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Abstract

In a variety of open source software projects, we document a superlinear growth of production intensity (R*cb) as a
function of the number of active developers c, with a median value of the exponent b^4=3, with large dispersions of b
from slightly less than 1 up to 3. For a typical project in this class, doubling of the group size multiplies typically the output
by a factor 2b~2:5, explaining the title. This superlinear law is found to hold for group sizes ranging from 5 to a few
hundred developers. We propose two classes of mechanisms, interaction-based and large deviation, along with a cascade
model of productive activity, which unifies them. In this common framework, superlinear productivity requires that the
involved social groups function at or close to criticality, or in a ‘‘superradiance’’ mode, in the sense of the appearance of a
cooperative process and order involving a collective mode of developers defined by the build up of correlation between the
contributions of developers. In addition, we report the first empirical test of the renormalization of the exponent of the
distribution of the sizes of first generation events into the renormalized exponent of the distribution of clusters resulting
from the cascade of triggering over all generation in a critical branching process in the non-meanfield regime. Finally, we
document a size effect in the strength and variability of the superlinear effect, with smaller groups exhibiting widely
distributed superlinear exponents, some of them characterizing highly productive teams. In contrast, large groups tend to
have a smaller superlinearity and less variability.
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Introduction

Since at least Aristotle, the adage in the title has permeated

human thinking, with prominent influence in psychology (Gestalt

theory [1]), biology (brain functions [2], ecological networks [3]),

physics (spontaneous symmetry breaking [4] and the ‘‘more is

different’’ concept [5]), economics [6,7] among a wealth of other

examples. Prominent among other developments are the fields of

complexity science, synergetics and complex adaptive system

theory, which strive to understand natural and social systems in

terms of a systemic or holistic approach, where the above adage is

translated into the scientific concept of emergence that results from

repetitive interactions between simple constituting elements in

extended out-of-equilibrium adaptive systems. Dealing with

groups such as firms and production units, management science

also strives to understand when and how a group can be more

than the sum of individuals, and to design ways to improve team

performance [8–11], through the mechanism of complementarity

in organization [12,13] and innovations [14]. Because most

activities in our modern environment require coordination and

collaborative actions within groups of widely varying sizes, it is the

fundamental aspiration of any manager, be it in the public or

private sector, to find the gears that could enhance productivity.

Notwithstanding their importance in human culture and

civilization since ancient times, we still have a limited understand-

ing of the mechanisms at the origin of group productivity.

Moreover, we do not really understand the conditions under

which the whole is more than the sum of its parts, and how to

quantify its productivity with respect to its different constituents.

The bottlenecks hindering progress include the difficulties for

quantifying productivity as well as the obstacles of controlled

experiments that allow for clean conclusions. Indeed, most human

groups and systems are entangled in their functioning and

objectives, and are rarely amenable to systematic and continuous

observations suitable for rigorous scientific analyses.

To address these problems, we use a source of data in which

group cooperation is ubiquitous and can be quantified in great

details, namely the dynamics of production intensity during the

development of open source software (OSS) projects. Because OSS

development is essentially collective, iterative, and cumulative, and

the overhead costs for interactions is small thanks to the cheap

electronic support mediating exchanges between developers, the
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study of potential increases of productivity by interaction and

cooperation between several contributing developers is particularly

well suited.

The next section presents the main empirical evidence of the

superlinear production intensity law found for open source

software projects. We then present two classes of mechanisms at

the origin of superlinear production intensity, which are unified in

the cascade model of productive activity. Empirical data tests are

found to support the model. We then compare and attempt to

reconcile present findings for OSS and the superlinear law

previously reported for cities. A discussion section develops the

broader implications of our results, and the conclusion section

summarises our main results.

Quantification of productivity in open source
software projects

We have analyzed the production for 164 open source software

projects of size ranging from 5 to 1678 contributors. Figure 1

shows the complementary cumulative distribution of project sizes

in our sample quantified by the number of developers involved in

each project [all source data (Archive S1) and relevant statistics

(Table S1), detailed per project, are available in Supporting

Information]. The distribution is an approximate power law

Pw(S) : ~Pr(sizewS)*1=Sa with exponent a&1:4, which

reflects a large heterogeneity of project sizes with few projects

attracting many developers and a multitude of projects with just a

few developers. The simplest generic mechanism for such power

law distribution of human group sizes is proportional growth

coupled with birth and death [15,16] as verified empirically in

OSS package reuse [17], in group [18] and in product [19]

dynamics.

A first idea would be to quantify the total production (for

instance proxied by the number of lines of code, commits or the

number of packages) of each software and search for a relationship

with the total number of involved developers over the whole

project. This is misleading because the total output results from a

complex interplay between a time varying numbers of involved

developers and the intermittent duration and intensity of their

contributions. In the extreme limit, a single developer working

over a lifetime may produce as much as tens or even hundreds of

developers over a few months. The large variability of developer

numbers and contributions as a function of time for each project is

illustrated by Figure 2, which shows the intermittent dynamics of

active contributors as well as their productive activity as a function

of time (in logarithmic scales).

