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Abstract

Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to
investigate their community structure. In this paper, we develop an online community detection algorithm with linear time
complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is
fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not
need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm
optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried
out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The
results show that our algorithm’s running time is less than the commonly used Louvain algorithm while it gives competitive
performance.
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Introduction

Complex networks describe a wide range of systems in nature

and society [1–3]. Frequently cited examples include the Internet

in which routers and computers are connected by physical links,

and collaboration networks in which researchers are linked by

coauthoring. To understand the formation, evolution, and

function of complex networks, it is crucial to investigate their

community structure, not only for uncovering the relations

between internal structure and functions, but also for practical

applications in many disciplines such as biology and sociology [4–

6].

Intuitively, a community of a complex network consists of a

cohesive group of nodes that are relatively densely connected to

each other but sparsely connected to other dense groups in the

network [7]. Community detection aims to identify the commu-

nities by only using the information encoded in the network

topology [8]. It is one of the critical issues in the study of complex

networks. A wide variety of community detection methods have

been developed to serve different scientific needs [8,9].

Modularity is a commonly used criterion for community

detection. It was first proposed in Newman et al. [10]. Good et
al. [11] describe the performance of modularity maximization in

practical contexts and present a broad characterization of its

performance in such situations. A wide variety of algorithms for

solving the modularity optimization problem have been developed

[12]. For example, Clauset et al. [13] present a hierarchical

agglomeration algorithm for detecting communities. Newman et
al. [14] show that the modularity can be expressed in terms of the

eigenvectors of a characteristic matrix for the network. This

expression leads to a spectral algorithm for community detection.

Modularity can be generalized in a principled fashion to

incorporate the edge information such as direction and weight.

Leicht et al. [15] consider the problem of finding communities in

directed networks. Newman et al. [16] point out that weighted

networks can, in many cases, be analyzed using a simple mapping

from a weighted network to an unweighted multigraph. Lancichi-

netti et al. [9] generate directed and weighted networks with built-

in community structure and show how modularity optimization

performs on their benchmark. However, Fortunato et al. [17] find

that modularity optimization may fail to identify communities

smaller than a scale which depends on the total size of the network

and on the degree of interconnectedness of the communities,

which is called a resolution problem. To mitigate the resolution

issue, Reichardt et al. [18] show how community detection can be

interpreted as finding the ground state of an infinite range spin

glass. Ruan et al. [19] propose a recursive algorithm HQCUT to

solve the resolution limit problem. Arenas et al. [20] propose a

method that allows for multiple resolution screening of modular

structures. Aldecoa et al. [21] introduce a criteria called

‘‘Surprise’’ to resolve the resolution problem.

In some kinds of complex networks, new edges continually

appear while old edges do not disappear, resulting in a large

network. For example, citation networks are growing as new

papers cite existing papers. To efficiently process these kinds of

networks, we desire a community detection algorithm that will be

able to process a network (1) without recomputing whole network

after every new edge/node and (2) without the need of whole

network structure available at each update. Although many

community detection algorithms have been proposed, to our best

knowledge, there is no algorithm that can meet these two
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requirements. Many existing algorithms need to start from the

beginning when the network is expanded, even when only one

node or edge is added.

Many efforts have been made to meet the two requirements.

Leung et al. [22] identified novel characteristics and drawbacks

of label propagation algorithm, and extended it by incorpo-

rating different heuristics to facilitate reliable and multi-

functional real time community detection. Huang et al. [23]

introduced a new quality function of local community, and

presented a fast local expansion algorithm for uncovering

communities in large-scale networks. Kawadia et al. [24]

presented a new measure of partition distance called estrange-

ment, and showed that constraining estrangement enables it to

find meaningful temporal communities in diverse real-world

data sets. However, both Leung’s algorithm and Huang’s

algorithm cannot handle growing networks, since they must

recompute the whole network after every new edge/node.

Kawadia’s algorithm requires the whole network structure to

be available at each update.

In this paper, we develop a community detection algorithm

to meet the two requirements. Our algorithm is an online

algorithm, i.e. it can process a network edge by edge in the

order that the network is fed to the algorithm, without having

the whole network available from the start. Our algorithm

updates existing community structure in constant time once a

new edge is added. The update avoids re-processing the whole

network structure, since it only needs knowledge about a

network’s local structure related to the new edge, thus our

algorithm can efficiently process large networks in real time.

