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Abstract

Drought, heat and other abiotic stresses during grain filling can result in reductions in grain weight. Conserved water-
soluble carbohydrates (WSC) at early grain filling play an important role in partial compensation of reduced carbon supply.
A diverse population of 262 historical winter wheat accessions was used in the present study. There were significant
correlations between 1000-grain weight (TGW) and four types of WSC, viz. (1) total WSC at the mid-grain filling stage (14
days after flowering) produced by leaves and non-leaf organs; (2) WSC contributed by current leaf assimilation during the
mid-grain filling; (3) WSC in non-leaf organs at the mid-grain filling, excluding the current leaf assimilation; and (4) WSC used
for respiration and remobilization during the mid-grain filling. Association and favorable allele analyses of 209 genome-wide
SSR markers and the four types of WSC were conducted using a mixed linear model. Seven novel favorable WSC alleles
exhibited positive individual contributions to TGW, which were verified under 16 environments. Dosage effects of
pyramided favorable WSC alleles and significantly linear correlations between the number of favorable WSC alleles and TGW
were observed. Our results suggested that pyramiding more favorable WSC alleles was effective for improving both WSC
and grain weight in future wheat breeding programs.
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Introduction

Wheat (Triticum aestivum L.) is one of the most important crops

in the world, feeding nearly half the world population [1]. High

grain yield is the most important breeding objective in wheat

improvement. Drought, heat and other abiotic stresses greatly

affect growth and productivity of wheat, especially during grain

filling stage. Grain filling in wheat depends on two major sources

of carbon: current photosynthate in leaves and non-leaf organs;

and carbohydrates stored in the stem and leaf sheath from stem

elongation to the early phase of grain filling [2]. The latter can be

important in buffering grain yields against unfavorable conditions

for photosynthesis during the grain-filling period [3,4].

Water-soluble carbohydrates (WSC) accumulation and utiliza-

tion depend on growing conditions and genotypes, and there may

be differences between internodes [2,5,6]. Among three segments

of the main stem (peduncle, penultimate internode and the

remainder segments), the remainder segments are the major

storage sites and the major source for WSC mobilization during

the grain filling period [7]. In general, WSC accumulate until 10–

20 days after anthesis, and the reserved WSC can reach more than

40% of total stem dry weight in wheat [8]. The contribution of

WSC to final yield and kernel size is 10%–20% of total grain

weight under normal condition [9]. Drought stress during grain

filling, often involving not only water stress but also heat, inhibits

current assimilation and damages photosynthetic organs, especial-

ly leaves. When photosynthetic activity is suppressed, the reserved

WSC play a more important role in partial compensation of the

reduced carbon supply. In addition, drought induced reserved

WSC mobilization with higher efficiency, potentially contributing

up to 70% of grain dry matter [8,10].

Based on a large group of genotypes with various WSC

contents, the ranking of wheat lines for WSC is consistent across

diverse environments. Stem WSC content shows high broad-sense

heritability (h2 = 0.9). WSC are inversely related to stem number

but genotypic ranking persists when compared at similar stem

densities [11,12]. In past years, selection for high WSC in stems

occurred during development of drought-tolerant wheat varieties

in the UK and Australia [13,14]. It has been suggested that the

release of representative UK wheat cultivars from 1972 to 1995

was associated with increasing stem WSC content [15]. Therefore,

high stem WSC content was suggested as a useful trait for

improving grain weight in wheat breeding programs [11,14,15].
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Variation in stem WSC among wheat genotypes is an important

genetic factor involving grain weight and yield under drought

stress conditions [16]. Thus, knowledge of stem WSC is essential

for understanding yield-limiting factors and for improving yield

potential in wheat. QTL associated with stem WSC have been

reported in perennial ryegrass [17], rice [18], maize [19], barley

[20], and wheat [21–23]. In wheat, QTL for WSC were mapped

on chromosomes 1A, 2D, 4A, 4B, 5D, 6B, 7B and 7D. QTL for

drought tolerance also appeared in homologous regions on the

group 7 chromosomes [22]. Yang et al. [23] discovered eight, one

and two additive QTL for WSC at flowering, grain-filling and

maturity, respectively. However, WSC content is a complex

quantitative trait controlled by polygenes, and the small effects of

many independent QTL limit their direct use for marker-assisted

selection in breeding programs [8,24].