To capture more faithfully the actions of contributions via

cooperation, we propose to focus on short-term production and

group sizes. For each project, we partition its lifetime in time

windows of a fixed size that we shift over the whole project

duration. We then quantify the production in each window and

study its relation to the number of active developers during that

same time window. As proxies for the production of developers, we

could use either use lines of codes (LOCs) or commits. LOCs are

straightforward metrics but suffer from the criticism that real

production and quality is not in general proportional to the

number of code lines. Indeed, excellent contributions are in

general characterized by efficient and elegant coding associated

with conciseness. Among software developers, it is well recognized

that the number of LOCs contributed is not a predictor of quality.

However, in open collaboration, each innovation step can be seen

as a commit uploaded and compounded on an online repository,

which keeps track of all changes over time. Each commit reflects

the contributor’s commitment to expose to the community her

proposed solution to an open problem. Commits are the

elementary units that get peer-reviewed, tested and eventually

integrated in the project knowledge base. Thus, they are a direct

measure of the iterative productive process at work in peer-

production. All commit activities are parsimoniously indexed and

timestamped on the project repository.

Notwithstanding these arguments in favor of using commits as

metrics of production, it is useful to test for a possible relation

between LOCs and Commits. Figure 3 documents a robust

scaling relationship LOCs*(Commits)d, with exponents d&> 1 for

most of the projects. These findings shown in Figure 3 bolster our

confidence in the robustness of the findings reported below, which

should not be sensitive to the specific choice of the metric for

production.

Figure 4 demonstrates the typical superlinear relationship

R*cb ð1Þ

where the production R is defined as the total number of commits

measured per 5-day time windows for the Apache Web Server

(http://httpd.apache.org/) and c is the number of active

contributors in the same 5-day time windows. Contrary to the

naive expectation that the production R should be proportional to

the number c of developers, Figure 4 documents a superlinear

relationship with exponent b&1:5+0:1, therefore significantly

larger than the value 1 describing a simple proportionality R!c.

Over all OSS projects studied, the estimated statistical average is

b̂b&4=3. Since 24=3~2:5, this explains the title of this paper. For

many projects, b is larger than 4=3, such as the Apache Web

Server project shown in figure 4, for which 21:5~2:8. These

results are robust with respect to the length of the time windows

(from 1 day to 10 days).

Mechanisms for superlinear production

We consider two classes of mechanisms for superlinear

production.

Interaction-based mechanism for superlinear production
There is a variety of channels by which contributors commit

more solutions to problems when the community is more active.

The peer-review process is more likely to occur when more

contributors are active, there are incentives to share early with the

community to avoid redundant work and some problems require

collective intelligence to increase their chance to be solved [20],

because they require tight coordination among different technical

parts of the code [21]. A priori, the number of active developers is

an extensive variable, that is, it is additive for independent non-

interacting systems. When interactions between developers occur,

the observed increasing return of productive activity implies that

the change dR=dc of productivity upon the addition of a developer

due to the existence of interactions is not a constant but grows itself

with the number of active contributors (as *cb{1 with bw1).

There is thus a remarkable increase of productive activity, not only

as the sum of increased individual commits, but also as a result of

interactions among active contributors.

Interactions leading to a phase transition
In standard models of interaction, linearity between the

observable and external driving field as well as number of

elements in the system is the rule (b~1), except at or close to a

critical phase transition point. As an illustration, consider the

1+1 = 2.5: Superlinear Productivity in Collective Group Actions
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average magnetisation m(T) per spin at a function of the

temperature T in a system undergoing a paramagnetic-ferromag-

netic phase transition at the critical temperature Tc. The standard

relation m(T)~x(T)H relates linearly the average magnetisation

m to the external intensive magnetic field H via the susceptibility

x. Introducing the spatial spin-spin correlation length j of the

system, it is known that the susceptibility diverges as a power of the

correlation length as T?Tc

x*jc=n, ð2Þ

where c and n are two critical exponents related by the

hyperscaling relation c=n~2{g~d(d{1)=(dz1), where d is

the space dimension. Exactly at T~Tc, the linear relationship

between m and H given by (2) is replaced by the nonlinear relation

m*H1=d, ð3Þ

defining the exponent dw1. This means that the collective

behaviour of the spin at criticality induces a nonlinear response of

the magnetisation m for very small external magnetic fields H

(indeed, H1=d&H for H?0 and dw1). The values of the

exponents are c~1, n~1=2, g~0, d~3 in the mean-field regime,

which holds at the upper critical dimension d~4. The relationship

(3) looks superficially similar to (1) when compared with the

standard linear relation m(T)~x(T)H, but here the magnetic

Figure 1. Distribution of project sizes in our sample quantified by their total number of developers. The distribution follows
approximately a power law with exponent a&1:4, with an apparent deviation in the tail possibly resulting from an over-sampling bias of large
projects. The bend down for small projects is likely the result of an under-sampling bias.
doi:10.1371/journal.pone.0103023.g001
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field is an intensive quantity while relation (1) describes the

