molecular and

environmental mechanisms that regulate and modulate energy

expenditure (EE) as they pertain to the physiology of energy

homeostasis [1,2], the pathogenesis of common disorders such as

obesity and diabetes [3–5], and to the identification of new targets

for obesity drug development [6]. Progress toward these goals,

however, is hindered by problems inherent in how EE is adjusted

to account for the differences in body mass and body composition

that often confound EE phenotyping [7–11].

At present, the standard of practice for adjusting EE for body

mass and composition involves linear regression models that adjust

EE for one or two body mass compartments, typically total body

mass (MT ), fat free body mass (FFM ) or FFM in combination

with fat mass (FM) [7,8,10–12]. Such models typically include

non-zero (usually positive) y-intercepts of unknown origin as

emphasized in [9]. The non-zero intercept has long been a

pervasive topic in discussions of EE analysis, as it both confounds

simple ratio-based EE normalization [7,8,10,11,13–18], and

stands as an incompletely understood theoretical problem [9].

This problem likely reflects heterogeneity in the mass-specific

metabolic rate of individual organs and tissues [9,19]. Marked

heterogeneity in organ-tissue metabolic rates, in turn, has spurred

EE analysis into the realm of individual organ-tissue modeling

[9,19–21]. This approach again emphasizes linear modeling, and

expresses whole body resting EE (REE) in terms of individual

organ-tissue masses (e.g., brain, liver, heart, kidneys) and their

assumed or estimated metabolic rates per kg of organ mass (mass-

specific metabolic rate) [9,19–21]. Multi-organ modeling holds

great promise as a tool for addressing a host of problems involving

EE regulation and adaptation in health and disease [9]. This
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approach may also improve model accuracy, and its proponents

aver that it might eliminate non-zero y-intercepts [9,19–21].

The ubiquity of linear EE modeling reflects the linearity of EE

scaling over modest ranges of body size, a common situation in

biomedical research. Over broad ranges of body mass, however,

EE scales as a non-linear power function with a zero intercept

(allometric scaling) [22–26].

Using first-order Taylor series to exploit the ‘local linearity’ of

allometric curves, I derive explicit mathematical relationships

between the parameters of restricted range linear EE equations

and the parameters of the underlying (‘latent’) allometric EE

equations. Because allometric scaling also applies at the level of

individual organ-tissue REEs [27,28], I then derive a mathemat-

ical model that 1) reveals how allometric scaling at the level of

individual organs and tissues can explain the non-zero y-intercept

that typically occurs in linear REE regression equations, and 2)
predicts that linear REE analysis based on individual organs and

tissues will not eliminate non-zero y-intercepts. Example instan-

tiations of concepts developed herein involve data that scale EE to

a mouse-sized mammal owing to the immense importance of mice

in contemporary metabolic phenotyping [11,29] and my own

involvement in this area [7,8] and http://www.mmpc.org/

shared/regression.aspx.

Materials and Methods

Single compartment linear EE analysis
Studies designed to identify EE phenotypes typically involve

modest within-group ranges of MT or FFM. When the range of

the body mass covariate is modest, EE typically is well

characterized by a linear equation:

EE~azb(MT or FFM) ð1Þ

where b is the slope parameter (usually positive) and a is the y-

intercept, which is usually positive in regressions of total or resting

EE on MT or FFM.

An important practical aspect of the y-intercept is its

confounding effect on the traditional approach to adjusting EE

for differences in body size using ratio normalization (dividing EE

by MT or FFM ) [7,8,11,13–18]. The confounding occurs because

dividing EE by MT (for example) does not result in a ratio whose

expected value is independent of MT (as so frequently assumed),

but rather results in a non-linear MT -dependent function of the

form: EE
MT

~
a

MT

zb.

Accordingly, whenever the intercept a is positive, the

‘‘aoverMT ’’ term decreases in magnitude as MT increases such

that heavier individuals or groups will appear to be hypometabolic

in comparison to lighter ones. This invalidates simple ratio

normalization as a method to ‘‘remove’’ the effect of MT or FFM
from group comparisons because the ratio tends to be correlated

with these mass compartments. This serious problem was first

articulated in 1949 by J.M Tanner [13] (also known for developing

the Tanner Growth Stage Curves [30]), and has been emphasized

in a number of more recent articles [7–10,14,15].

Non-linear allometric EE analysis
Contemporary interest in the biological origins of the positive y-

intercept [9] in linear EE analysis has evolved in parallel with

enduring interest in the biological origins of the value of the scaling

exponent k in the classical non-linear allometric form of the

relationship between EE and MT [22–28,31]. Specifically, when

MT varies over a wide range, EE is well-described by a single

power function with a zero intercept:

EE~cMk
T ð2Þ

where k is a dimensionless scaling exponent that does not depend

on the units of EE or MT , and c is a scaling coefficient that does:

e.g., if EE is in kcal
d

and MT is in kg, then c is in units of kcal
d:(kg)k.

The scaling coefficient c varies widely depending on species,

taxa and other factors (e.g., c is markedly lower for poikilothermic

than for homeothermic animals). The allometric scaling exponent

k is classically argued to be 0.67 or 0.75 for mammalian ‘‘resting’’,

‘‘basal’’ or ‘‘standard’’ metabolic rate [22–24,32–35], while k is

placed at ,0.75 for average mammalian field metabolic rate [36].

The theoretical basis of allometric EE scaling remains a topic of

enduring interest and controversy [24,26–28,37–42] with expla-

nations for the biological origins of allometric k values including

those based on the geometric scaling of body heat loss [22], the

geometry and physics associated with space-filling fractal circula-

tory networks [24], and an ‘‘allometric cascade’’ [41,42]. An

alternative mechanistic explanation for k is based on the

allometric scaling of individual organ EE with body size [27,28]

(although the explanation for this explanation is up for debate).

Efforts to identify the ‘‘correct’’ exponential k value for basal or

REE have been dominated by inter-species analyses encompassing

body size over many orders of magnitude [24,26]. By contrast,

little research has been focused on within-species values for k. It is

known that k values for basal or REE vary both among phyla

[34,38] and among mammalian species [43,44], with values

ranging from approximately 0.5 to 0.9 [34,43–45]. Another

limitation of this field is that allometric EE analysis has been

largely confined to basal or REE, with relatively little attention

paid to measures of average 24 h EE [46,47] or maximal EE [48],

despite their indisputable importance to energy homeostasis.

Existing research suggests that maximal EE in birds and mammals

scales to MT with k exponents of ,0.87–0.88 [49,50]. Finally,

with few exceptions [46,47,51] allometric scaling has been applied

at the level of MT rather than the more metabolically active FFM
compartment. These considerations highlight the utility of a

simple method for estimating allometric scaling parameters from

published linear analyses of non-REE outcomes such as 24 h and

exercise-related EE, EE during thermoregulatory challenges, and

other non-basal states, as well as for EE normalization for

differences in body size or composition.

