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Abstract

One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly
identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has
become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The
standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well
average value with a standard deviation. To address this important issue we sought to define a method that could be
readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide
decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be
effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The
indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response
including sample preparation and instrument performance were well characterized and controlled. These heterogeneity
indices provide a standardized method that can easily be integrated into small and large scale screening or profiling
projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding
the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development
of therapeutics including targeted polypharmacology.
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Introduction

One of the greatest challenges in drug discovery and

development is understanding how seemingly identical cells

respond differently to drug treatment [1]. In cancer, the

prevalence of intra-tumor genetic and phenotypic heterogeneity,

results from clonal evolution [2,3], epigenetic plasticity[4] and

variation in tumor microenvironments [5] and suggest that a single

drug targeting a single driver is not likely to adequately control

disease progression [6]. The complexity of the tumor microenvi-

ronment, which extends to stromal cells, including immune cells,

may contribute significantly to the development of resistance to

treatment [5]. Efforts to recapitulate the in vivo tumor microen-

vironment in physiologically relevant models will require an-

alytical approaches that address the heterogeneity in the model

[7,8]. However, cellular heterogeneity is not limited to cancer cells,

but is exhibited even in normal, clonal cell lines, and the impact of

heterogeneity extends from basic biology to drug discovery and

diagnostics [9–11].

It is now understood that there are multiple sources of

heterogeneity in cell populations including both genetic and

non-genetic factors. Genetic variation is well studied [4,12,13].

Non-genetic heterogeneity, also referred to as phenotypic hetero-

geneity, is variability of one or more phenotypes or traits within a

clonal population [9]. Non-genetic heterogeneity has been

organized into a hierarchy of dichotomies starting with extrinsic

versus intrinsic factors [9]. Variation in extrinsic factors results

from variation in the cellular microenvironment. Intrinsic

heterogeneity arises from intracellular factors, even in a uniform

environment, and can be further subdivided into macro- and

micro-heterogeneity [9]. The former refers to the variability in one

or more cell traits that result in discrete phenotypes and the latter
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to the apparently continuous random variation within a single

phenotype. It is widely accepted that non-genetic heterogeneity

plays an important biological role in cell behaviors such as cell fate

decision in stem cells, development and cellular physiology [9–11].

It is also of increasing interest in tumor diagnostics, therapeutics

and disease management, as well as drug discovery and

development [14–17].

A major opportunity in drug discovery is to apply a quantitative

systems pharmacology (QSP) approach to modulating the

biochemical networks that are involved in disease, in contrast to

identifying and validating a single molecular target up front [18–

20]. High Content Analysis (HCA) [21,22], flow cytometry [23],

single cell genomics [24] and other ‘‘phenotypic’’ methods provide

the capability to measure multiple biomarkers in large numbers of

individual cells. In particular, HCA can be used to profile

individual cells within tissues and small animal models, as well as

in 2D and 3D arrays of cells [15,25]. However, it has been

standard practice in HCA to reduce the detailed cellular data to a

population average (well average) that is intended to characterize

the overall response of the cells, assuming a normal distribution

[26].

The plate-to-plate and the day-to-day variabilities of HCA

measurements are usually characterized by the Z’ factor or the

strictly standardized mean difference (SSMD) [26–29]. These

metrics assume a normal distribution of the well average data [30].

However, there has not been a similar effort in HCA to address

phenotypic heterogeneity in a simple, standard and quantitative

manner amenable to medium to high throughput screening. There

have been multiple studies in which cellular heterogeneity was

evaluated and characterized. For example, classifiers were trained

to identify subpopulations based on collections of phenotypic

features. In some cases the subpopulations were characterized by

the median and interquartile range [31]. In addition, an analysis

based on visual analytics combining parallel-coordinate plots, used

for a visual assessment of the high-dimensional dependencies, and

nonlinear support vector machines, for the quantification of

heterogeneity, has also been demonstrated [32]. A heterogeneity

scoring approach (HetMap) was designed to visualize the

heterogeneity within an individual patient’s breast tissue based

on immunohistochemistry in the context of a patient population

[33]. Furthermore, analytical tools such as Kolmogorov-Smirnov

(KS) statistics, machine learning, and univariate and multivariate

analyses have been applied to analyze perturbations in cells with

drugs and siRNA [34–43]. These analytical tools have been

valuable for characterizing heterogeneity and demonstrating the

value of heterogeneity analysis in drug discovery, pathway analysis

and diagnostics, but are not optimal for routine evaluation of

large-scale screens or profiles.