Our algorithm has O(M) time complexity and O(NK) space

complexity, where M is number of edges, N is number of

nodes, and K is number of communities.

This paper is an extension of our previous work [25] published

in IJCAI’13 (downloaded for free in http://ijcai.org/papers13/

Papers/IJCAI13-281.pdf). The main differences are three-fold: (1)

This paper proposes a generative model for complex network

based on preferential attachment mechanism, which helps us to

infer network’s future structure by its current structure and gives a

solid theoretical motivation to the algorithm; (2) This paper

develops a deterministic online community detection algorithm,

which uses expected modularity to make an informed choice. The

conference paper’s non-deterministic algorithm may need many

runs; (3) This paper uses additional datasets and extensive

experiments for more convincing results.

Method

To achieve the online community detection, we first propose a

generative model for complex networks based on the preferential

attachment mechanism [26,27], which helps us to predict a

network’s future structure based on its current structure. We then

develop an online community detection algorithm, which

processes a network edge by edge. It optimizes expected

modularity instead of modularity to avoid poor performance in

some specific cases. Expected modularity can be calculated based

on our generative model.

Preliminaries
A network G~fV ,Eg is a set of N nodes V~fv1, . . . ,vNg

connected by a set of M edges E~feij~fvi,vjgg. The network

considered here is undirected, unweighted, and without self-loops

or isolated node. Let P~fC1, . . . ,CKg denote a partition of V . It

is a division of V into K non-overlapping and non-empty

communities Ck that cover all of V . As a performance measure

for the partition quality, modularity was first proposed by

Newman et al. [28]. It can be expressed as

q(P)~
X
Ck[P

edg(Ck)

DED
{

deg(Ck)

2DED

� �2
" #

ð1Þ

where edg(Ck)~Dfeij Dvi[Ck and vj[CkgD is the number of intra-

community edges within community Ck, DED is the number of

edges within network G, and deg(Ck) is the degree of community

Ck, defined as deg(Ck)~
X

vi[Ck
deg (vi), where deg(vi) is the

degree of node vi. Hence community detection can be formulated

as a modularity optimization problem

max
P

q(P)

and Brandes et al. [29] prove the conjectured hardness of this

problem both in the general case and in the case with restriction to

number of partitions K . This result makes heuristic techniques the

only viable option for modularity optimization problem. However,

heuristic techniques cannot guarantee that the partition is good

enough. It may result in a poor partition for some networks. In

other words, the algorithms fail to achieve an acceptable

modularity. We say an algorithm encounters failure if all nodes

are assigned to the same community.

Generative Model for Complex Network
Complex networks have non-trivial topological features that do

not occur in some simple networks but often occur in real

networks. An important feature of many complex networks is that

their degree distributions follow a particular mathematical

function called the power law [27,30,31], although it does not

always hold [32]. The power law implies that the degree

distribution of the network has no characteristic scale.

It is widely recognized as a seminal work presenting a model for

the observed stationary scale-free distributions of complex

networks by Price et al. [26]. Barabasi et al. [27] conclude that

this feature is a consequence of two generic mechanisms: (1)

networks expand continuously by the addition of new nodes; (2)

new nodes attach preferentially to communities that are already

well connected. Barabasi’s model is recognized by academia

[33,34]. Specifically, a new node vj will attach to an existing node

vi with probability p(vi) in proportion to the degree of node vi

p(vi)!deg(vi): ð2Þ

The above model only considers the case that a new edge links a

new node to an existing node. However, a new edge may link two

existing nodes or two new nodes. In fact, estimating the likelihood

of the appearance of a new edge between two existing nodes,

called link prediction, is one of the fundamental problems in

network analysis. A variant of preferential attachment mechanism

can be used to do link prediction [35]. Specifically, a new edge will

link two existing nodes vi and vj with probability p(vi,vj) in

proportion to the product of the degree of node vi and the degree

of node vj

p(vi,vj)!deg(vi)deg(vj): ð3Þ
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For a complete review of the statistical mechanics of network

topology and dynamics of complex networks, one can refer to

Boccaletti et al. [34] or Albert et al. [36]. Mitzenmacher et al. [37]

briefly surveyed some other generative models that lead to scale-

free distributions. For a summary of recent progress about link

prediction algorithms, one can refer to Lu et al. [38].