Derivation of parametric linkages between linear and
allometric EE equations

Because k values for basal, resting and average EE typically are

less than one, the slope of EE on MT typically decreases with

increasing MT (Figure 1). The evident importance of this fact to

positive y-intercepts in linear models of EE has previously been

exploited by Wang et al. [52]. These investigators applied a linear

regression fit to the errorless allometric curve defined by the

Kleiber equation [REE (kcal/d) = 70|(MT (kg))0:75] over a

restricted range of MT in which the range of FFM was predicted

to be 40 to 80 kg. The analysis revealed that the parameter

estimates of the linear regression equation for REE on FFM were

in good agreement with those of published empirical equations for

human subjects [52]. Below I extend this line of thought to an

explicit mathematical model that enables one to readily predict the

values of the y-intercept and slope parameters of a regression of

REE on MT from the scaling coefficient and exponent parameters

of the ‘parent’ allometric equation, and vice versa.

Energy Expenditure Model
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Any differentiable non-linear equation exhibits ‘local linearity’ in

the vicinity of a particular value of the independent variable. Such

equations can be formally linearized in the vicinity of a specific value

of an independent variable using a first-order Taylor series [53]:

f (X near X~X0)&f (X0)z
df (X )

dx
(at X~X0)|(X{X0),

where X0 is a specific value about which one chooses to linearize

f (X ). Accordingly, the linearized first-order Taylor series for the

allometric REE equation about a particular value of MT~M0 is:

REE given MT near M0&cMk
0 zkcM

(k{1)
0 (MT{M0). This

equation can be rearranged and simplified into the familiar linear

equation form having y-intercept and slope parameters as follows:

REE given MT near M0&cMk
0 (1{k)zkcM

(k{1)
0 MT ð3Þ

Taylor linearization is illustrated in Figure 1. The allometric

curve shows the trajectory of REE based on Eq. 2 with a scaling

exponent of 0.67 [22,33], and a scaling coefficient of
0:5kcal

d:g0:67
, a

based on an analysis of normal chow-fed mice [35]. Now imagine

that the curve in Figure 1 represents the mean of REE given MT

for a population of small mammals.

Note that the straight line for REE based on the first-order

Taylor series nearly overlies the population non-linear population

allometric curve across a substantial range of MT (,23 to 29 g)

such that this curve exhibits a substantial breadth of local linearity.

It is apparent, therefore, that a straight line which is tangent to a

population allometric curve at a particular value ofMT~M0 is

precisely equivalent to the first-order Taylor formula for that

population curve at that M0. Therefore, a linear regression model

that is fit to sample data with mean MT~ �MMT from a population

in which the allometric model is true has the following

interpretation: the regression model REE~azbMT is an

estimate of the first-order Taylor series REE&c �MMk
T (1{k)z

kc �MM (k{1)
T MT for the true population model REE~cMk

T . The

accuracies of a and b as estimates of c �MMk
T (1{k) and kc �MM(k{1)

T ,

respectively, will depend upon the sample size, the r-square of the

linear fit, the range of MT and other variables. Note that I do not

claim that these are unbiased estimates in a formal statistical sense,

only that they are ‘reasonable’ estimates (for confirmation see

Appendix S1).

We can now estimate the allometric scaling exponent k and the

scaling coefficient c from the b slope and a intercept parameters of

a simple linear fit to an available but incomplete range of MT .

We form the following system of equations:

azb �MMT&c �MMk
T ð4Þ

b&kc �MM (k{1)
T ð5Þ

Dividing Eq. 4 by Eq. 5, rearranging and inverting yields:

b �MMT

azb �MMT

&k ð6Þ

Solving Eq. 4 for c yields:

azb �MMT

�MMk
T

&c ð7Þ

Appendix S1 presents a proof of concept to the effect that 1) the

restricted range regression model REE~azbMT is a ‘reason-

able’ estimate of the first-order Taylor series REE&c �MMk
T (1{k)z

kc �MM (k{1)
T MT for the true population model REE~cMk

T and 2)
that the new method using Eqs. 6 and 7 does provide ‘reasonable’

estimates of kandc.

Model for the positive y-intercept in linear regressions of
EE on body size

A number of energetics researchers have been developing

models of whole-body REE based on the concept that total REE

equals the sum of the individual tissue-organ REEs

[19,20,27,28,54,55]. Particularly germane to my paper are the

conceptual framework and data analyses by Wang et al. [27,28].

Their work indicates that allometric scaling pertains at the level of

individual organ-tissue REEs, and that allometric scaling at that

level can serve as a basis for whole-body allometric REE scaling

[27,28]. Specifically, Wang et al. modeled whole-body REE as the

sum of four high mass-specific REE organs (liver, brain, heart and

kidney) that collectively account for ,60% of whole-body REE,

and one low mass-specific REE compartment termed ‘remaining

tissues’, calculated as MT minus the sum of the four high mass-

specific REE tissue masses [27,28].

Figure 1. Illustration of a first-order Taylor linearization of a
hypothetical population allometric equation for resting energy
expenditure (REE): REE&cMk

0 (1{k)zkcM (k{1)
0 MT&cMk

T when
M0~30g, c~0:5 and k~0:67. The linearization well approximates
expected population REE given total values of body mass (MT ) in the
vicinity of M0. Therefore, given ‘noisy’ sample data with mean
MT~ �MMT , the linear regression model REE~azbMT is an estimate
of the first-order Taylor series REE&c �MMk(1{k)zkc �MM (k{1)MT for the

true population modelREE~cMk
T .

doi:10.1371/journal.pone.0103301.g001

Energy Expenditure Model
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The basic model put forward by Wang et al. [27,28] is:

Whole� body REE ~ Liver REE z Brain REE z

Heart REE z Kidney REE z Rem: Tissues REE
ð8Þ

Wang et al. analyzed a large body of published data to model 1)
the manner in which the mass-specific REEs of individual organ-

tissues scale with MT ; and 2) the manner in which the individual

organ masses scale with MT . This allowed the REE of each organ-

tissue in Eq. 8 to be modeled as the organ’s mass-specific REE6the

organ’s mass, where mass-specific REE and organ mass were each

based on allometric scaling to total body mass MT [27,28]. The

mass-specific REE for a particular organ-tissue has the allometric

form dorganM
porgan

T , and the organ mass for that particular organ-

tissue has the form gorganM
qorgan

T . I stress that the dorgan and porgan

parameters scale the organ’s mass-specific metabolic rate to total

body mass, MT , while the gorgan and qorgan parameters also scale the

organ’s mass to MT . Accordingly, the REE of a particular organ,

scaled to MT , is: REEorgan~dorganM
porgan

T |gorganM
qorgan

T ~(dorgan|

gorgan)M
(porganzqorgan)
T ~corganM

korgan

T .where corgan and korgan represent

the lumped parameters that scale the individual organ’s REE to MT .