production intensity as a function of the number of group

members, which is an extensive quantity. Actually, a relation

similar to (1) can be derived by introducing the finiteness of the

spin system and using the theory of finite-size scaling [22]. For a

system of finite linear size L and thus finite volume V~Ld , the

theory of finite-size critical phenomena implied that relation (2) is

replaced by

x*Lc=n*V c=dn, ð4Þ

obtained simply by replacing j by L. In words, the unique relevant

length, which is the correlation length j for an infinite system at

criticality, becomes the system size. With m~xH, this yields

m*V c=dnH. Since m : ~M=V is the magnetisation per spin, we

obtain that the total magnetisation M of the system with a total

number V of spins is given by

M*V1zc=dn, ð5Þ

that it, becomes superlinear at or close to criticality, similarly to

expression (1). This type of superlinear relationship (5) holds more

generally in various models of interacting elements at or close to

criticality [23–26]. The meaning of criticality is that, on average,

one action triggers on average one follow-up action, ensuring that

the dynamics remains delicately poised between growth and

decay, or between order and disorder. Therefore, an explanation

of superlinear productivity by the interaction-based mechanism

requires elucidating under which circumstances open source

projects operate close to or at criticality. The study of dynamics

of book sales [27,28] and YouTube videos views [29] has shown

evidence of these critical triggering effects in large social networks.

Open source projects and their online communication platforms

coupled with the code repository serve a similar social network role

yet at much smaller scales [30,31]. Since these above analyses as

Figure 2. Typical time series of open source software development (e.g. Apache Web Server) with active contributors (green area)
and their productive activity (red area). For clarity, the time series are represented in logarithmic scale and they have been smoothed with a
rolling window of 45 days. Over the whole project history, various epochs of productive activity can be found. The background grey areas indicate
three levels of the productivity exponent b defined by equation (1) (light grey for bv1, grey for 1ƒbv2 and dark grey for b§2) for time windows of
250 days. Blank areas show time windows for which b could not be fitted, mainly because the numbers of active contributors (resp. commits) were
strongly varying over these periods. In other words, it is possible that super linear production was occurring in these periods but we could not
determined it.
doi:10.1371/journal.pone.0103023.g002
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well as those presented here benefit from the survival bias, in other

words the analyses are performed on top performers among a

much larger database, the existence of criticality in these system

can be interpreted as the signature of a degree of success

quantified by significant activity. Specifically, considering a large

universe of projects, those that are of interest in the sense of

exhibiting significant dynamics in volume and quality are those for

which the conditions are met to be close to criticality.

Interactions leading to superradiance-like phenomena
The superlinear dependence of the production intensity as a

function of the number of group members has a rather direct

analog with the phenomenon of superradiance [32,33], a coherent

effect in many-body systems of N excited emitters that interact

with a common light field. In the limit when the wavelength of the

light is much greater than the separation of the emitters, then the

emitters interact with the light in a collective and coherent fashion.

Rather than radiating independently with a total intensity

proportional to N as would be expected for independent emitters,

Figure 3. Scaling relation LOCs*(Commits)d between commits and lines of code. For the Apache Web Server project, the scaling exponent
is d~1:2+0:2 (pv0:01, R2~0:87). For the vast majority of projects, the relation between lines of code and commits exhibits the same scaling with
d &
> 1, suggesting that we can use either commits or lines of codes, as both provide a consistent and therefore robust measure of contribution (and in

addition that commits may themselves result from cascades of code production.
doi:10.1371/journal.pone.0103023.g003
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in the most favorable case of perfect coherence, the total radiation

scales as N2, similarly to the mean-field prediction b~2 obtained

from expression (13) when the exponent c of the tail distribution of

first generation contributions per developers is larger than or equal

to 2. For more realistic experimental situations, the exponent is

smaller than 2, for instance equal to 4=3 when the initial light

fluctuating field is small [34], or equal to 5=3 for N two-level

atoms placed within isotropic photonic band-gap material (but can

reach the value 3 for anisotropic 3D band gaps) [35]. In physics,

the superradiance effect results from the existence of correlations

and interactions between emitters, similarly to the interactions

between group members of OSS projects. The interactions and

resulting correlations between emitters are mediated by the

radiated light, similarly to the correlations between developers

via the production of commits. The superradiant emission is a

cooperative process involving a collective mode of all the atoms of

the sample. In this collective mode, an ‘‘order’’ appears in the

system which can be defined by the build up of correlation

Figure 4. Typical superlinear relation in double logarithmic scale of the productive contribution R as a function of active
contributors c per 5-day time windows for Apache Web Server (http://httpd.apache.org/ ). The scaling exponent b&1:5 (pv0:001 and
R2~0:99) is shown as the slope of a straight line in double logarithmic scale. The error bars show the 25th and 75th percentiles of contributors log-
bins.
doi:10.1371/journal.pone.0103023.g004
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between the dipoles belonging to different atoms. This correlation

is quite reminiscent of the spin-spin correlation appearing for

example in a ferromagnetic sample [33]. There is in fact a hidden

phase transition in which the role of the diverging correlation

length is played by the light wavelength, which has to be much

larger than the inter-emitter distances.