To facilitate subsequent work, we generalize a preferential

attachment mechanism from node to community. A new node will

attach to an existing community Ck with probability p(Ck) in

proportion to the degree of community Ck

p(Ck)!deg(Ck)

and a new edge will link two existing communities Ck1
and Ck2

with probability p(Ck1
,Ck2

) in proportion to the product of the

degree of community Ck1
and the degree of community Ck2

p(Ck1
,Ck2

)!deg(Ck1
)deg(Ck2

):

Here we propose a generative model for complex networks. Our

model generates a network G with M edges by addition of new

edges. It is starting from an empty network G0~60. For

m~0, . . . ,M{1, there are three cases for a new edge

emz1~fvi,vjg to be added in network Gm~fVm,Emg, namely,

Case (a): link a new node to an existing node,

fvi,vjg\Vm~fvig or fvi,vjg\Vm~fvjg, with probability pa;

Case (b): link two existing nodes, fvi,vjg(Vm, with probabil-

ity pb;

Case (c): link two new nodes, fvi,vjg\Vm~60, with probabil-

ity pc.

For case (a) and (b), the addition of the new edge follows

preferential attachment mechanism mentioned above (See Fig. 1).

Notice that pazpbzpc~1. When pa~1, our model is the same

as Barabasi’s model for growing networks.

Online Community Detection Algorithm
A straightforward way to do online community detection is to

take a sequence of edges as input, and optimize modularity

q(Pmz1) at each step for current network Gmz1 based on previous

partition Pm. However, this greedy algorithm may have poor

performance. Considering Barabasi’s model that every new edge

links a new node to an existing node, Brandes et al. [29] prove that

a partition with maximum modularity has no community that

consists of a single node with degree one, and a new node should

be assigned to an existing community, however this operation

makes all nodes in a same community and results in zero

modularity.

To avoid poor performance, our algorithm optimizes expected

modularity E½q(PM )� for final network GM , instead of modularity

q(Pmz1) for current network Gmz1 at each step. We calculate

E½q(PM )� based on our generative model and the partition as

follows: for existing nodes, we keep them in their current

communities; for new nodes, we assign them to the corresponding

existing communities to keep the degree of every existing

community (defined as sum of degree of nodes which belong to

that community) increasing and the expected increment of the

degree of community is proportional to the degree of community.

Such partition can make subsequent deriving of expected

modularity simple.

First we calculate q(Pmz1). Notice that
P

Ck,m[Pm
edg(Ck,m) can

be expressed as

X
Ck,m[Pm

edg(Ck,m)

DEmD
~q(Pm)z

X
Ck,m[Pm

deg(Ck,m)

2DEmD

� �2

Figure 1. Three cases for a new edge to be added in an existing network. (a) linking a new node to an existing node; (b) linking two existing
nodes; (c) linking two new nodes.
doi:10.1371/journal.pone.0102799.g001
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where Ck,m is community Ck at step m and DEmD is the number of

edges within network Gm, DEmD is always equal to m as our

algorithm processes one edge at one step. Hence q(Pmz1) can be

expressed as

q(Pmz1)~
X

Ck,mz1[Pmz1

edg(Ck,mz1)

jEmz1j
{

deg(Ck,mz1)

2jEmz1j

� �2
" #

~
m

mz1
q(Pm)z

1

4m(mz1)2

X
Ck,m[Pm

deg(Ck,m)2

z
1

mz1

X
Ck,mz1[Pmz1

edg(Ck,mz1){
X

Ck,m[Pm

edg(Ck,m)

2
4

3
5

{
1

4(mz1)2

X
Ck,mz1[Pmz1

deg(Ck,mz1)2{
X

Ck,m[Pm

deg(Ck,m)2

2
4

3
5:

ð4Þ

Then we calculate E(q(Pmz1)) under three cases separately as

follows:

Case (a): link a new node to an existing node. Without loss of

generality, we assume vi is the existing node and vj is the new

node. We assign the new node to the same community as the

existing node and have

E q Pmz1ð Þ½ �~
X

Ck(i),m[Pm

q(Pmz1)p(Ck(i),m)

~
X

Ck(i),m[Pm

q(Pmz1)
deg(Ck(i),m)

2m

~
m

mz1
q(Pm){

1

4m(mz1)2

X
Ck,m[Pm

deg(Ck,m)2

z
m

(mz1)2

where Ck(i) is the community which node vi belongs to.