Photosynthesis is the all-important metabolic process determin-

ing grain yield in wheat. When water deficit occurs during grain

filling stage, photosynthetic rates significantly decrease in leaf

blades and non-leaf green organs, such as leaf sheath, glume and

awn [25–27]. However, non-leaf green organs are relatively more

stable than leaf blades [27]. In this study, four types of WSC

(Total, Leaf, Non-leaf and Remo) under drought stress (DS) and

well-watered (WW) conditions in 262 winter wheat accessions

were mainly used, viz. Total, total WSC at the mid-grain filling

stage (14 days after flowering) produced by leaves and non-leaf

organs; Leaf, WSC contributed by current leaf assimilation during

the mid-grain filling; Non-leaf, WSC in non-leaf organs at the

mid-grain filling, excluding the current leaf assimilation; Remo,

WSC used for respiration and remobilization during the mid-grain

filling. The objectives were to (1) detect the relative contributions

of leaf and non-leaf organs during grain filling stage to WSC and

1000-grain weight (TGW) under two water regimes; (2) explore

genetic resources with high WSC by association analysis; (3) verify

the stable favorable WSC alleles with significant effect on TGW

under 16 environments (5 drought stress conditions, 3 drought and

heat stress (HS) conditions, 5 well-watered conditions, 3 well-

watered and heat stress conditions). We observed a significantly

positive contribution of WSC to TGW, and the results of favorable

WSC allele analysis will be helpful for wheat breeders in selecting

genotypes with higher TGW.

Materials and Methods

Ethics statement
Two locations, Changping (116u139E; 40u139N) and Shunyi

(116u569E; 40u239N) in Beijing, are the experiment stations of the

Institute of Crop Science, Chinese Academy of Agricultural

Sciences. We have obtained the relevant permission for our field

studies for growing our plant materials in the field from the

corresponding institutions. There was no specific permissions

required for these locations/activities. Our field studies did not

involve endangered or protected species.

Plant materials and field experiments
A population of 262 common wheat accessions were used in our

research [28,29]; 254 were from China, 3 from USA, 2 from

Australia, 2 from Italy, and 1 from Romania (Table S1). The

Chinese accessions were mainly from the Northern Winter Wheat

Zone, and Yellow and Huai River Valleys Facultative Wheat

Zone, including landraces and modern cultivars released from the

1940s to 2000s. All were planted at the beginning of October and

harvested in the following mid-June. The experimental unit was a

2 m 4-row plot with 0.3 m between rows. There were 40 plants

per row. The field was managed under separate rain-fed (drought

stress, DS) and well-watered (WW) conditions. The WW plots

were watered with 750 m3/ha (75 mm) at the pre-overwintering,

booting, flowering and grain filling stages, respectively.

The materials were grown in Changping, Beijing, the experi-

ment station of the Institute of Crop Science in 2010, for collecting

data on WSC at the mid-grain filling (14 days after flowering) and

TGW at maturity. The treatments involved cutting spikes at

flowering stage, removing leaves at flowering stage and a normal

control. The rainfall from sowing to harvest was 131 mm. The

field was managed under DS and WW conditions.

The population was planted in Changping and Shunyi, Beijing,

the experiment stations of the Institute of Crop Science, over 3

years for measuring TGW at maturity. The planting years were

2009 and 2010 at both Changping and Shunyi, and 2011 in

Shunyi. The rainfalls in the growing seasons were 192 mm,

131 mm and 180 mm, respectively. The field was also managed

under DS and WW conditions. A greenhouse experiment was

conducted at Shunyi; at heading polythene covers were placed

over selected heads to increase the temperature and thereby

simulate heat stress (HS). Thus there were four treatments (DS,

WW, DS+HS and WW+HS), with E1 to E16 indicating the

environments of Changping in 2009 under DS and WW; Shunyi

in 2009 under DS, DS+HS, WW and WW+HS; Changping in

2010 under DS and WW; Shunyi in 2010 under DS, DS+HS,

WW and WW+HS; Shunyi in 2011 under DS, DS+HS, WW and

WW+HS, respectively.