This construction allows the general form of the equation for

REE to be expressed as a sum of power functions each of which is

expressed as a function of MT :

cLM
kL
T zcBM

kB
T zcH M

kH
T zcK M

kK
T zcRM

kR
T ~

; ; ; ; ;

Liver Brain Heart Kidney Remainder

whole� body REE&cMk
T

;

Single 2� parameter eqn: for whole body REE

ð9Þ

The ‘‘approximately equal to’’ sign needs explanation. This

formality is necessary because a sum of power functions does not,

in general, exactly equal a single 2-parameter power function

across the range of the independent variable (the correspondence

can be very close, as discussed below). As such, no straightforward

analytic way exists by which the parameters on the right hand side

of Eq. 9 can be identified from the parameters on the left hand

side. Instead, cumbersome approximation methods have been

developed for this class of problems, such as the Prony’s sum of

exponentials method [56]. (The present analysis leads, however, to

a simple approximation method as discussed below).

Wang and co-workers [27,28] formulated the concept expressed

by Eq. 9 to assess the validity of ‘‘Kleiber’s Law’’ [23,32], which

holds that the mass scaling exponent k on the right hand side of

Eq. 9 equals 0.75 when the dependence of REE on MT is

analyzed over many orders of magnitude (a point that has been

debated intensely for more than 70 years). My goal is to document

that when linearized using Eq. 3 the model in Eq. 9 leads to an

explanation for the source of the positive y-intercept in linear

regressions of EE on MT orFFM.

Specifically, given any value of MT in the vicinity of �MMT , an organ’s

REE can be expressed as: REEorgan given MT in the vicinity of

�MMT&corgan
�MM

korgan

T (1{korgan)zkorgancorgan
�MM

(korgan{1)
T MT .

Summing the individual organ REEs allows us to express whole-

body REE given a value of MT in the vicinity of �MMT as the sum of

the individual organ-tissue Taylor intercept + slope6MT terms as

follows:

REELiver&cL
�MM

kL
T (1{kL)zkLcL

�MM
(kL{1)

T MT

z

REEBrain&cB
�MM

kB
T (1{kB)zkBcB

�MM
(kB{1)

T MT

z

REEHeart&cH
�MM

kH
T (1{kH )zkH cH

�MM
(kH {1)

T MT

z

REEKidney&cK
�MM

kK
T (1{kK )zkK cK

�MM
(kK {1)

T MT

z

REERemain:&cR
�MM

kR
T (1{kR)zkRcR

�MM
(kR{1)

T MT

~REETotal

&
X5

i~1

ci
�MM

ki
T (1{ki)z

X5

i~1

kici
�MM

(ki{1)

T MT

&c �MMk
T zkc �MM (k{1)

T MT corresponding to the classical REE ~ cMk
T

& azbMT from a linear regression of REE on MT in the vicinity of �MMT

ð10Þ

where the i subscript indicates summation over the five organ-

tissue compartments.

An instantiation of Eq. set 10 is depicted in Figure 2 based on

numerical values for the parameters of the five organ-tissue

allometric terms from [27]. Reference [28] gives similar values.

Implications for EE analysis at the individual organ level
Advances in technology for imaging and quantifying organ mass

have made it possible to develop linear models whereby human

REE is expressed as mass-specific REE-weighted sums of

individual organ masses [9,19,20,55]. Such models may have

advantages over current approaches that model REE in terms of

one or two-compartment linear functions. In particular, one of the

major goals of EE analysis is to more accurately estimate or

explain EE than do established modeling approaches that do not

account for the heterogeneity of the organ-tissue proportions and

mass-specific EEs in the MT and FFM compartments. At present,

multi-organ models are limited to analysis of REE in humans, but

this approach likely will be extended to animal models and to

other measures of EE [9].

Major proponents of organ-tissue level EE modeling have

argued that: ‘‘Not only might accounting for organ energy

expenditure reduce between-subject variability in REE, but it also

might allow REE to form a ratio to body composition that is

independent of body size [9]’’(p.13). Some published multi-organ

models for REE in humans do lack significant y-intercepts [9]. My

analysis can be extended, however, to suggest that eliminating the

y-intercept may not be a reliable consequence of multiple organ-

tissue models of REE.

As an example, let Gi denote the mass of a particular organ-

tissue. If Pi is the proportion of MT that the organ represents, then

at �MMT ,
�GGi
Pi

~ �MMT . Accordingly, for each organ-tissue in Eq. 10:

(10)

Energy Expenditure Model
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Figure 2. Instantiation of the model for the contribution of individual organs and tissues to the y-intercept in linear regressions of
resting energy expenditure (REE) on total body mass (MT ). Panels A through E depict individual organ-tissue contributions to REE scaled to

MT in accordance with the approach and numerical values for allometric scaling coefficients units expressed in
kcal

d:(kg)k
reported in [27]. Note that the

Energy Expenditure Model

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e103301



REEi given MT near �MMT~

(
ci

P
ki
i

)( �GG
ki
i )(1{ki)z(

kici

P
ki
i

)(�GG
(ki{1)

i )(Gi)
ð11Þ

Eq. 11 predicts the parameters of a multiple linear regression

equation for REE based on individual organ-tissue masses. Each

beta coefficient (slope parameter) for organ mass is an estimate of

(
kici

Pki

i

)(�GG(ki{1)
i ), and the y-intercept is an estimate of the sum of the

(
ci

Pki

i

)(�GGki

i )(1{ki) terms.

Quantitative analysis of the importance of scaling
coefficients and exponents to the y-intercept

Organs with large ci
�MMki

T (1{ki) [or, equivalently, (
ci

Pki

i

)(�GGki

i )

(1{ki)] intercept values are predicted to strongly influence the

magnitude of the y-intercept. Note that the ‘(1{ki)’ factor is

critical because if the individual organ-tissue REEs scale with ki

values that are less than unity, then the model predicts that

accounting for individual organ masses will not make the

aggregate y-intercept term equal zero. Rather, achieving a zero

y-intercept would require that the REE of one or more organ-

tissue components scales with a ki of greater than unity, which

seems unlikely based upon interspecies analyses [27,28]. This

prediction is contrary to the sense that organ level REE analysis

might result in prediction equations that lack y-intercept terms

[9,57].

It should be noted, however, that the dependence of an

intercept term on ki is made more complex because ki also

functions as an exponent. Accordingly, I explored this issue more

thoroughly to gain further insight.