Moreover, the smaller value of the exponent b for large groups

and for cities, as documented below, has a straightforward

interpretation in the superradiance analogy. Indeed, the maximal

number of correlated emitters is limited by the correlation, or

coherence volume. When the number of emitters exceeds the

maximal number of those that effectively interact, the superlinear

exponent decreases. This is due to the fact that, for larger numbers

of emitters, the system separates into clusters or subgroups that

radiate practically independently. In physics, this effect is termed

filamentation. The same effect is argued to happen for the studied

case of production intensity, as is discussed in the section below

entitled ‘‘Reconciling present findings and superlinear production

in large cities’’.

Large deviation mechanism for superlinear
production

The second class of mechanisms builds on the evidence of large

deviations in the statistics of the production activity R over the

whole population of contributors and over the whole life of the

project. Figure 5 shows the complementary cumulative distribu-

tion Ptot
w

(r) : ~Pr(Rwr) of all contributions per developer over a

long period for the Apache Web Server project. One can observe

an approximate power law tail dependence

Ptot
w

(r)*1=rm, ð6Þ

with m&0:92. Within the epidemic framework presented in the

next section, Ptot
w

(r) will be shown to be equivalent to the statistics

of the cluster sizes of contributions following critical cascades [36]

(see expression (12)), i.e., when the dynamics of triggering of

activity is close to or at the critical point of a branching process.

This result, showed for the Apache Web Server project, is

representative of the distributions found in other collaborative

projects.

In the presence of such a power law statistics of contributions

characterized by an exponent mv1, we show below that the sum

of contributions over all developers is controlled by extreme

contributors. The contributions made by these exceptional

members of the group are also responsible for the observed

superlinear behavior given by (1). This mechanism is reminiscent

of the improved group performance that results from the presence

of one or few surperforming individuals [37]. In this case, the

largest contributor provides a finite fraction of the whole

production over a given time period. This largest contributor

(i.e. the ‘‘large deviation’’) has a superlinear contribution in the

group size [38,39]. In this situation, the increasing productive

activity results from a large heterogeneity of activity per individual.

And the more contributors c during a production period, the more

likely it is to find an extremely large contribution.

Specifically, starting from expression (6) for the complementary

cumulative distribution Ptot
w

(r), we denote p(r)*1=r1zm the

corresponding probability density function obtained as the

derivative of Ptot
w

(r). Let us call fR1,R2,:::,Rc{1,Rcg, the total

number of commits contributed respectively by the developers

1,2,:::,c{1,c. Let us call Rmax(c), the largest among the set

fR1,R2,:::,Rc{1,Rcg. A good estimate of Rmax(c) is obtained by

the condition that the probability
Ðz?

Rmax(c)
p(r)dr to find a

developer with a total contribution equal to or larger than

Rmax(c) times the number c of active developers is equal to 1, i.e.,

by the definition of Rmax(c), there should be typically only one

developer with such a number of commits. This yields

Rmax(c)*c1=m: ð7Þ

An estimate of the typical total number of commits

R1zR2z:::zRc contributed by the c developers can then be

obtained as [38,39]

R1zR2z ::: zRc&c

ðRmax(c)

0

rp(r)dr*c1=m, for mv1: ð8Þ

We stress that the scaling *c1=m only holds for mv1 and is

replaced by *c, i.e., linearity, for mw1. The upper bound in the

integral in (8) reflects that the random variables

fR1,R2, :::,Rc{1,Rcg are not larger than Rmax(c) by definition

of the later. According to equation (8), the typical total production

(number of commits) by c developers is proportional to c1=m, when

their contributions are wildly distributed with a power law

distribution with exponent mv1. According to this large deviation

mechanism, the superlinear exponent b is equal to 1=m.

prediction of the large deviation mechanism :

b~1=m, for mv1:
ð9Þ

Within this large deviation mechanism, explaining the super-

linear productive activity (bw1) reduces to explaining the heavy-

tailed distribution of commits R per contributor over a large

period of time, i.e., amounts to derive the power law distribution

(6) with mv1. For this, the next section proposes a generic model.

Cascading model of productive activity

Both the interaction-based and the large deviations mechanisms

can be captured together by a generic cascade process, which is

well described by the excited Hawkes conditional Poisson process

[40]. The Hawkes process typically models well a variety of social

dynamics involving complex human interactions such as online

viral meme propagation [29], gangs and crime in large American

cities [41], cyber crime [42] and financial contagion [43–45]. The

Hawkes process is defined by the intensity I(t) of events (commits)

given by

I(t)~l(t)z
X

iDttvt

fiw(t{ti), ð10Þ

where fti,i~1,2, :::g are the timestamps of past commits, l(t) is

the spontaneous exogenous rate of commits, fi is the fertility of

commit i that quantifies the number of commits (of first

generation) that it can potentially trigger directly, and w(t{ti) is

the memory kernel, whose integral is normalized to 1, which

weights how much past commit activities influence future ones.