Phenotyping of WSC and TGW
The methods of collecting data on WSC were reported earlier

[30]. For each genotype, five main stems with the same heading

date were selected as samples. The main stem was cut from the soil

surface at the mid-grain filling (14 days after flowering). Leaf

blades were removed, and stem samples were cut into three parts,

the upmost internode (peduncle, Ped), the lower internode (the

remainder segments of stem except for peduncle, Low) and the

spike. The fresh samples were dehydrated until a constant dry

weight. The WSC of the three sections, i.e. peduncle, the lower

internode and whole stem (Ste), were determined by different

near-infrared reflectance spectroscopy regression models, which

were developed for quantitative determination of WSC using

samples of 150 doubled haploid lines (Hanxuan 106Lumai 14)

[30]. Briefly, as the first step, partial least square regression models

for predicting WSC in the target parts of wheat were developed

using selected wavelength regions, spectroscopy pretreatments and

latent variables included in each model. The amounts of WSC (mg

WSC/g dry weight, mg/g dw) in each modeling sample of 150

doubled haploid lines were also measured by chemical assay

(anthrone colorimetric assay), and used for cross validation. WSC

were extracted according to the modified procedure described by

Wardlaw and Willenbrink [2,30]; the amounts of WSC were

measured as fructose equivalents using the anthrone colorimetric

assay at 620 nm by 722S spectrophotometer [31]. This showed

that the near-infrared reflectance spectroscopy regression models

were highly accurate in determining the true values of WSC

measured by chemical assay in the wheat organs tested (coefficient

of determination R2.0.992 and root mean square error of

prediction RMSEP,0.228). In addition, 40 samples per model

(i.e. not included in the modeling samples) were used to assess the

models. The results confirmed the high quality of the models in

evaluating WSC.

We obtained four types of WSC (Total, Leaf, Non-leaf, and

Remo), viz. Total, the total WSC at the mid-grain filling produced

by leaves and non-leaf organs which was obtained from the

treatment of cutting spikes (WSCcutting spikes); Leaf, WSC
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contributed by current leaf assimilation during the mid-grain

filling, i.e. the reduction in WSC due to cutting leaves which was

estimated by comparing WSC between the normal control and the

treatment of cutting leaves (WSCuntreated – WSCremoving leaves);

Non-leaf, the WSC in non-leaf organs at the mid-grain filling

(excluding the current leaf assimilation) which was estimated by

the treatment of removing leaves (WSCremoving leaves); Remo, WSC

used for respiration and remobilization during the mid-grain filling

which was obtained by comparing WSC between the normal

control and the treatment of cutting spikes (WSCcutting spikes –

WSCuntreated).

Spikes corresponding to main stem samples were collected at

maturity stage for each accession to obtain TGW. The reduction

of TGW due to leaf removal was calculated for each cultivar as:

[(TGWuntreated – TGWremoving leaves)/TGWuntreated]6100%.

SSR genotyping and association mapping
Two hundred and nine SSR markers, evenly distributed on the

21 wheat chromosomes, were selected for evaluating population

structure, relative kinship, and association mapping. The genetic

positions of SSR markers were obtained from the consensus map

Ta-SSR-2004 [32] and the Komugi wheat genetic resources

database (http://www.shigen.nig.ac.jp/wheat/komugi?/top/

top.jsp). Fluorescent primers were synthesized by ABI (Applied

Biosystems, Foster City, CA, USA). Amplification products were

separated on an ABI3730 DNA Analyzer, and fragment sizes were

analyzed by GeneMapper software (Applied Biosystems).