Based on elementary calculus, the function f (ki)~ci
�MMki

T (1{ki)

achieves a maxima when f 0(ki)~0. Note that f (ki) simply equals

the allometric scaling coefficient ci times a multiplier, �MMki

T (1{ki).

Taking the derivative of f (ki), setting it equal to zero and solving

for ki reveals that the maximum value of the multiplier occurs

when:

ki~1{
1

ln ( �MMT )
ð12Þ

where ln denotes the natural log. If �MMT = 30 g, then the

multiplier achieves a maxima at ki = 0.706, as depicted in

Figure 3. Note that the scaling coefficient multiplier more than

doubles ci over a fairly broad range of ki. Accordingly, a small

organ can have a marked influence on the size of the y-intercept if

the lumped allometric equation for that small organ has a big

scaling coefficient (which reflects a high mass-specific REE) and a

mass scaling exponent ki value that is only moderately less than

unity as depicted in Figure 3. This analysis has implications for

explaining why the slopes of EE on MT or FFM might differ

between groups (Figure 3B and discussion).

Discussion and Conclusions

In a 2012 review [9] Heymsfield and colleagues wrote: ‘‘The
distinguishing feature of [linear] statistical REE-body composition
models is a non-zero intercept of unknown origin’’ (p. 13). The

present analysis provides a testable model for the intercept’s origin

(Eq. 10 and Figure 2).

This model is premised on the local linearity of the more

fundamental non-linear allometric scaling of EE. The Taylor

series formalism for local linearity was the key to revealing the

mathematical relationships between the parameters of restricted

range linear EE equations and parameters of the ‘latent’ allometric

EE equations (Eqs. 6 and 7). To my knowledge, these mathemat-

ical connections had not been recognized previously despite many

decades of interest and analysis devoted to allometric and linear

EE models. This shared parameterization and the concept that

allometric scaling applies to individual organ-tissue REE then led

to Eq. 10.

It should be stressed that the conceptual validity of Eq. 10 is not

dependent upon particular published values of the parameters that

define the allometric scaling of individual organ-tissue REE with

MT . Nor does the model’s validity even require the mass-specific

REEs of individual organ-tissues to vary as allometric functions

ofMT within species, an important point given the need for more

research on this topic (some research suggests that within-human

mass-specific organ-tissue REE is relatively constant across body

size in healthy adults [58–61] but is higher in children and lower in

the elderly [62,63]). Indeed, efforts to refine our understanding of

the within species scaling of individual organ-tissue REE to MT

(and to FFM ) likely will be an important focus of future research

[9]. Data more firmly indicate that organ-tissue mass does scale

with MT [9,55], an important consideration for the validity Eq. 10.

The numerical scaling values from [27] that are presented in

Figure 2 simply permit a concrete example of Eq. 10. Note also

that the compartmental model of Wang et al. [27,28] is but one of

many possible models. Indeed, an earlier model encompassing a

greater number of individual organ-tissue terms was published by

Wang et al. [52]. The model utilized herein was chosen because it

parsimoniously captures the major contribution of the high

metabolic rate organs to whole-body REE [9,27,28].

The preferential focus of EE analysts on REE reflects its

enduring status as a metabolic construct because it represents the

majority of total 24 h EE (60–75%), is highly correlated with 24 h

EE, and yet can be quantified in a relatively short time interval [9].

However, it is important to stress that linear univariate and

multiple regression analyses involving average 24 h EE also

typically involve non-zero (usually positive) y-intercepts [7,8,64].

Hence, the form of the model developed for REE should extend to

24 h EE as well.

y scales differ. The REE for each organ-tissue is expressed as a first-order Taylor linearization at a specific body mass (M0) of 0.03 kg (upper equation)
of the parent allometric function (lower equation). Panel F reveals that the sum of the linearized equations equals total REE at MT = 0.03 kg and very
nearly equals total REE in the range 0.02# MT #0.04 kg. The aggregate y-intercept (1.66) is the sum of the individual organ-tissue y-intercepts, while
the aggregate slope (123.73) is the sum of the individual slopes. Note the particularly large contribution to the y-intercept and to whole-body REE by
the liver even though it represents only ,5% of MT . Applying Eqs. 6 and 7 with �MMT = 0.03 kg in the aggregate linear equation results in the
parameters c = 60.58 and k = 0.69 of a single 2-parameter allometric equation for the whole-body EE curve. These parameter values are remarkably

similar to those identified by standard log-log analysis or by non-linear regression (see text). To convert the units of a scaling coefficient to
kcal

d:(g)k
,

divide by (1000)k . To convert the slope of a Taylor series to units of
kcal

d:g
, divide by 1000; the intercept remains unchanged.
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It had been hypothesized previously that non-zero intercepts in

linear REE models reflect marked differences in the mass-specific

metabolic rates of the individual organs and tissues that make up

the metabolically active tissues of the body [9,19,27,65,66]. Taken

at face value, this concept implies that accounting for individual

organ-tissue metabolic rates in linear EE modeling might eliminate

significant intercept terms, and indeed some linear models

involving individual organ-tissue REEs do not have significant

intercepts [9,19,20]. My analysis predicts, however, that zero

intercepts will not be upheld as a reliable feature of individual

organ-tissue REE linear modeling. This prediction depends,

however, on the key assumption that REE at the individual

organ-tissue level scales to MT with allometric exponents of less

than unity. The extent to which this premise holds in humans is

unclear. However, the fact that linear regressions of human REE

on MT or FFM typically involve substantial positive y-intercept

values [9,64] is certainly congruent with the hypothesis that

human individual organ-issue REE scales to MT (and to FFM )

with allometric scaling coefficients that are less than unity.

Multi-organ-tissue EE analysis will be adopted on a more

widespread basis in human research, and likely will be developed

into a vital tool in basic animal energetics research [9]. This

approach has been motivated, in part, by the fact that the sum of

brain, kidneys, heart and liver account for the majority of REE

despite their small aggregate mass. For example, in humans, ,60–

70% of REE is generated by these four organs even though they

make up only ,6% of MT (reviewed in [9]). In small mammals,

the proportional contribution may be even larger, and this issue is

of considerable importance given the major role of mice in studies

on the molecular mechanisms that regulate energy expenditure

[8,11].