The function w typically reflects how tasks are prioritized and

performed by individuals according to a rational economy where

time is a non storable resource [46]. Expression (10) expresses that

the number of commits contributed between time t and tzdt

1+1 = 2.5: Superlinear Productivity in Collective Group Actions
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results from two sources: (i) an exogenous source l(t)dt
representing the spontaneous commits not related to previous

commits; (ii) an endogenous term represented by the sum over all

commits that were made prior to t, and which are susceptible to

trigger future commits. An obvious triggering mechanism is

debugging: a past commit may attract the attention of a developer

who fixes a bug and thus improves the code. Another triggering

mechanism by which a previous commit may trigger a future

commit is when the former enables new functionalities and

relationships that open novel options for the developers. The

Hawkes model is the simplest conditional Poisson process that

combines both exogeneity and endogeneity.

The class of Hawkes models can be mapped onto the general

class of branching processes [47]. The statistical average fertility

SfiT defines the branching ratio n, which is the key parameter. For

nv1, n~1 and nw1, the process is respectively sub-critical,

critical and super-critical [48,49]. In the sub-critical regime (nv1),

the average activity tends to die out exponentially fast and the

Figure 5. Typical distributions of 1st generation daughter events and total number of commits per developer for the Apache Web
Server project: (blue squares) Complementary cumulative distribution P1st

w
(r) of contributions (number of commits) per developer

and per 5-day time bins (1st generation daughters events in the language of the epidemic branching process described in the text)
with exponent c&1:28. (red circles) Complementary cumulative distribution Ptot

w
(r) of all contributions per developer over a long period of time.

Ptot is equivalent to measuring the cluster sizes of contributions following critical cascades (7). All distributions have been fitted using the maximum
likelihood estimator (MLE). The distribution of cascade size is characterized by the exponent &0:92v1 compared to the first generation daughter
events distribution with exponent c&1:28. The results showed here for Apache are representative of the distributions found in other collaborative
projects.
doi:10.1371/journal.pone.0103023.g005
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exogenous source term l(t) controls the overall dynamics. At

criticality (n~1), on average one commit is triggered in direct

lineage by a previous commit, corresponding to a marginal

sustainability of the process with infinitesimal exogenous inputs.

The super-critical regime (nw1) is characterised by an explosive

activity that can occur with finite probability. The results derived

below are thus fundamentally associated with the existence of a

critical phase transition determined by the control variable n. The

nature of the critical phase transition for this Hawkes model with

distribution of fertilities has been described in Refs. [36,50,51].

Interpreting a cluster or connected cascade in a given branching

process of triggered contributions as the burst of production in a

group of developers, the distribution of contributions is thus

mapped onto that of triggered cluster sizes [36].

Let us define the complementary cumulative distribution P1st
w

(r)

of contributions (number of commits) per developer directly

triggered by a given past commit, which can be called first-

generation daughter commits generated by a mother commit.

Consider the case where P1st
w

(r) is also a power law

P1st
w

(r)*
1

rc
: ð11Þ

Close to or at criticality, the distribution of cluster sizes, which is

equivalent to the distribution of productive activity P(rwR) given

by (6) has an exponent m~1=2 [52], under the condition that the

distribution P1st
w

(r) of contribution sizes triggered directly by

previous contributions (so-called first-generation cascades) decays

sufficiently fast, i.e., with c§2. The result m~1=2 holds also for

any distribution P1st
w

(r) decaying asymptotically faster than a

power law [36]. When 1vcv2, the mean field exponent m~1=2
is changed into [36]

m~1=c: ð12Þ

Together with (9), the superlinear exponent b is predicted to be

b~1=m~c, for 1ƒcƒ2, ð13Þ

that is, equal the exponent c of the tail distribution of first

generation contributions per developers. For cw2, m~2 and

therefore b~2. An analytical derivation of the prediction (13)

using the Hawkes process (10) that anchors rigorously the large

deviation argument of the previous section is given by Saichev and

Sornette [53].

Figure 6 synthesizes the relation between superlinear productive

activity, (critical) cascades, the distribution of first-generation

triggering and the total distribution of activity per contributors

over a sufficient long period.

Empirical tests

We now turn to empirical tests of this theory. For each 250 days

period and for each project in our database (Archive S1), we have

calibrated the power law tails of two distributions:

1. the distribution of the total number r of commits per

contributor over the 250 days, which is taken as a proxy for

Ptot
w

(r), with exponent m;

2. the distribution of the number of commits per developer per 5
days time bin, which is assumed to be a reasonable proxy for

the distribution P1st
w

(r) of the first generation production

characterized by the exponent c.

For each OSS project, we have used the discrete maximum

likelihood estimator (MLE) with a p-value threshold pw0:1,

obtained by bootstrapping, and Kolmogorov-Smirnov Distance

KSv0:15 to select the ranges over which the calibration is

performed [54] (see Table S1, for detailed results of each OSS

project analyzed).

Figure 5 shows the result for the Apache Web Server project.