Case (b): link two existing nodes. We do not change the

partition and have

E½q(Pmz1)�~ m

mz1
q(Pm)

z
1

8m2(mz1)2

X
Ck,m[Pm

deg(Ck,m)2{
1

2(mz1)2
:

Case (c): link two new nodes. We assign two new nodes to an

existing community with probability in proportion to the degree of

the existing community. Case (c)’s q(Pmz1) and E½q(Pmz1)� are

the same as case (a)’s.

Figure 2. Two operations to process a new edge linking a new node to an existing node. (a) A new node attaches to an existing node with
degree two, it joins the same community as the existing node; (b) Another new node attaches to the previous new node with degree one, it splits as
a new community.
doi:10.1371/journal.pone.0102799.g002

(4)
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Finally we calculate E½q(PM )� by combining E½q(Pmz1)� under

three cases together and applying it iteratively

E½q(PM )�~ mz1

M
q(Pmz1)

{
pa

4M

X
mvm0vM

1

m0(m0z1)
E

X
C

k,m0 [P
m0

deg(Ck,m0 )
2

2
4

3
5

z
pb

8M

X
mvm0vM

1

m02(m0z1)
E

X
C

k,m0 [P
m0

deg(Ck,m0 )
2

2
4

3
5

{
pc

4M

X
mvm0vM

1

m0(m0z1)
E

X
C

k,m0 [P
m0

deg(Ck,m0 )
2

2
4

3
5

zf (M,m)

ð5Þ

where f (M,m) only depends on M and m.

As our partition keeps the degree of every existing community

increasing, we have

deg(Ck,mz1)ƒdeg(Ck,m’)ƒdeg(Ck,mz1)z2(m’{(mz1))

and the expected increment of the degree of community is

proportional to the degree of community, thus the expected degree

of community Ck at step m’ can be expressed as

E½deg(Ck,m’)�~
m’

mz1
deg(Ck,mz1):

According to the Popoviciu inequality on variance, the variance

of deg(Ck,m’) has a loose upper bound

Var½deg(Ck,m’)�ƒ½m’{(mz1)�2:

So we have

X
Ck,m’[Pm’

E½deg(Ck,m’)�2ƒE½
X

Ck,m’[Pm’

deg(Ck,m’)
2�

ƒ

X
Ck,m’[Pm’

E½deg(Ck,m’)�2

zKm½(m’{(mz1))2�

where Km is the number of communities within network Gm and

E½q(PM )�~ mz1

M
q(Pmz1)

z
(2pb{2)(M{m{1)z(2{pb)( ln M{ ln (mz1))

8M(mz1)2

X
Ck,mz1[Pmz1

deg(Ck,mz1)2

zf (M,m)zO Km(
M{m

M
)2

� �
:

ð6Þ

Now we describe the online community detection algorithm.

For initial network G0~60, it is clear that the best partition P0 is an

empty set too. For subsequent networks Gmz1,
m~0,1,2, . . . ,M{1, we consider some candidate operations

which update the partition. Each operation has its corresponding

E½q(PM )�. We take the operation which has the largest E½q(PM )�.
In fact, we only need to know expected modularity gain

DE½q(PM )�, which is defined as E½q(PM )� of one operation minus

E½q(PM )� of another

DE½q(PM )�~ mz1

M
Dq(Pmz1)

z
(2pb{2)(M{m{1)z(2{pb)( ln M{ ln (mz1))

8M(mz1)2
D

X
Ck,mz1[Pmz1

deg(Ck,mz1)2

zO Km(
M{m

M
)2

� �
:

ð7Þ

We describe our operations under three cases separately as

follows:

Case (a): link a new node to an existing node. We consider two

operations: the Split operation where the new node splits as a new

community, and the Join operation where the new node joins the

Figure 3. Two situations of a new edge linking two existing nodes. (a) Nodes belong to a same community; (b) Nodes belong to different
communities.
doi:10.1371/journal.pone.0102799.g003

(6)

(7)
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Table 1. Summary of network data sets.