Allele number, allele frequency and polymorphism information

content were calculated by PowerMarker V3.25 [33]. Population

structure was estimated by STRUCTURE v2.3.2 using data from

209 SSR markers. The number of hypothetical subpopulations

was set from k = 1 to 10 with a burn-in period of 50,000 iterations

and a run of 500,000 replications of Markov Chain Monte Carlo

after burn in. The gk method was applied according to LnP(D) in

STRUCTURE [34]. The Q data of five replicate runs were

integrated by CLUMPP software [35]. Principal coordinate

analysis based on genetic distances was also used to confirm the

results of STRUCTURE by NTSYSpc analysis [36]. The relative

kinship coefficient (K) was calculated by the SPAGeDi software

package [37]. Finally, the Q+K models were performed using

mixed linear model in TASSEL V2.1 for association of SWSC

[38,39].

Results

Contribution of leaf and non-leaf organs to 1000-grain
weight during grain filling

Figure S1 summarizes the relative contributions of leaf and non-

leaf organs to final 1000-grain weight during grain filling across

the 262 diverse winter wheat genotypes. Reduction in TGW due

to cutting leaves (i.e. the contribution of leaves to TGW during

grain filling) was 14.79% (6.26 g) at maturity under DS, compared

to 19.84% (8.56 g) under WW condition (Figure S1). The lower

contribution of leaves to TGW under DS condition reflected the

negative effect of water deficit on photosynthetic rates in leaf

blades during grain filling. Non-leaf organs contributed 85.21%

(36.05 g) to TGW under DS, whereas it was 80.16% (34.60 g)

under WW condition (Figure S1).

Variation in WSC of leaves and non-leaf organs in
different internodes at the mid-grain filling under two
water regimes

The WSC in lower internodes (the remainder segments of stem

except for peduncle, Low) were higher than those in peduncles (the

upmost internode, Ped; Figure 1) under both water regimes in all

types of WSC. The WSC in non-leaf organs at the mid-grain

filling ranged from 83.82 to 178.50 mg WSC/g dry weight (mg/g

dw), and those contributed by current leaf assimilation were from

41.13 to 68.58 mg/g dw, thus showing the relative importance of

stem-reserved WSC for grain filling. The WSC used for Remo at

the mid-grain filling ranged from 56.88 to 98.87 mg/g dw

(Figure 1). WSC in non-leaf organs were 131.51, 178.50 and

159.37 mg/g dw in peduncles, lower internodes and the whole

stem under drought stress, and 83.82, 94.35 and 88.05 mg/g dw

under well-watered condition, respectively; the ratios between two

water regimes were 156.90%, 189.19% and 181.00%, respectively

(Figure 1). This implied that long term drought stress triggered a

series of metabolic reactions by increasing fructans for self-

protection. At the mid-grain filling, WSC contributed by current

leaf assimilation were 57.62 and 55.43 mg/g dw in the lower

internode and whole stem under drought stress, compared with

68.58 and 60.05 mg/g dw under well-watered condition (Figure 1).

Thus drought during grain filling greatly influences current

photosynthesis and dry matter accumulation.

Correlations between WSC at the mid-grain filling and
TGW

WSC are recognized as an important source of grain dry matter

for grain filling in wheat. There were significant correlations

between the four types of WSC (Total, Non-leaf, Leaf and Remo)

at the mid-grain filling and TGW (Table 1, Table S2,S3).

Moreover, there were higher correlations between the four types

of WSC and TGW under drought stress compared to those under

well-watered condition (Table 1). Under drought stress, WSC of

Total was significantly correlated with TGW (r = 0.248***, 0.386***

and 0.392***); and correlations between WSC of Non-leaf, Leaf

and TGW were r = 0.140* to 0.275***, 0.156* to 0.220***,

respectively. Under well-watered condition, there were three

instances of significant correlations between WSC of Total and

TGW (r = 0.135*, 0.146* and 0.176**).