The fitting procedure qualifies the existence of a power law tail for

the two empirical distributions with estimated exponents respec-

tively equal to m~0:92 + 0:1 and c&1:28 + 0:1. These values

with their error bars are compatible with the prediction (12)

m~1=c, resulting from the cascades of triggering [36]. This result

is typical of the other investigated OSS projects, as shown

Figure 7, albeit with a considerable variability. This is expected

since the projects are likely to be characterized by many more

dimensions that the production and cascading effects considered

here.

Figure 7 presents b as a function of c (panel A) and 1=m as a

function of c (panel B) for all the OSS projects on our database,

According to the cascading model of productive activity presented

in the previous section, we should have b~c~1=m, according to

(13). Indeed, one can see that b, c, and 1=m are clustered around

&4=3. Almost half of the considered periods (184 of a total of 390)

fitted over all projects belong to the regime where 1vbv2 and

1vcv2 (panel A) and forty percent (86 out of 213) are such that

1v1=mv2 (panel B) as predicted by the theory.

Let us first focus on the relationship between 1=m and c shown

in panel B of Figure 7. Note that the statistics on the exponent m is

significantly smaller compared to that for c simply because we

obtain one data point over each 250 day periods for m compared

with one data point per 5 days time bin for c. The shaded square

represents the domain over which the theory applies (86 over 213

data points). To test quantitatively the relation 1=m~c, we used a

Gaussian bivariate distribution model. The dotted ellipses show

the first three standard deviations equi-levels around the

barycenter 1=m&c&4=3 and the black line represents the

principal axis of the bi-Gaussian model. We also performed a

principal component analysis (PCA). The red dotted lines show the

two main directions of the variance obtained with the PCA. Both

methods support a positive correlation between b and c with slope

&1:02 with the bi-Gaussian approach and &1:47 with PCA. To

our knowledge, this may be the first empirical test ever of the

renormalization of the exponent c of first generation events into

the renormalized exponent m~1=c due to the cascade of

triggering over all generation in a critical branching process

[36,52].

The evidence for the relationship between b and c is

presented in panel A of Figure 7. First, one can observe a

prevalence of the large-deviation critical interaction regime

as the grey square area delimited by 1ƒc, bƒ2 is very

densely populated (184 out of 390). Second, as already

pointed out, the barycenter of the cloud of data points is

on b&c&4=3, as expected from theory. However, we find

limited support for a clear linear relation between b and c.

The bi-Gaussian model analysis provides the three dotted

ellipses showing the first three standard deviations away

from the barycenter. The black line representing the main

axis of the bi-Gaussian model suggests a negative correla-

tion between b and c. Using a PCA analysis, we find a

positive relationship on the second principal component,

with slope &1:24. These results suggest that very produc-
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tive projects and periods within projects, characterized by a

large superlinear exponent b, are likely to be due to more

complex interactions between the developers and their

mutual triggering that assumed by the simple theory

developed above. In particular, differentiation between

same-developer commit triggering and inter-developer com-

Figure 6. Relationship between superlinear productive bursts, cascading dynamics, and heavy-tailed distributions of 1st generation
and cumulative contributions. (A) (light blue) Triggering mechanism generating the clusters of size with renormalized exponent m~1=c from the
distribution of first generation ‘‘daughter events’’ with exponent c. For the sake of simplicity, we represented one cluster of activity per contributor,
but triggering can occur between contributors provided that the probability of triggering remains the same between all contributors. (B) (light
green) shows how the triggering mechanism generates superlinear productive activity A as a function of the number of active contributors c.
doi:10.1371/journal.pone.0103023.g006
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mit triggering seem necessary along the lines of Refs.

[19,55].

Reconciling present findings and superlinear
production in large cities

Figure 8 reveals that the clouds of superlinear production

exponent b exhibit an interesting regularity as a function of the

total number of contributors N of an OSS project. The intuition

motivating this investigation is the following. While a minimum

critical mass of contributors is needed to foster productive bursts,

large projects suffer from coordination costs, which may offset the

increasing return of productive activity. Figure 8 (panel A) shows

indeed that the superlinear exponent b decreases on average with

the size of the projects. Panel B demonstrates that, for projects of

up to 33 contributors, the number of 250 days periods with bw1
(superlinear regime) increases as a function of the total number N
of developers, approximately according to

(ratio of time windows with bw1)*1:37 log10 N: ð14Þ

For Nw33, a different regime occurs characterized by a much

smaller ratio of the time periods with superlinear productivity

(bw1). Taken together, the two panels of Figure 8 support the

view that superlinear productivity is the appanage of relatively

small projects with no more than 30–40 developers in total, while

larger groups face the difficult challenge of creating and

maintaining productive bursts. The data is too scattered unfortu-

nately to allow us to draw a firm conclusion on the value(s) that b
converges towards for large project sizes.

There may be a link between our results and a previous study

reporting the phenomenon of superlinearity on a completely

different class of objects, namely cities. Data from 360 US

metropolitan areas have shown that wages, number of patents,

GDP and intensity of crime scale superlinearly with population

size [production *(population)b] with an exponent b&1:15
[56,57]. The value of b larger than 1 reflects the fact that

productivity increases by about 11% with each doubling in

population [58]. Qualitatively in line with our findings, the

superlinearity found in our OSS data is significantly stronger

(b&4=3 on average, with large variations and some projects being

characterised by much larger b’s) for the smaller projects with no

more than 30–40 developers. We note that our results apply to a

completely different range of group sizes compared with the results

for cities involving population of tens of thousand to tens of

millions inhabitants.