Data set Number of nodes Number of edges

ca-CondMat 23,133 93,439

ca-HepPh 12,008 118,489

email-Enron 36,692 183,831

ca-AstroPh 18,772 198,050

cit-HepTh 27,770 352,285

cit-HepPh 34,546 420,877

com-Amazon 334,863 925,872

com-DBLP 317,080 1,049,866

web-Stanford 281,903 1,992,636

Amazon0601 403,394 2,443,408

WikiTalk 2,394,385 4,659,565

doi:10.1371/journal.pone.0102799.t001

Figure 4. The evolution of temporal modularity over time by OLEM and OLTM.
doi:10.1371/journal.pone.0102799.g004
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same community as the existing node (See Fig. 2). Without loss of

generality, we assume vi is the existing node and vj is the new

node.

For the Split operation, we have

qSplit(Pmz1)

~
m

mz1
q(Pm)z

1

4m(mz1)2

X
Ck,m[Pm

deg(Ck,m)2{
deg(Ck(i),m)z1

2(mz1)2
:

The existing community Ck(i) has degree

deg(Ck(i),mz1)~deg(Ck(i),m)z1 and the new community CKz1

has degree deg(CKz1,mz1)~1 at step mz1.

For the Join operation, we have

qJoin(Pmz1)

~
m

mz1
q(Pm)z

1

4m(mz1)2

X
Ck,m[Pm

deg(Ck,m)2{
deg(Ck(i),m){m

(mz1)2
:

The existing community Ck(i) has degree deg(Ck(i),mz1)~

deg(Ck(i),m)z2 at step mz1.

Then we have

Dq(Pmz1)~qSplit(Pmz1){qJoin(Pmz1)~
deg(Ck(i),m){2m{1

2(mz1)2

and

D
X

Ck,mz1[Pmz1

deg(Ck,mz1)2~{2deg(Ck(i),m){2:

We estimate pb by observed frequency of case (b). Taking

together and omitting the error term, we can obtain DE(q(PM )),
and take the Split operation if it is positive or the Join operation

otherwise.

Case (b): link two existing nodes, two existing nodes may or

may not belong to the same community (See Fig. 3). If both nodes

belong to the same community, it is hard to propose a suitable

candidate operation. So, we take the Dense operation where we

keep current partition unchanged. Otherwise we consider two

Table 2. Modularity by three community detection algorithms.

Data set OLEM OLTM Louvain

ca-CondMat 0.6446 0.6585 0.7288

ca-HepPh 0.5734 0.6052 0.6549

email-Enron 0.5447 0.0464 0.5876

ca-AstroPh 0.5418 0.5523 0.6149

cit-HepTh 0.5885 0.6146 0.6571

cit-HepPh 0.6278 0.6771 0.7228

com-Amazon 0.7050 0.7057 0.9256

com-DBLP 0.7252 0.7335 0.8091

web-Stanford 0.8377 0.8702 0.9256

Amazon0601 0.7785 0.4533 0.8670

WikiTalk 0.5344 0.0897 0.5831

doi:10.1371/journal.pone.0102799.t002

Table 3. Average running time (in seconds) over 10 runs by three community detection algorithms.

Data set OLEM OLTM Louvain

ca-CondMat 0.3120 0.2683 0.5029

ca-HepPh 0.3344 0.2387 0.3872

email-Enron 0.6396 0.4040 0.7004

ca-AstroPh 0.6334 0.5257 0.5806

cit-HepTh 1.0972 0.8502 1.0353

cit-HepPh 1.3736 1.1576 1.1707

com-Amazon 5.0592 4.7429 6.6453

com-DBLP 4.6914 4.3096 6.9377

web-Stanford 5.8879 5.1023 32.0137

Amazon0601 9.8601 8.1857 12.7132

WikiTalk 25.0043 17.6910 27.0956

doi:10.1371/journal.pone.0102799.t003
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operations: (1) the Move operation where we move one node from

its community to another node’s community; (2) the Keep
operation where we keep the current partition unchanged.