Association analysis for WSC at the mid-grain filling and
the search for favorable alleles

Based on the population structure assessment using 209

markers, the 262 wheat accessions were separated into two sub-

populations, comprising 126 and 136 accessions (our unpublished

data). Association analysis using the 209 SSR markers and four

types of WSC at the mid-grain filling was conducted using a mixed

linear model, which accounted for population structure (Q) and

relative kinship (K matrix). Thirteen, 13, 23 and 14 novel loci were

significantly (P,0.01) associated with WSC of Total, Leaf, Non-

leaf and Remo in 17, 17, 31 and 18 instances, respectively (Table

S4,S7). Variances explained by SSR markers (R2) ranged from

0.11% to 10.51%. Twenty-two loci were identified more than

once. Xcfd17-2D (associated with WSC of Remo under WW

condition; Remo, WW), Xgwm513-4B (Non-leaf, DS) and

Xwmc517-7B (Non-leaf, WW) were detected in all internodes

(peduncle, lower internode and the whole stem). Xbarc228-2D
(Total, DS), Xgwm169-6A (Remo, WW) and Xgwm537-7B (Leaf,

DS) were detected in both peduncle and lower internode. Xcfd53-
2D (Non-leaf, DS) and Xcfa2240-7A (Non-leaf, DS) were

identified in both the peduncle and whole stem; Xgwm630
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(Remo, WW), Xgwm610-4A (Leaf, WW), Xgwm165.1-4D (Non-

leaf, WW) and Xgwm182-5D (Total, WW) were similarly

identified in both the lower internode and whole stem.

Xbarc125-3D was associated with WSC of Total in lower

internode under both DS and WW conditions. Xgwm66,

Xgwm88, Xgwm192, Xwmc470-2D, Xgwm181-3B, Xgwm358-
5D, Xgwm583-5D and Xgwm428-7D were associated with more

than one types of WSC (Total, Non-leaf, Leaf and Remo).

For associated loci, we explored favorable WSC alleles by

assessing differences in WSC between accessions carrying favor-

able alleles and those with other alleles using ANOVA (SAS 8.01),

i.e. the WSC of the former were significantly (P,0.05) higher than

those of the latter. There were 7, 10, 12 and 9 novel favorable

alleles for WSC of Total, Leaf, Non-leaf and Remo, respectively

(Tables S4,S7). Xcfd17-2D (Remo, WW) had the same favorable

WSC alleles (Xcfd17-2D223) in peduncle, lower internode and the

whole stem estimates, i.e. 74.1 compared with 51.7 mg/g dw (P,

0.001), 113.5 compared with 94.3 mg/g dw (P,0.05), and 89.7

compared with 69.7 mg/g dw (P,0.01), respectively. Xgwm181-
3B131 and 161 (Leaf, DS), Xgwm610-4A167 (Leaf, WW),

Xgwm513-4B144 (Leaf, DS), Xgwm165.1-4D199 (Non-leaf,

WW), Xwmc517-7B188 (Non-leaf, WW) had positive effects both

in lower internode and the whole stem. Higher WSC were

associated with Xgwm169-6A203 (Remo, WW) and Xgwm537-
7B205 (Leaf, DS) in both the peduncle and lower internode.

Xbarc125-3D147 (Total) contributed to higher WSC in lower

internodes, not only under well-watered conditions but also under

drought stress. Some associated loci, however, had various

favorable alleles for different types of WSC; for example, accessions

carrying the allele Xgwm513-4B144 exhibited higher WSC of Leaf,

whereas accessions with the 142 bp allele had higher WSC of Non-

leaf in lower internodes under drought-stress conditions.

Seven novel favorable WSC alleles individually exhibited
positive contributions to TGW under well-watered,
drought and heat stress conditions

In order to evaluate the genetic relationship between WSC and

TGW, we analyzed the effects of favorable WSC alleles on final

TGW by comparing differences in TGW between accessions

carrying favorable WSC alleles and those with other alleles. Seven

novel favorable WSC alleles exhibited significantly (P,0.05) positive

contributions to TGW on an individual basis. They were Xcfd17-
2D223, Xcfd53-2D263, Xgwm181-3B140 and 161, Xgwm389-3B116,

Xbarc125-3D147, Xgwm358-5D162 and Xgwm537-7B205 (Table 2).