Figure 7. Verification of the relationship between b, c and m as predicted by the theory. (A) superlinear exponent b as a function of c, the
exponent of the power law tail distribution of first generation productivity for each of the 250 days periods for which both values could be calibrated.
The points are concentrated around b&c&4=3 with almost half of them (184 over 390 values) within the grey area delimited by 1ƒbƒ2 and
1ƒcƒ2. To test for the relations b~c and 1=m~c, we used a bi-Gaussian model. The dotted ellipses show the first three standard deviations around
the barycenters and the black line represents the main axis with the bi-Gaussian model. We also performed a principal component analysis (PCA). The
red dotted lines show the main direction of variance obtained with the PCA. Both methods show a positive relation between b and c only on second
principal component (slope &1:24 with PCA). (B) same as panel (A) for the dependence of 1=m versus c with a concentration of points in the grey
area (86 over 213 values) and 1=m&c&4=3. Both the bi-Gaussian fit and the PCA show strong evidence of a positive relation with slope &1:02 with
the bi-Gaussian approach and &1:47 with the PCA.
doi:10.1371/journal.pone.0103023.g007
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The underlying mechanisms are perhaps different [59]. For

cities, the superlinear scaling in urban productivity demonstrates

the importance of cities as centers of enhanced interactions,

leading to generation and exchange of knowledge and exploitation

of innovations [58]. For the OSS projects, many other factors

come into play, such as the role of diversity and complementarity,

which describes the fact that doing more of one thing increases the

return to doing more of another. Other possible mechanisms

include synergies, economies of scale, coordination and leadership,

role model and entrainment effect, motivations, friendship and

other psychological factors. However, Figure 8 suggests that these

mechanisms dampen out as the project size becomes very large,

possibly leaving only those still active at the level of city sizes.

Expanding on the remark on the different sizes involved in our

OSS database compared with cities, we present a simple

mechanism and theoretical argument that may explain the smaller

value of the superlinear exponent for cities, deriving it from our

results obtained for small group sizes. The key idea is that the

population of a city can be partitioned into many groups of

persons interacting closely within a group and loosely or not at all

across groups. Groups can be firms, or department within firms,

clubs, and other organisations through which people interact. We

assume that, within each group, the superlinear production law (1)

holds with the exponent b&4=3 found in our OSS database.

The second ingredient is that group sizes g are widely

distributed, roughly as Zipf’s law [15],

p(g)*
1

g1zz
, ð15Þ

where p(g) is the probability density function of the group sizes g,

z~1 if Zipf’s law holds exactly, while in general z can deviate from

1 for a variety of reasons [16]. Let us assume that a city of total

population N is constituted of n groups, respectively with

memberships of N1,N2, :::,Nn individuals. The total production

of the city is then, according to (1),

R(N)~N
b
1 zN

b
2 z ::: zNb

n , ð16Þ

assuming for the moment and for simplicity that b is independent

of group sizes. R(N) in expression (16) can be estimated as [38,39]

R(N)*n

ðgmax(n)

1

gbp(g)dg, ð17Þ

where gmax(n) is the largest group size among the n groups, which

can be estimated by

Figure 8. Evolution of the superlinear exponent b as a function of project size. (A) Average superlinear exponent SbT per project as a
function of the cumulative number of contributors. The circle size reflects the number of exponents fitted per 250 days time window, for each project
and entering the average statistics. The sampling ranges from 1 (small disks) to 16 (largest disk). SbT exhibits a slightly negative slope &{0:14 as a
function of log10 (N) (pv0:1 and r~{0:17). (B) To measure the prevalence of productive bursts in projects, we measure the ratio of periods with
superlinear exponent bw1 over all 250 days periods for each project as a function of log10 (N). We distinguish a cluster of points around &0:3 and
log10 (N)&1:52 (i.e. N&33 contributors) with a positive relationship (slope&1:37) of the ratio as a function of log10(N). Projects with a large pool of
contributors (Nw100) are more randomly scattered with a lower ratio and do not obey the same relationship, suggesting a different regime.
doi:10.1371/journal.pone.0103023.g008
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n

ð?
gmax(n)

p(g)dg*1?gmax(n)*nz: ð18Þ

By conservation and assuming for simplicity no strong overlap

between the groups, we have approximately

N1zN2z zNn~N*n

ðgmax(n)

1

gp(g)dg: ð19Þ

This leads to n*N for zw1 and n*Nz for zv1. In words, a

relatively thin tail of the group size distribution (zw1) is associated

with a number of group scaling proportionally to the total city

population N. In contrast, for a heavy tailed distribution (zv1),

the number of groups scales sublinearly with N, as the few largest

groups account for a finite fraction of total population. Reporting

in expression (17), this yields R(N)*Nb, with the exponent b
obeying three possible regimes.