The goal of the present paper is to describe a method for the

analysis of cellular heterogeneity in cellular phenotypes that

includes: developing a set of ‘‘indices’’ to identify, quantify and

characterize heterogeneity in a way that it can be easily included

in all screening and cellular profiling; as well as to demonstrate an

optimal data representation to visualize the full range of

heterogeneity in the data when it is identified. We use

heterogeneity in the activation of STAT3 as a model system for

developing and testing indices and show how the heterogeneity

indices can be used in high throughput biology and drug discovery

to quantify, compare and flag studies in which: 1) there is a high

degree of variability in the cellular responses, 2) results suggest

there is more than one subpopulation, or 3) there are more than

the expected number of outliers. This important information will

also be essential to interpreting cellular responses in multiplexed,

2D and 3D screens, as well as within more complex microenvi-

ronments in vivo and in vitro, in physiologically relevant disease

and organ models, as well as patient samples.

Materials and Methods

Cell culture
Cal33 human head and neck squamous cell carcinoma

(HNSCC) cells [44,45] were kindly provided by Dr. Gerard

Milano (University of Nice, Nice, France). The cell line was

maintained in Dulbecco’s modified Eagle’s medium (Life Tech-

nologies) supplemented with 10% fetal bovine serum (Gemini Bio-

Products), 100 U/ml penicillin and 100 mg/ml streptomycin

(HyClone). MCF-7 and MDA-MB-468 human breast carcinoma

cells [ATCC cell lines obtained from Dr. Adrian Lee, University of

Pittsburgh] were cultured in DMEM Glutamax media (Life

Technologies) supplemented with 10% FBS (Gemini Bio-Prod-

ucts), 100 U/ml penicillin and 100 mg/ml streptomycin (Hy-

Clone). MCF-10A human breast cells [ATCC cell line obtained

from Dr. Adrian Lee] were cultured in DMEM F12 media (Life

Technologies) supplemented with 5% Horse Serum (Life Tech-

nologies), 10 mg/ml Insulin (Sigma-Aldrich), 20 ng/ml Epidermal

Growth Factor (Sigma-Aldrich), 20 ng/ml Cholera Toxin (Sigma-

Aldrich), 500 ng/ml Hydrocortisone (Sigma-Aldrich), and 1%

Penicillin/Streptomycin (Life Technologies). All cell lines were

maintained in humidified incubators at 37uC with 5% CO2.

Stimulation and inhibition of STAT3 phosphorylation
Cal33 cells were plated in collagen-coated 384-well plates

(Greiner Bio-One) at 2000 cells/well to reach 50% confluence on

the day of fixation. The cells were incubated at 37uC for 24 hours

followed by serum deprivation for another 24 hours. For

stimulation of STAT3 phosphorylation, human recombinant

interleukin-6 (IL-6) and Oncostatin M (OSM) (R&D Systems)

were added in 2-fold or 2.4-fold serial dilution for 10 final

concentrations descending from 200 ng/ml or 50 ng/ml, respec-

tively. For the time course of cellular response to stimulation, the

cells were incubated with cytokines at 37uC for 15, 30, 45, 60 and

120 minutes before fixation. For inhibition of STAT3 phosphor-

ylation, Pyridone-6 (Calbiochem) was added in 10-point 3-fold

serial dilution for final concentrations descending from 5 mM.

Stattic (Sigma-Aldrich) was added in 10-point 3-fold serial dilution

for final concentrations descending from 50 mM. After 3 hours

incubation with the inhibitors at 37uC, cells were stimulated with

50 ng/ml of IL-6 for 15 minutes (peak induction time) before

fixation. Each treatment was performed in triplicate. Each

experiment was repeated at least 3 times. The assays were

optimized for cell density, cytokine dose and treatment time with

their robustness validated using the Z’ factor [27]. Each plate

included 16 positive and 16 negative control wells from which the

Z’ was calculated (ranged from 0.5 to 0.8).

Immunofluorescence labeling
Cells were treated with cytokines with or without incubation

with inhibitors, then fixed in plates for 30 minutes at room

temperature with 3.7% Formaldehyde in PBS, 2 mg/ml Hoechst

33342 (Life Technologies) for nuclear staining, and then

permeabilized on ice with 95% MeOH in PBS for 30 minutes.

Permeabilized cells were washed and incubated with 0.1% Tween-

20 in PBS at 4uC overnight. Cells were labeled for 1 hour with a

1:800 dilution of mouse anti-pY705 STAT3 antibody (BD

Biosciences) followed by a 1 hour incubation with a 1:300 dilution

of the Alexa Fluor 647-donkey anti-mouse AffiniPure secondary

antibody (Jackson ImmunoResearch) prior to high content

Heterogeneity in HCS: Application to Drug Discovery
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imaging. The fixation procedure and antibody titrations were

optimized individually.

High Content Analysis
Labeled cells were imaged with an ArrayScan VTI (Thermo-

Fisher -Cellomics) using a 10X (0.45NA) objective, a stable LED

illumination source with excitations of 386/23 nm and 650/

13 nm, and a multiband emission filter with transmission at 440/

40 nm and 700/60 nm for Hoechst (Ch1) and AlexaFluor 647

(Ch3), respectively. Image correction for non-uniformity of the

field of the VTI was accomplished using an Opera Adjustment

Plate (PerkinElmer) which contains uniform dye solutions as

targets for reference image collection. Images were corrected using

the VTI acquisition software and analyzed using the Compart-

mental Analysis Bioapplication (Thermo Fisher- Cellomics).