For Xbarc125-3D147, the higher WSC of Total (341.5 compared to

309.9 mg/g dw) in lower internodes led to a higher TGW (44.99 g

compared to 41.14 g) under drought stress conditions; likewise,

accessions with this allele also produced higher TGW (43.91 g) than

accessions with other alleles (41.85 g) under well-watered conditions,

with WSC of 284.3 and 255.9 mg/g dw, respectively. In order to

verify the positive contributions of these seven favorable alleles to

TGW, we used the same population (262 winter wheat accessions)

planted in 16 environments (year6site6water and heat regime

combinations; 5 drought stress conditions, 3 well-watered and heat

stress conditions, 3 drought and heat stress conditions, 5 well-watered

conditions) to confirm the above results. The average TGW of

Figure 1. WSC (mg/g dw) of different internodes at the mid-grain filling stage (14 days after flowering) under well-watered and
drought stress conditions. Bars indicate 2SE. WSC, water-soluble carbohydrates; DS-Ped, peduncle under drought stress; WW-Ped, peduncle, well-
watered; DS-Low, lower internode, drought stress; WW-Low, lower internode, well-watered; DS-Ste, whole stem, drought stress; WW-Ste, whole stem,
well-watered; CS, cutting spikes; CL, removing leaves; CK, normal control; Non-leaf, WSC in non-leaf organs at the mid-grain filling, excluding the
current leaf assimilation; Leaf, WSC contributed by current leaf assimilation during the mid-grain filling; Remo, WSC used for respiration and
remobilization during the mid-grain filling.
doi:10.1371/journal.pone.0102917.g001
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accessions carrying favorable WSC alleles were higher than those

without the favorable alleles in all environments (Figure 2).

Pyramiding of favorable WSC alleles indicated potential
application in wheat breeding

To explore whether the pyramiding of favorable WSC alleles

showed additive effects, we also analyzed the mean TGW of

accessions with different numbers of favorable WSC alleles in 16

environments (Table 3). The average TGW of genotypes with

single favorable WSC allele were 31.75 - 42.82 g; TGW with two

favorable alleles were 33.57 - 44.66 g; TGW with three ones were

35.17 - 46.76 g; TGW with more than four favorable alleles were

35.90 - 47.18 g across 16 environments. The average TGW of

accessions without favorable WSC allele ranged from 30.30 to

41.01 g. In addition, a significantly linear correlation (y = 1.579x+
36.847, R2 = 0.369) between TGW and number of favorable WSC

alleles further confirmed the additive effect (Figure 3A). We also

evaluated the distribution of combined favorable WSC alleles in

modern varieties from different decades (Figure 3B). The average

number of favorable WSC alleles was 0.61 before 1960, and the

current average number was 2.59. The increasing number over

time reveals a genomic footprint left by breeders, but the relatively

low number of 2.59 alleles in current cultivars (post-2000) indicates

a potential for pyramiding more favorable alleles [40].

Discussion

Consistency between WSC and TGW under stress
conditions

Previous studies suggested that increases in grain yield can

mainly be attributed to better partitioning of photosynthetic

products [41]. WSC accumulation ability and its remobilization

efficiency are much higher in the internodes of drought tolerant

cultivars than those of sensitive genotypes under both normal and

stress conditions. On the other hand, fructans, the major

components of WSC, insert between the head groups of

phospholipids, acting as compatible solutes in cells to protect cell

membranes and proteins from osmotic damage [42,43]. Stem

samples of rainfed wheat have significantly higher average fructan

than irrigated samples. In our research four types of WSC (Total,

Leaf, Non-leaf and Remo) under drought stress were overall

higher than those under well-watered condition (Figure 1). It has

been reported that fructan synthesis is induced by drought stress,

and that drought tolerant plants can manufacture more fructans.

The tolerant cultivars activate their protection mechanisms faster

and more efficiently than the sensitive ones to cope with stress

conditions [10,44].

Drought stress during grain filling can result in reductions in

grain weight, due to lower numbers of endosperm cells and a

limited maximum storage capacity of the kernels [45,46]. WSC

are recognized as an important source of grain dry matter for

grain filling, especially when current photosynthesis is inhibited by

drought stress. Water deficit during grain filling stimulates

senescence of the whole plant and enhances remobilization of

reserved WSC to the grains [47,48]. Thus, the reserved WSC

assimilated pre-anthesis and current assimilation are critically

important for grain filling. In the present study, we observed that

final grain yield mainly depends on pre-anthesis assimilation by

green organs and current photosynthesis of non-leaf organs during

grain filling, especially under drought stress condition (Figure S1).