Implications for murine EE phenotyping and for group
comparisons when the slopes of EE on body size are not
homogeneous

Given that the liver is predicted to contribute ,51% of total

REE and ,67% of the total y-intercept in a 30 g mouse based on

the parameter estimates in [27], an intriguing hypothesis follows:

Genetic, pharmacological, nutritional or pathological factors that

alter liver metabolism could have marked impacts on whole-body

REE and its assessment in murine EE phenotyping. Consistent

with this hypothesis, whole-body REE adjusted for lean mass is

elevated by ,5–10% in humans with type 2 diabetes [67–72]

owing to the increased metabolic cost of elevated hepatic glucose

production (HGO) [68,71,72]. Considering that liver REE

represents ‘‘only’’ ,17% of whole-body REE in a 70 kg human

(based on the allometric equations depicted in Figure 2), it would

seem that the impact of elevated HGO on whole-body REE in

mice with experimental or acquired diabetes could be substantial

indeed. Similarly, naturalistic homeostatic challenges that alter

whole-body metabolic rate in mice (e.g., thermal stress [1] or food

intake) might do so, in part, via effects on liver EE. A supportive

finding is that mice selected for high food intake exhibited

significantly higher REE compared to mice selected for low food

intake, and greater liver mass was the dominant morphological

trait associated with the elevation in REE [73].

A key assumption of ANCOVA, the standard of practice for

adjusting EE for a body size covariate [7,8,10–12], is that the slope

of EE on the covariate is the same for each group being compared.

Accordingly, ANCOVA fits a single (‘‘pooled’’) slope estimate to

the data. In some instances, however, a statistical test of the equal

slopes assumption leads one to reject it, in which case separate

slopes can be fit to the groups using an extension of ANCOVA

[74] (for examples and more information see http://www.mmpc.

Figure 3. Influence of the organ-tissue scaling exponent ki on
an organ-tissue’s contribution to the positive y-intercept and
to REE in linear models. Panel A depicts the contribution to the y-
intercept by the i-th individual organ-tissue REE in terms of

ciM
ki

0 (1{ki), where M0 is the value of total body mass about which
the Taylor linearization is performed. The contribution to the y-intercept

is expressed as a multiplier of ci calculated as Mki

0 (1{ki). The individual
organ-tissue’s contribution to the y-intercept is maximized given a fixed
numerical value of ci when ki is ,0.70 for an animal with MT = 30 g, as
predicted by Eq. 12. Importantly, there is a substantial range of ki values
that more than double ci . Panel B depicts the hypothetical effect of
varying the ki value on both the y-intercept and slope of the
hypothetical liver REE – MT relationship assuming that the allometric

scaling coefficient ci remains fixed at 0.36
kcal

d(g)ki
(rescaled from 22.6

kcal

d(kg)0:6
, the value reported by [27] and depicted in Figure 2A). Note

that the sensitivity of the slope to variation in ki suggests that group
differences in the ki of the liver, a small organ with a big impact on
whole-body REE, could contribute to the problem of differing between-
group slopes of whole-body REE in phenotyping studies.
doi:10.1371/journal.pone.0103301.g003
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org/shared/regression.aspx). This complicates both the analysis

and its interpretation, but perhaps more importantly raises a

fundamental and poorly understood question: why does the EE vs.

body size relationship differ between groups? While it is easy to

speculate regarding a mechanism (e.g., in the leaner of two groups

being compared each unit increase of MT might be expected to

contribute a relatively greater increase of EE), this issue likely

represents a complex problem owing, for example, to potential EE

regulatory effects via adiposity-related negative feedback signaling

[7]. My analysis suggests a novel potential mechanism for unequal

slopes, and again it involves the liver. Specifically, group

differences in the allometric scaling of the liver can, hypothetically,

promote group differences in the slope of the whole body REE -

body size relationship (illustrated in Figure 3B). At MT = 30 g, a

0.05 unit change in k is predicted to change liver REE by more

than 15%, which translates to a ,9.5% increase in whole-body

REE if k is simply changed from 0.6 to 0.65, yet the y-intercept

remains almost unchanged in accordance with Figure 3A (calcu-

lations assume that the numerical value of c is held constant at

0.36, see Figure 3B). It should be noted that the ‘remainder’

compartment is also positioned to affect the slope of EE on MT

because it contains skeletal muscle and storage fat, and because

this compartment accounts for a substantial proportion of whole-

body REE (,27% in mice based on the parameter estimates

depicted in Figure 2E). Thus, one might expect that the

allometrick exponent for the remainder compartment would be

lower in obese compared to lean individuals, but this prediction

assumes that metabolic signals that are secreted in proportion to

fat mass (e.g., leptin) do not influence the intrinsic metabolic rate

of skeletal muscle or other constituents of the remainder (or other)

compartment(s) (a dubious assumption [75]). Note that while the

estimates presented herein regarding the importance of the liver to

whole-body REE rely on the individual organ-tissue REE

parameter estimates presented by Wang et al. in [27], similar

results are obtained when one uses the parameter estimates in

related work by Wang et al. [28]. In particular, the latter analysis

predicts that the liver and remainder compartments account for

,47% and 30%, respectively, of whole-body REE in mice.

EE normalization to metabolic body size
How best to adjust EE for body mass and composition in basic

animal research has been a topic of sharply renewed focus in

recent years [7,8,10,11,76]. The ability to easily estimate k using

Eq. 6 has a practical application for adjusting EE to control for

differences in body size. A classical method for EE normalization is

to divide EE by body mass raised to the appropriate allometric

scaling exponent [23,32,37,45,77] (inspection of Eq. 2 shows that
EE

Mk
T

equals a constant). Indeed, some sources term the exponent a

‘‘normalization constant’’ [78]. The quantity Mk
T is a measure of

‘metabolic body size’ [23,32], where this construct is defined as the

‘‘…body size which is chosen so that the metabolic rate per unit of
this body size is the same for large and small animals’’ [32] (p. 512).

In the mid-1950s, Dobeln argued that a better measure of

metabolic body size is the adipose tissue free component of body

mass (similar to FFM) raised to an exponent [51,79], but the

concept of normalizing EE to (FFM)k has been translated into

practice in just a few studies [46,47].

Importantly, in experimental work employing the metabolic

body size approach for EE normalization, the choice of the scaling

exponent was based on an assumed value [77,79,80], yet clearly

the exponent is not an immutable constant [26,38,81]. Therefore,

obtaining an empirical estimate of k for any given data set would

permit the formulation of more valid ratios for group comparisons.

Specifically, one could divide each animal’s EE by its M or FFM

raised to the k value computed in accordance with Eq. 6. This

method (or the classical method based on the regression of log (EE)

on log (M) [81]) will result in a normalized EE construct that is

largely or completely uncorrelated with body size. Nonetheless,

regression-based methods such as analysis of covariance will

remain the preferred option in analyses designed to infer EE

differences between groups [7,8,10–12,15,81].