Without loss of generality, we assume vi is the moving node and

have

Dq(Pmz1)~qMove(Pmz1){qKeep(Pmz1)

~
deg(vi,Ck(j),m){deg(vi,Ck(i),m)z1

mz1

{
(deg(vi)z1)(deg(Ck(j),m){deg(Ck(i),m)zdeg(vi)z1)

2(mz1)2

where deg(vi,Ck,m)~Dfeij Dvj[Ck,mgD is number of edges from the

node vi to the community Ck at step m and

D
X

Ck,mz1[Pmz1

deg(Ck,mz1)2~4deg(vi)(deg(Ck(j),m)

{deg(Ck(i),m)zdeg(vi)):

Therefore, we obtain DE(q(PM )) and determine the operation

in the same way as we do in case (a).

Case (c): link two new nodes, we consider two operations: the

New operation where we assign two new nodes to a new

community and the Merge operation where we assign them to

an existing community. We have

Dq(Pmz1)~qNew(Pmz1){qMerge(Pmz1)~
deg(Ck(i),m)

(mz1)2

where Ck(i),m is the existing community and

D
X

Ck,mz1[Pmz1

deg(Ck,mz1)2~{4deg(Ck(i),m)

Notice that DE½q(PM )� is almost always positive for large

complex networks. So we take the New operation for case (c) to

reduce complexity.

In summary, our algorithm takes a sequence of edges as input

and optimizes expected modularity at each step. We assign node to

community according to the maximum expected modularity gain

principle. If only one node of the current edge belongs to the

existing network, we split another node to a new community if this

operation can maximize expected modularity gain, otherwise we

let it join the same community as the existing node; if both nodes

of current edge belong to the existing network but they belong to

different communities, we move one node according to the same

principle; if neither node of current edge belongs to the existing

network, we just assign them to a new community. Obviously, our

algorithm has O(M) time complexity. The space complexity is

O(NK) because we need to store deg(vi,Ck) for calculating

expected modularity gain in constant time. Our algorithm has two

major advantages: (1) the update only uses knowledge about

network’s local structure related to the new edge; (2) the update

can be done in constant time. Thus it can efficiently process large

networks in real time.

Results

In this section, we present the experimental results of our online

community detection algorithm and compare it with a state-of-the-

art algorithm, Louvain algorithm, proposed by Blondel et al. [39].

For simplicity, we use OLEM to refer to our algorithm, OLTM to

refer to a simplified version of our algorithm which greedily

optimizes temporal modularity q(Pmz1) (See Eq.(4)) instead of

expected modularity E½q(PM )� (See Eq.(6)), and Louvain to refer

to the Louvain algorithm.

The experiments use 11 public real-world large network data

sets from Stanford Large Network Dataset Collection (http://

snap.stanford.edu/data/), which are commonly used by research-

ers. Their number of nodes varies from 12,008 to 2,394,385 and

their number of edges varies from 93,439 to 4,659,565 (See

Table 1). These data sets are

N ca-CondMat: Collaboration network of Arxiv Condensed

Matter [40];

N ca-HepPh: Collaboration network of Arxiv High Energy

Physics [40];

N email-Enron: Email communication network from Enron

[41];

N ca-AstroPh: Collaboration network of Arxiv Astro Physics

[40];

N cit-HepTh: Arxiv High Energy Physics paper citation

network [42];

N cit-HepPh: Arxiv High Energy Physics paper citation

network [40];

Table 4. Number of communities by three community detection algorithms and Yang’s labeled community structure.

Data set OLEM OLTM Louvain Labeled

Amazon 1,988 1,979 217 5,000

DBLP 4,122 3,854 301 5,000

doi:10.1371/journal.pone.0102799.t004

Table 5. NMI Benchmark by three community detection algorithms comparing with Yang’s labeled community structure.

Data set OLEM OLTM Louvain

Amazon 0.7261 0.7273 0.3118

DBLP 0.2355 0.2376 0.1958

doi:10.1371/journal.pone.0102799.t005
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N com-Amazon: Amazon product network with labeled

community structure [43];

N com-DBLP: DBLP collaboration network with labeled

community structure [43];

N web-Stanford: Web graph of Stanford.edu [41];

N Amazon0601: Amazon product co-purchasing network from

June 1 2003 [44];

N WikiTalk: Wikipedia talk (communication) network [45].