In addition, compared with those under well-watered condition,

higher correlations between the four types of WSC at the mid-

grain filling and TGW under drought stress indicate that yield in

Table 1. Pearson correlation coefficients of WSC at the mid-grain filling and TGW under well-watered and drought stress
conditions.

WSC TGW

Types Internodes DS WW

Totala Ped 0.248*** 0.135*

Low 0.386*** 0.146*

Ste 0.392*** 0.176**

Leafa Ped 0.218*** 0.027

Low 0.156* 0.100

Ste 0.220*** 0.071

Non-leafa Ped 0.011 20.046

Low 0.177** 20.000

Ste 0.140* 20.011

Non-leafb Ped 0.207*** 0.121

Low 0.275*** 0.011

Ste 0.274*** 20.001

Remoa Ped 20.014 0.100

Low 0.106 0.044

Ste 0.037 0.105

*Significant at P = 0.05; **Significant at P = 0.01; ***Significant at P = 0.001. Total, total WSC at the mid-grain filling produced by leaves and non-leaf organs; Leaf, WSC
contributed by current leaf assimilation during the mid-grain filling; Non-leaf, WSC in non-leaf organs at the mid-grain filling, excluding the current leaf assimilation;
Remo, WSC used for respiration and remobilization during the mid-grain filling; Ped, peduncle; Low, lower internode; Ste, whole stem; TGW, 1000-grain weight at
maturity.
aTGW was measured on the normal control;
bTGW was measured with treatment with removing leaves.
doi:10.1371/journal.pone.0102917.t001
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unfavorable conditions relies more on pre-stored carbohydrates

(Table 1). Association and favorable allele analyses were conduct-

ed on four types of WSC (Total, Leaf, Non-leaf and Remo) at the

mid-grain filling. Seven novel favorable WSC alleles made positive

individual contributions to final TGW under well-watered,

drought and heat stress conditions (Table 2, Figure 2).

Complex relationship between WSC and TGW
WSC accumulation and remobilization are influenced by many

factors, making the relationship between WSC and TGW more

complex. For example, WSC remobilization is affected by N

fertilizers and water deficit [6,49]. Heavy use of N fertilizers delays

plant senescence and reduces the remobilization of prestored

Figure 2. Verification of phenotypic effects of seven novel favorable WSC alleles individually contributing to TGW in sixteen
environments. E1, E3, E7, E9 and E13 were drought stress conditions, E6, E12 and E16 were well-watered and heat stress conditions, E4, E10 and E14
were drought and heat stress conditions, E2, E5, E8, E11 and E15 were well-watered conditions. Bars indicate 2SE. *, **, *** Significant at P = 0.05, 0.01
and 0.001, respectively.
doi:10.1371/journal.pone.0102917.g002
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assimilates; whereas water deficit performs the reverse function.

Thus final TGW is often significantly increased with heavy use of

N fertilizers under drought stress, even higher than that under

well-watered conditions [49,50]. WSC in the stem are negatively

correlated with tiller per unit area, that is, WSC accumulation is

dependent on plant density [8,12]. Moreover, WSC accumulation

is also affected by stem length (plant height) and stem weight. We

calculated Pearson correlation coefficients between the four types

of WSC at the mid-grain filling and TGW, and we also evaluated

the effects of favorable WSC alleles on TGW to further

understand their relationships at the genetic level. The results

showed that (1) the correlations between them were significant but

not robust, the highest Pearson correlation being only r = 0.393***,

and there was no relationship between WSC of Remo at the mid-

grain filling and TGW; and (2) there were 7, 10, 12 and 9

favorable alleles for WSC of Total, Leaf, Non-leaf and Remo,

Figure 3. Linear regressions of TGW based on seven favorable WSC alleles in sixteen environments (A), and accumulation of seven
favorable WSC alleles in modern varieties released in different decades (B). There were 18, 27, 54, 39, 58 and 51 accessions released in Pre-
1960, 1960s, 1970s, 1980s, 1990s and Post-2000, respectively. 15 accessions with unknown released decades were excluded.
doi:10.1371/journal.pone.0102917.g003
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respectively. However, only seven favorable WSC alleles exhibited

positive individual contributions to TGW. The complex relation-

ship between WSC and TGW due to many influential factors may

help us to understand the reasons for these results. In addition,

cutting spikes or removing leaves at flowering change the source-

sink relationship during grain filling and therefore the four types of

WSC at the mid-grain filling might not fully reflect the situation

under normal condition.