Estimating allometric parameters from published linear
equations

Eqs. 6 and 7 permit one to readily estimate allometric equation

parameters from any of a vast number of published human and

animal studies that provide only linear fits of EE on MT orFFM,

and which involve a diverse variety of metabolic states that are

poorly represented or completely absent within the existing

allometric literature (e.g., 24 h EE; exercise; diabetes; overfeeding;

underfeeding; genetically altered mouse models). For example, a

classic paper by Ravussin et al. [64] involving particularly rigorous

measurements of EE in n = 177 humans of widely varying

adiposity (% body fat ranged from 3 to 50%) presents the

following linear equation: 24 h EE in
kcal

d
= 597+26.5 FFM,

r2 = 0.81. Using Eqs. 6 and 7 this translates to: 24 hEE~

105:6 FFM0:74. Accordingly, one obtains an indication that adult

human 24 h EE scales to FFM with an exponent that is similar to

the classic Kleiber value of 0.75 [23].

Estimating the parameters of a classical 2-parameter
allometric equation from a sum of allometric equations

In Eq. 9, existing methods for linking the c and k scaling

parameters of the right hand classical allometric equation to the

parameters of the five individual allometric functions on the left

hand side rely on complex estimation procedures such as Prony’s

sum of exponentials method [56]. The simplest practical approach

(and used by Wang and co-workers [27,28]) is to computationally

sum the allometric functions for REE on the left hand side over the

desired range of MT , and then fit a 2-parameter allometric

equation to the resulting REE sum. The present work reveals

another option: simply linearize each REE term, sum the y-

intercepts and slopes to obtain the aggregate linear equation (Eq.

10, Figure 2), and then use Eqs. 6 and 7 to identify the scaling

coefficient and scaling exponent of the 2-parameter allometric

equation. In the example depicted in Figure 2, this method yields

the allometric equation of REE~60:58M0:69
T with a residual sum

of squares of 0.0106. For comparison, the equation based on a

classical regression of natural log (REE sum) on natural log (MT ) is

REE~58:06M0:68
T and has a 2.4-fold larger residual sum of

squares of (0.0259), while the equation based on nonlinear

regression of the sum on MT gives REE~59:86M0:68
T with a

47% smaller residual sum of squares (0.0056) than the new

method. Although each of the three methods provides an excellent

fit to the curve, linearizing each term of a sum of power functions

provides a particularly simple solution to the problem of

translating the parameters of individual power functions to the

parameters of a single 2-parameter power function for Y in a

region of X that is of particular interest. It should be stressed that

the value of the allometric scaling exponent does depend on the

range of MT over which the analysis is undertaken, a point with a

provenance in a 1982 analysis by Heusner [35]. Indeed, when

analyzed over a range of MT that spans many orders of

magnitude, the individual organ-tissue allometric parameters
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[27] that were used above to arrive at allometric scaling exponents

of ,0.68 instead predict an exponent of ,0.75 in agreement with

‘‘Kleiber’s law’’, and this value was subsequently recapitulated in a

separate analysis [28]. This discussion also complements the

concepts that 1) intra-species REE and inter-species REE scale to

MT with different allometric scaling exponents [26] and 2) ‘‘that
no single relationship is appropriate for describing the relationship
between MR [metabolic rate] and M for all mammals, and that
relationships for more narrow taxonomic groups or body mass
ranges should be used when predicting MR from M’’ [38].

Future directions
Progress toward a richer mechanistic understanding of the

biobehavioral regulation of whole-body EE in health and disease

will benefit from developments in the realms of mathematical

modeling and basic biology. Because EE scales in accordance with

power equations, both at the whole-body and at the individual

organ-tissue level, EE modelers should give greater consideration

to the development of multi-tissue compartment allometric models

(for examples involving lean and fat mass [46,47]). Allometric EE

model development will, of course, entail study designs that

involve broad ranges of body mass and composition, as well as

relatively large sample sizes. In return, multi-organ allometric

models may confer novel mechanistic and practical insights, and

will possess the aesthetic and possibly practical advantages of

having true zero y-intercept values, a goal that will remain elusive

with multi-organ linear models if the analysis presented herein is

correct.

Advances in EE analysis will require a better understanding of

the within species scaling of individual organ mass-specific

metabolic rate (both at the levels of REE and average daily EE)

in relation to body mass and composition. Although a few

published studies on this topic suggest that adult within-human

mass-specific organ-tissue REE is relatively constant across body

size and adiposity [58–61], a great deal remains to be learned

about organ mass-specific metabolic rate in diverse states of

disease and neuroendocrine status. It seems particularly important

to stress that almost nothing is known about the scaling or

regulation of organ mass-specific metabolic rate in mice, which for

better or worse hold immense sway over the conduct and direction

of human biomedical research.

Supporting Information

Appendix S1 Proof of concept and R code used for
Monte Carlo simulations.

(DOC)

Acknowledgments

I am grateful to Drs. Robert Odom, Katherine Rafferty, Robert Podolsky,

Charles Spiekerman, Stephan Guyenet, Michael W. Schwartz and Stephen

C. Woods for their suggestions on earlier drafts of this manuscript.

Author Contributions

Conceived and designed the experiments: KJK. Performed the experi-

ments: KJK. Analyzed the data: KJK. Contributed reagents/materials/

analysis tools: KJK. Contributed to the writing of the manuscript: KJK.

References

1. Kaiyala KJ, Morton GJ, Thaler JP, Meek TH, Tylee T, et al. (2012) Acutely

decreased thermoregulatory energy expenditure or decreased activity energy

expenditure both acutely reduce food intake in mice. PLoS ONE 7: e41473.

2. Choi SJ, Yablonka-Reuveni Z, Kaiyala KJ, Ogimoto K, Schwartz MW, et al.

(2011) Increased energy expenditure and leptin sensitivity account for low fat

mass in myostatin-deficient mice. Am J Physiol Endocrinol Metab 300: E1031–

1037.

3. Levine JA, Eberhardt NL, Jensen MD (1999) Role of nonexercise activity

thermogenesis in resistance to fat gain in humans. Science 283: 212–214.

4. Novak CM, Zhang M, Levine JA (2006) Neuromedin U in the paraventricular

and arcuate hypothalamic nuclei increases non-exercise activity thermogenesis.

J Neuroendocrinol 18: 594–601.

5. Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance.

Cell 104: 531–543.

6. Wu J, Cohen P, Spiegelman BM (2013) Adaptive thermogenesis in adipocytes: is

beige the new brown? Genes Dev 27: 234–250.

7. Kaiyala KJ, Morton GJ, Leroux BG, Ogimoto K, Wisse B, et al. (2010)

Identification of body fat mass as a major determinant of metabolic rate in mice.

Diabetes 59: 1657–1666.

8. Kaiyala KJ, Schwartz MW (2011) Toward a more complete (and less

controversial) understanding of energy expenditure and its role in obesity

pathogenesis. Diabetes 60: 17–23.