1. zƒ1 implies b~b: the same superlinear production exponent

defines the whole city production as a function of its population

as does the production of each independent group. The

mechanism is clear: for zv1, a few single largest groups

dominate the n-partition and account for the majority of the

city population. The same scaling holds essentially because the

city is almost controlled by a single group and we have assumed

the same exponent b for all groups. The empirical evidence

suggests that this case does not apply.

2. 1vzvb implies b~b=z. In this regime, there are still very

large groups that contribute to the superlinearity but their

relative numbers is much less than for zƒ1. The values b~4=3
with b~1:15 can be reconciled with z~b=b&1:16. This

exponent is, with error bounds, roughly compatible with the

value found for firms in the US, close to 1:25 [60].

3. 1vbvz implies b~1, which corresponds to a linear growth of

production of the city with its population. In this regime, the

overall city production is controlled by the many small groups

constituting the city and there are no scale effects other than a

proportionality with the number of small groups.

While this argument is quite naive, it demonstrates the

importance of the interplay between partitions of cities in groups,

the corresponding productivity of such groups and the size

distribution of these groups. A similar story is likely to be relevant

in large OSS projects, groups and firms, which for a variety of

reasons ranging from cognitive limitations [61] to efficiency

maximization [62] are found to organize in subgroups, often in a

hierarchical way [61].

Discussion

In the early days of the industrial revolution, Adam Smith noted

how the successive efficiency gains of communication means have

helped reach unprecedented pools of resources and how they have

unlocked some limitations of the labor market through improved

division of labor [63]. The telegraph, telephone and more recently

the Internet have further pushed back the possibilities for

knowledge production and for labor organizations on the model

of collective action [64]. Nowadays, unrelated people spontane-

ously team up across the world in open collaboration projects and

join forces to create knowledge in the form of software, natural

language [65], mathematics [66] as well as for the production of

tangible goods [67]. These organizations rely primarily on the

principles of peer-production [68]: (i) task self-selection, (ii) peer-

review and (iii) iterative improvement, at odds with traditional

market and firm production organizations [69]. Expertise can be

timely and rightly pulled from a broader community towards

efficient problem resolution. The present understanding of group

performance in social psychology goes in the same direction:

experiments involving small groups performing coordination tasks

[8,70], problem solving [37] and innovation [14] support the

hypothesis that larger groups perform better because more diverse

cognitive abilities can be pooled. Group productive activity can

also be more than the sum of their parts if members develop social

sensitivity among each others [20]. However, the marginal gain of

having more individuals in a group decreases rapidly to be

negligible beyond five individuals [37,71,72]. Similarly, as projects

attract larger communities, more coordination is required through

social norms and formal governance structures [21], which may in

turn reduce the positive effects of peer-production [73].

Conclusion

In this paper, we have shown that productive bursts, associated

with increasing return of activity, result from the mechanism of

critical triggering of commits among contributors. Specifically, we

have shown that production intensity, or production per unit time,

grows superlinearly as a function of the number of participants in a

group. Practically, we have found a superlinear relationship R*cb

with bw1 between the total number R of commits measured per

n-day time windows for different OSS projects and c is the number

of active contributors in the same n-day time windows. We have

found that these results are robust with respect to the length n of

the time windows, i.e. when varying n from 1 day to 10 days.

Such critical triggering may operate according two co-existing

mechanisms: interactions and large deviations. These mechanisms

have been falsified in three independent ways: (i) documenting the

superlinear relationship between productive activity R and the

number of active contributors c characterized by the scaling

exponent 1vbv2; (ii) measuring the power law tail distribution of

first generation cascades with exponent 1vcv2 and checking that

it explains the superlinear productivity exponent b; and (iii)

measuring the power law tail distribution of production cluster

sizes with exponent m and verifying that it is approximately equal

to the 1=c, where c is the distribution of contributions per

developer at short times.

We have found that superlinear productive activity holds for a

broad range of project sizes and types, with a slight decrease of the

average scaling exponent b with the total number of contributors

N. The frequency of productive bursts occurrence in projects has

been found to be very large for Nƒ33 compared with larger

projects. The results suggest that size and threshold effects have an

influence on the ability to trigger and maintain critical triggering

of individual contributions. Indeed, contributions must create

enough reaction opportunities to trigger on average as many

follow-up contributions. Pervasive communication systems (social

networks), physical proximity (e.g. cities), or even personal

dedication to the project surely help increase opportunities for a

contribution to trigger a follow-up action. On the other hand,

large and complex structures with overwhelming communication

loads or inadequate governance structure can inhibit the ripe
circulation and reuse of knowledge for the sake of further

cumulative innovation. The large deviation mechanism provides

another take-away lesson: open collaboration does not imply equal

work between contributors. On the contrary, productive bursts are
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the hallmark of a minority of individual engagement with intense

interactions and short-lived contributions of far above average

sizes. Whether these large deviation contributions pull engagement

by others or on the contrary are pushed by the community

remains an open question to be elucidated.
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