Seven favorable WSC alleles will help to improve
breeding progress in yield potential

Broad-sense heritability of WSC is relatively high, but shows

wide fluctuations under different conditions, i.e. WSC are very

sensitive to environments [11,23]. Yang et al. [23] reported that

(1) QTL for WSC accumulation and remobilization could have

different expression patterns at different growth stages or in

different environments; and (2) 7 of 10 significantly additive QTL

for WSC interacted with environment. Thus, stable molecular

markers for WSC are essential to understand its genetic basis.

Moreover, exploration of favorable WSC alleles in germplasm

resources could be useful to plant breeders, but the effectiveness of

such alleles needs to be verified [29,51]. In this study, seven

favorable WSC alleles significantly (P,0.05) enhanced TGW on

an individual basis (Table 2). An additive QTL for WSC,

QSwscf.cgb-2D.1 (WMC453.1–WMC18), was detected in a

Hanxuan 106Lumai 14 doubled haploid population [23].

Xcfd17-2D was 1.5 cM from the flanking marker Xwmc18-2D.

QReswc.cgb-3B, controlled WSC and remobilization efficiency,

and Xgwm181-3B shares one of its flanking markers (Xgwm547–

Xgwm181). Adjacent chromosome intervals, such as QAeswc.cgb-
3B.1, QSwscm.cgb-3B.1 and QSwscf.cgb-3B, carry QTL for WSC

and its accumulation efficiency [23]. In addition, Xcfd53-2D,

Xgwm389-3B and Xgwm537-7B were associated with yield-

related traits [49–54]. Xbarc125-3D was also associated with

TGW (our unpublished data).

The seven favorable WSC alleles for enhancing TGW were

verified under 16 environments (5 drought stress conditions, 3 well-

watered and heat stress conditions, 3 drought and heat stress

conditions, and 5 well-watered conditions) using a population of 262

winter wheat accessions (Table 2 and Figure 2). Many studies show

that marker-based strategies of gene pyramiding are effective

[27,55,56]. A dosage effect of pyramiding seven favorable WSC

alleles (Table 3, Figure 3A) was also demonstrated in the study. The

accumulation of favorable WSC alleles over different decades also

indicated that they had been individually selected by breeders in the

past and that there is potential for further improvement in the future.

Supporting Information

Figure S1 The percentage contributions of leaf and non-
leaf organs to 1000-grain weight (TGW) under drought
stress (DS) and well-watered (WW) conditions during
grain filling. Bars indicate 2SE. The data in the columns were

the absolute values of TGW (g).

(TIF)

Table S1 262 common wheat accessions and their
origins.

(XLSX)

Table S2 Statistic data of WSC (mg/g dw) at the mid-
grain filling under well-watered and drought stress
conditions.
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Table S3 Statistic data of TGW under well-watered and
drought stress conditions.

(XLSX)

Table S4 Thirteen loci significantly associated with the
total WSC at the mid-grain filling produced by leaves
and non-leaf organs (Total) and phenotypic values of
favorable marker alleles under two water regimes.

(XLSX)

Table S5 Thirteen loci significantly associated with the
WSC contributed by current leaf assimilation during the
mid-grain filling (Leaf) and phenotypic values of favor-
able marker alleles under two water regimes.

(XLSX)

Table S6 Twenty-three loci significantly associated with
the WSC in non-leaf organs at the mid-grain filling
(excluding the current leaf assimilation, Non-leaf) and

phenotypic values of favorable marker alleles under two
water regimes.
(XLSX)

Table S7 Fourteen loci significantly associated with the
WSC used for respiration and remobilization during the
mid-grain filling (Remo) and phenotypic values of
favorable marker alleles under two water regimes.
(XLSX)
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