9. Heymsfield SB, Thomas D, Bosy-Westphal A, Shen W, Peterson CM, et al.

(2012) Evolving concepts on adjusting human resting energy expenditure

measurements for body size. Obes Rev 13: 1001–1014.

10. Speakman JR, Fletcher Q, Vaanholt L (2013) The ‘39 steps’: an algorithm for

performing statistical analysis of data on energy intake and expenditure. Dis

Model Mech 6: 293–301.

11. Tschop MH, Speakman JR, Arch JR, Auwerx J, Bruning JC, et al. (2012) A

guide to analysis of mouse energy metabolism. Nat Methods 9: 57–63.

12. Arch JR, Hislop D, Wang SJ, Speakman JR (2006) Some mathematical and

technical issues in the measurement and interpretation of open-circuit indirect

calorimetry in small animals. Int J Obes (Lond) 30: 1322–1331.

13. Tanner JM (1949) Fallacy of per-weight and per-surface area standards, and

their relation to spurious correlation. J Appl Physiol 2: 1–15.

14. Kronmal RA (1992) Spurious correlation and the fallacy of the ratio standard

revisited. J Roy Stat Soc A 156 (part 3): 379–392.

15. Allison DB, Paultre F, Goran MI, Poehlman ET, Heymsfield SB (1995)

Statistical considerations regarding the use of ratios to adjust data. Int J Obes

Relat Metab Disord 19: 644–652.

16. Poehlman ET, Toth MJ (1995) Mathematical ratios lead to spurious conclusions

regarding age- and sex-related differences in resting metabolic rate. Am J Clin

Nutr 61: 482–485.

17. Katch V (1972) Correlational vs. ratio adjustments of body weight in exercise-

oxygen studies. Ergonomics 15: 671–680.

18. Katch VL (1973) Use of the oxygen-body weight ratio in correlational analyses:

spurious correlations and statistical considerations. Med Sci Sports 5: 253–257.

19. Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, et al. (1998)

Organ-tissue mass measurement allows modeling of REE and metabolically

active tissue mass. Am J Physiol 275: E249–258.

20. Bosy-Westphal A, Braun W, Schautz B, Muller MJ (2013) Issues in

characterizing resting energy expenditure in obesity and after weight loss. Front

Physiol 4: 47.

21. Bosy-Westphal A, Schautz B, Lagerpusch M, Pourhassan M, Braun W, et al.

(2013) Effect of weight loss and regain on adipose tissue distribution, composition

of lean mass and resting energy expenditure in young overweight and obese

adults. Int J Obes (Lond) 37: 1371–1377.

22. Rubner M (1883) Uber den einfluss der korpergrosse auf stoff- un kraftwechsel.

Z Fur Biol 19: 535–562.

23. Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27: 511–541.

24. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of

allometric scaling laws in biology. Science 276: 122–126.

25. White CR, Seymour RS (2005) Allometric scaling of mammalian metabolism.

J Exp Biol 208: 1611–1619.

26. Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra- and

interspecific scaling of metabolic rate in animals. Biol Rev Camb Philos Soc 80:

611–662.

27. Wang Z, O’Connor TP, Heshka S, Heymsfield SB (2001) The reconstruction of

Kleiber’s law at the organ-tissue level. J Nutr 131: 2967–2970.

28. Wang Z, Zhang J, Ying Z, Heymsfield SB (2012) Organ-Tissue Level Model of

Resting Energy Expenditure Across Mammals: New Insights into Kleiber’s Law.

ISRN Zoology 2012: 1–9.

29. Kaiyala KJ (2014) What Does Indirect Calorimetry Really Tell Us? Molectular

Metabolism.

30. Tanner JM (1952) The assessment of growth and development in children. Arch

Dis Child 27: 10–33.

31. Hayes JP, Shonkwiler JS (2006) Allometry, antilog transformations, and the

perils of prediction on the original scale. Physiol Biochem Zool 79: 665–674.

32. Kleiber M (1975) The fire of life-an introduction to animal energetics. Robert E.

Krieger Publishing Co., Inc., NY, NY.

Energy Expenditure Model

PLOS ONE | www.plosone.org 9 July 2014 | Volume 9 | Issue 7 | e103301



33. White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional

to body mass2/3. Proc Natl Acad Sci U S A 100: 4046–4049.
34. White CR, Blackburn TM, Seymour RS (2009) Phylogenetically informed

analysis of the allometry of Mammalian Basal metabolic rate supports neither

geometric nor quarter-power scaling. Evolution 63: 2658–2667.
35. Heusner AA (1982) Energy metabolism and body size. I. Is the 0.75 mass

exponent of Kleiber’s equation a statistical artifact? Respir Physiol 48: 1–12.
36. Nagy KA (2005) Field metabolic rate and body size. J Exp Biol 208: 1621–1625.

37. Heusner AA (1985) Body size and energy metabolism. Annu Rev Nutr 5: 267–

293.
38. White CR (2011) Allometric estimation of metabolic rates in animals. Comp

Biochem Physiol A Mol Integr Physiol 158: 346–357.
39. White CR, Seymour RS (2004) Does basal metabolic rate contain a useful

signal? Mammalian BMR allometry and correlations with a selection of
physiological, ecological, and life-history variables. Physiol Biochem Zool 77:

929–941.

40. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size
and temperature on metabolic rate. Science 293: 2248–2251.

41. Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric
cascade as a unifying principle of body mass effects on metabolism. Nature 417:

166–170.

42. Hochachka PW, Darveau CA, Andrews RD, Suarez RK (2003) Allometric
cascade: a model for resolving body mass effects on metabolism. Comp Biochem

Physiol A Mol Integr Physiol 134: 675–691.
43. Clarke A, Rothery P, Isaac NJ (2010) Scaling of basal metabolic rate with body

mass and temperature in mammals. J Anim Ecol 79: 610–619.
44. Sieg AE, O’Connor MP, McNair JN, Grant BW, Agosta SJ, et al. (2009)

Mammalian metabolic allometry: do intraspecific variation, phylogeny, and

regression models matter? Am Nat 174: 720–733.
45. Heusner AA (1991) Body mass, maintenance and basal metabolism in dogs.

J Nutr 121: S8–17.
46. Butte NF, Puyau MR, Vohra FA, Adolph AL, Mehta NR, et al. (2007) Body

size, body composition, and metabolic profile explain higher energy expenditure

in overweight children. J Nutr 137: 2660–2667.
47. Zakeri I, Puyau MR, Adolph AL, Vohra FA, Butte NF (2006) Normalization of

energy expenditure data for differences in body mass or composition in children
and adolescents. J Nutr 136: 1371–1376.