The edges should be processed in the same order as expanding

procedure of the networks. However, those data sets do not have

timestamps on the edges. In the experiments, we process the edges

in order of their appearance in the raw files.

We use C# to implement our algorithms (Our C# implemen-

tation can be downloaded from http://www.cs.zju.edu.cn/

,gpan/code/pone2013.zip). For comparison, we employ the C

implementation of the Louvain algorithm provided by the authors

(https://sites.google.com/site/findcommunities/). We carry out

experiments on a Windows based Genuine Intel (R) CPU i7 @

2.70 GHz machine with 4.00 GB memory.

Modularity and average running time (in seconds) over 10 runs

by OLEM, OLTM, and Louvain are reported in Table 2 and

Table 3. The evolution of temporal modularity over time by

OLEM and OLTM is shown in Fig. 4.

We can see that OLTM is faster than Louvain in all data sets

and OLEM is faster than Louvain in many data sets except ca-

AstroPh, cit-HepTh and cit-HepPh. With the modularity measure,

OLEM and OLTM cannot achieve similar performance to

Louvain. This is due to our algorithms being online one-pass

algorithms while Louvain is an offline multi-pass algorithm. Our

algorithms’ running times are linear in number of edges as we

expected while Louvain is not. This is due to the number of passes

of Louvain is not fixed. Most of all, Louvain needs to start from

the beginning when a new edge is added while our algorithms do

not.

OLTM is faster than OLEM because Dq(Pmz1) is simpler than

DE½q(PM )�. In fact, we calculate 2(mz1)2Dq(Pmz1) instead of

Dq(Pmz1) in our implementation as the former only involves

integer arithmetic which is faster than float-point arithmetic.

OLEM keeps relatively stable performance in all data sets while

OLTM has exceptionally poor performance in the email-Enron

and WikiTalk data sets. We will further investigate the underlying

cause for OLTM later. OLTM often performs slightly better than

OLEM in the other data sets. It may be due to our approximation

of expected modularity by a lower bound in OLEM.

As we mentioned in the Introduction Section, the modularity

optimization based approach may fail to identify communities

smaller than a scale, which is called a resolution limit problem

[17]. To investigate this problem, we compare results of OLEM,

OLTM and Louvain in the com-Amazon and com-DBLP data

sets. We choose the two data sets because Yang et al. [43] released

a labeled community structure for either of the data sets (http://

snap.stanford.edu/data/com-Amazon.html, http://snap.stanford.

edu/data/com-DBLP.html). For com-Amazon data set, Yang et
al. labeled products from the same category as a community and

Figure 5. The percentage of different operations of OLTM over time. The height of each color segment represents the percentage of an
operation at a certain progress. ‘‘Op’’ is the abbreviation for ‘‘Operation’’ of OLTM at each step.
doi:10.1371/journal.pone.0102799.g005
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nodes (products) that belong to a common community share a

common function or purpose. For com-DBLP data set, they

labeled authors who published to a certain journal or conference

as a community and nodes (authors) that belong to a common

community share a comon research interest. For each data set, we

use the top 5,000 subset, same as [43], for comparison.

We find that, although both our method and the Louvain
method optimize the modularity function, the number of

communities in Louvain’s result is less than that in our results

(See Table 4). It is due to our method and the Louvain method

achieving optimization in different ways. The Louvain method

optimizes the modularity function by merging pair of communities

in each pass, while our method optimizes the modularity function

Figure 6. The percentage of different operations of OLEM over time. The height of each color segment represents the percentage of an
operation at a certain progress. ‘‘Op’’ is the abbreviation for ‘‘Operation’’ of OLEM at each step.
doi:10.1371/journal.pone.0102799.g006

Table 6. The statistics of modularity on 10 reordered data sets as well as modularity on original data set by our algorithm.