48. Heil DP (1997) Body mass scaling of peak oxygen uptake in 20- to 79-yr-old
adults. Med Sci Sports Exerc 29: 1602–1608.

49. Weibel ER, Hoppeler H (2005) Exercise-induced maximal metabolic rate scales

with muscle aerobic capacity. J Exp Biol 208: 1635–1644.
50. Bishop CM (1999) The maximum oxygen consumption and aerobic scope of

birds and mammals: getting to the heart of the matter. Proc Biol Sci 266: 2275–
2281.

51. Dobeln WV (1957) Maximal oxygen intake, body size and total hemoglobin in

normal man. Acta Physiol Scand 38: 193–199.
52. Wang Z, Heshka S, Gallagher D, Boozer CN, Kotler DP, et al. (2000) Resting

energy expenditure-fat-free mass relationship: new insights provided by body
composition modeling. Am J Physiol Endocrinol Metab 279: E539–545.

53. Nise NS (2004) Control Systems Engineering. John Wiley & Sons, Inc.
54. Holliday MA, Potter D, Jarrah A, Bearg S (1967) The relation of metabolic rate

to body weight and organ size. Pediatr Res 1: 185–195.

55. Muller MJ, Langemann D, Gehrke I, Later W, Heller M, et al. (2011) Effect of
constitution on mass of individual organs and their association with metabolic

rate in humans–a detailed view on allometric scaling. PLoS ONE 6: e22732.
56. Fuite J, Marsh RE, Tuszynski JA (2006) An application of Prony’s sum of

exponentials method to pharmacokinetic data analysis. Communications in

Computational Physics 2: 87–98.
57. Javed F, He Q, Davidson LE, Thornton JC, Albu J, et al. (2010) Brain and high

metabolic rate organ mass: contributions to resting energy expenditure beyond
fat-free mass. Am J Clin Nutr 91: 907–912.

58. Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, et al. (2010) Specific

metabolic rates of major organs and tissues across adulthood: evaluation by
mechanistic model of resting energy expenditure. Am J Clin Nutr 92: 1369–

1377.

59. Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Heller M, et al. (2011) Evaluation

of specific metabolic rates of major organs and tissues: comparison between men
and women. Am J Hum Biol 23: 333–338.

60. Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Heller M, et al. (2012) Evaluation

of specific metabolic rates of major organs and tissues: comparison between
nonobese and obese women. Obesity (Silver Spring) 20: 95–100.

61. Later W, Bosy-Westphal A, Hitze B, Kossel E, Gluer CC, et al. (2008) No
evidence of mass dependency of specific organ metabolic rate in healthy

humans. Am J Clin Nutr 88: 1004–1009.

62. Hsu A, Heshka S, Janumala I, Song MY, Horlick M, et al. (2003) Larger mass of
high-metabolic-rate organs does not explain higher resting energy expenditure in

children. Am J Clin Nutr 77: 1506–1511.
63. Gallagher D, Allen A, Wang Z, Heymsfield SB, Krasnow N (2000) Smaller

organ tissue mass in the elderly fails to explain lower resting metabolic rate.
Ann N Y Acad Sci 904: 449–455.

64. Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C (1986)

Determinants of 24-hour energy expenditure in man. Methods and results
using a respiratory chamber. J Clin Invest 78: 1568–1578.

65. Weinsier RL, Schutz Y, Bracco D (1992) Reexamination of the relationship of
resting metabolic rate to fat-free mass and to the metabolically active

components of fat-free mass in humans. Am J Clin Nutr 55: 790–794.

66. Nelson KM, Weinsier RL, Long CL, Schutz Y (1992) Prediction of resting
energy expenditure from fat-free mass and fat mass. Am J Clin Nutr 56: 848–

856.
67. Bitz C, Toubro S, Larsen TM, Harder H, Rennie KL, et al. (2004) Increased 24-

h energy expenditure in type 2 diabetes. Diabetes Care 27: 2416–2421.
68. Makimattila S, Nikkila K, Yki-Jarvinen H (1999) Causes of weight gain during

insulin therapy with and without metformin in patients with Type II diabetes

mellitus. Diabetologia 42: 406–412.
69. Bogardus C, Taskinen MR, Zawadzki J, Lillioja S, Mott D, et al. (1986)

Increased resting metabolic rates in obese subjects with non-insulin-dependent
diabetes mellitus and the effect of sulfonylurea therapy. Diabetes 35: 1–5.

70. Fontvieille AM, Lillioja S, Ferraro RT, Schulz LO, Rising R, et al. (1992)

Twenty-four-hour energy expenditure in Pima Indians with type 2 (non-insulin-
dependent) diabetes mellitus. Diabetologia 35: 753–759.

71. Weyer C, Bogardus C, Pratley RE (1999) Metabolic factors contributing to
increased resting metabolic rate and decreased insulin-induced thermogenesis

during the development of type 2 diabetes. Diabetes 48: 1607–1614.
72. Franssila-Kallunki A, Groop L (1992) Factors associated with basal metabolic

rate in patients with type 2 (non-insulin-dependent) diabetes mellitus.

Diabetologia 35: 962–966.
73. Selman C, Lumsden S, Bunger L, Hill WG, Speakman JR (2001) Resting

metabolic rate and morphology in mice (Mus musculus) selected for high and
low food intake. J Exp Biol 204: 777–784.

74. White CR (2003) Allometric analysis beyond heterogeneous regression slopes:

use of the Johnson-Neyman technique in comparative biology. Physiol Biochem
Zool 76: 135–140.

75. Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, et al.
(2005) Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine

adaptations to maintenance of reduced weight. J Clin Invest 115: 3579–3586.
76. Butler AA, Kozak LP (2010) A recurring problem with the analysis of energy

expenditure in genetic models expressing lean and obese phenotypes. Diabetes

59: 323–329.
77. Keesey RE, Corbett SW (1990) Adjustments in daily energy expenditure to

caloric restriction and weight loss by adult obese and lean Zucker rats.
Int J Obes 14: 1079–1084.

78. Kaitaniemi P (2008) How to Derive Biological Information from the Value of

the Normalization Constant in Allometric Equations. PLoS ONE 3: e1932.
79. Dobeln W (1956) Human standard and maximal metabolic rate in relation to

fat-free body mass. Acta Physiol Scand (Suppl. 126): 1–79.
80. Breslow MJ, Min-Lee K, Brown DR, Chacko VP, Palmer D, et al. (1999) Effect

of leptin deficiency on metabolic rate in ob/ob mice. Am J Physiol 276: E443–

449.
81. Lighton JRB (2008) Measuring Metabolic Rates: A Manual for Scientists. New

York, NY, Oxford Univ. Press.

Energy Expenditure Model

PLOS ONE | www.plosone.org 10 July 2014 | Volume 9 | Issue 7 | e103301