Data set q(Original) AVG(q) MAX(q) MIN(q)

ca-CondMat 0.6446 0.5344 0.5375 0.5298

ca-HepPh 0.5734 0.5844 0.5872 0.5823

email-Enron 0.5447 0.4730 0.4872 0.4541

ca-AstroPh 0.5418 0.5468 0.5536 0.5427

cit-HepTh 0.5885 0.5777 0.5873 0.5588

cit-HepPh 0.6278 0.6376 0.6524 0.6288

com-Amazon 0.7050 0.5903 0.5916 0.5895

com-DBLP 0.7252 0.5706 0.5715 0.5694

web-Stanford 0.8377 0.7431 0.7501 0.7385

Amazon0601 0.7785 0.5682 0.5708 0.5647

WikiTalk 0.5344 0.5102 0.5104 0.5101

doi:10.1371/journal.pone.0102799.t006

Online Community Detection for Complex Networks

PLOS ONE | www.plosone.org 10 July 2014 | Volume 9 | Issue 7 | e102799



by moving nodes of the new edge at each step in order to satisfy

the real-time processing. Generally speaking, merging communi-

ties may obtain higher modularity gain than moving nodes, so the

Louvain method is better than our method to optimize the

modularity. However, merging communities in each pass will

reduce the number of communities in final result as each merging

operation will eliminate one community. It causes that the

Louvain method will miss small communities.

Further, the similarity between the results and labeled

community structures can be measured by NMI (Normalized

Mutual Information) criterion [46]. We find that, measured in

NMI, our results are more similar to labeled community structure

than Louvain’s result (See Table 5). The main reason may be that

our methods can find more communities of small scale, which the

Louvain method may be hard to identify.

The reason for OLTM’s poor performance in the email-Enron

and WikiTalk data sets is that OLTM has no Split operation for

case (b) edge. As OLTM is a greedy approach, it only takes the

Join operation for case (b) edge to maximize temporal modularity.

Hence the only way for OLTM to create new community is its

New operation for case (c) edge. If a data set has few case (c) edges

at its beginning, OLTM cannot create enough communities in the

early stage and obtains a poor final partition. In the worst

situation, the data set has no case (c) edge and OLTM fails. In fact,

email-Enron and WikiTalk data sets have very few case (c) edges at

their beginning, comparing with the other data sets.

In contrast, with the help of expected modularity, OLEM can

take the Split operation for case (b) edge. Hence it can create

enough communities in the early stage and obtains an acceptable

final partition in email-Enron and WikiTalk data sets.

To compare OLTM and OLEM’s operations, we plot the

percentage of different operations of OLTM and OLEM over time

in Fig. 5 and 6. We can see that OLTM generally only takes the

Join and Dense operations until very later stage while OLEM takes

many Split operations in the early stage in the email-Enron and

WikiTalk data sets. Therefore, OLEM’s temporal modularity

increases steadily over time while OLTM’s temporal modularity

remains zero until very later stages in email-Enron and WikiTalk

data sets (See Fig. 4). In fact, OLEM can obtain an acceptable

modularity even in early stage for the email-Enron and WikiTalk

data sets.

As a statistical analysis, we created 10 copies of each original

data set with the edges randomly reordered and ran our algorithm

on those reordered data sets. The statistics of modularity in those

reordered data sets as well as modularity in original data set are

reported in Table 6. Modularity in original data set is significantly

better than those in reordered data sets for ca-CondMat, email-

Enron, com-Amazon, com-DBLP, web-Stanford, and Ama-

zon0601. We guess, for these six data sets, the storing order of

edges may be close to the order of their expanding. For the other

data sets, modularity difference between the original and

reordered is slight. We think the edges may be not stored by

their creation time in those data sets.

Conclusions

In this paper we have examined the problem of online

community detection for large complex networks in which new

edges continually appear while old edges do not disappear. We

have formulated it as a modularity optimization problem. We have

proposed a generative model for complex networks and developed

an online algorithm with linear time complexity. Our algorithm

processes a network edge by edge in the order that the network is

fed to the algorithm. It does not optimize modularity but expected

modularity to avoid poor performance. The two major advantages

of our algorithm are (1) the update only uses knowledge about

network’s local structure related to the new edge; (2) the update

can be done in constant time. Our algorithm can efficiently

process large networks in real time. The algorithm has been

applied to 11 public real-world large network data sets and our

experiments give very encouraging results. Not only is the

proposed algorithm scalable in terms of both time and space

complexity, but it also gives comparable performance. Our future

research will consider (1) combining OLTM and OLEM into a

better one; (2) improving the generative model to allow edge to

appear and disappear in general probability distribution; (3)

exploring how to apply our method to other objective functions.
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