Briefly, the Hoechst nuclear images were segmented using an

isodata threshold. The DNA content was measured as the

Bioapplication feature ObjectTotalIntenCh1 for the selected

nuclear region (‘circ’). The ‘circ’ regions were copied to channel

3 where it was used to construct a ‘ring’ starting 1 pixel out from

the ‘circ’ and 3 pixels wide. The STAT3 phosphorylation was

measured using the Bioapplication feature CircRingAvgInten-

DiffCh3. Images of four fields (typically ranges from 2000 to 2500

cells total) were acquired for each well. The pixel average nucleus-

cytoplasm difference (CircRingAvgIntenDiffCh3) in pSTAT3

fluorescence intensity (referred as ‘‘Relative Activity’’ in the plots)

was calculated for each cell in all four fields. Cell level data were

retrieved from the Cellomics Store Database (ThermoFisher) into

Spotfire (TIBCO) using SQL queries and plotted for dose and

time dependent responses. Experimental metadata were merged

into Spotfire using an Excel (Microsoft) template and the

combined data was analyzed to generate a ‘histo-box plot’ as

described below.

Flow Cytometry
Cell and Bead Standards: Flow cytometry standards were used

to establish the resolution and linearity of the high content imaging

relative to that of a flow cytometer. In this study we used Becton

Dickinson 2 mm beads (DNA QC Particles 349523, Becton

Dickinson).

Flow Cytometry: The LSR II (Becton Dickinson) was config-

ured with UV-355 nm, Violet-404 nm, Blue-488 nm and red-633

excitations. The pulse emission areas were collected with the

following filters: Hoechst 33342–450/50 nm, Fluorescein – 530/

30 nm, Cy3 – 610/20 nm, Cy5 – 660/20 nm and Cy7 – 780/

60 nm. To establish that high content imaging was capable of

acquiring accurate DNA histograms, Cal33 cells were run on both

the LSR II flow cytometer and the ArrayScan VTI High Content

imager (ThermoFisher). The cells were trypsinized, fixed, stained

with Hoechst 33342 (Life Technologies) at 2 mg/ml. The flow

cytometry sample was run as a suspension of 26106 cells/ml at a

rate of ,100 cells/sec. The data were then analyzed with FlowJo

7.6.5 (TreeStar) or exported as FCS 3 format for cell cycle analysis

in ModFit (Verity Software House). For high content imaging, the

Cal33 cell suspension was spun down on a 96 well microplate. The

data were exported to text files that were converted to FCS format

with Text to FCS Software 1.2.1 and then analyzed identically to

the flow cytometry data.

Visualization of subpopulation distributions
A modification of a standard ‘box plot’ was generated in

Spotfire to visualize the distributions of cellular responses and

identify heterogeneity in those cell populations. The ‘box’ in a box

plot represents the extent of the central 50% of the population but

gives no indication of the distribution of those values. Spotfire

includes an option in the ‘Appearance’ settings for the box plot to

overlay the distribution (histogram) which we used to create the

visualization we refer to as a ‘histo-box plot’. Similar plots, such as

violin plots [46] and bean plots [47], can be created in R [48],

Matlab (MathWorks) and other applications. The histo-box plot

was used to analyze experimental data from the High Content

Screening assays. Parameters characterizing the distribution such

as the interquartile range (IQR), lower and upper inner fences and

percent outliers were calculated. Log scaling of histo-box plots was

done by applying the ‘Log10’ function in Spotfire to the average

CircRingAvgIntenDiffCh3 values and is referred as ‘Log (Relative

Activity)’ in the plots.

Data analysis
Statistical measures used for heterogeneity analysis:

Coefficient of variation CVð Þ s=m ð1Þ

Interquartile Range IQRð Þ Q3{Q1 ð2Þ

Quadratic Entropy QEð Þ QE~
XN

iwj~1

dij|pi|pj ð3Þ

Kolmogorov{Smirnov distance KSð Þ

KS~ max jCDFdat{CDFref j
ð4Þ

where s is the standard deviation (SD), m is the mean, Qn is the n-

th quartile, N is the number of data values, d is a linear matrix of

intensity differences between data points i and j, p is the

probability distribution of data points, and CDFdat and CDFref

are the cumulative distribution functions of the data and a

reference distribution, respectively. Quadratic entropy was calcu-

lated as a summation over 64 equally spaced bins spanning the

range from -34 to 1441 to minimize the finite size effects associated

with the binning scheme. Scalar statistic KS values were computed

for each sample distribution using the MATLAB (MathWorks)

function ‘kstest()’ and a reference normal distribution generated as

a Gaussian distribution:

g(xDm,s)~
1

s
ffiffiffiffiffiffi
2p
p exp {

(x{m)2

2s2

( )
: ð5Þ

with the mean m and standard deviation s of the measured sample

distribution and g is the probability density about x.

Results

Characterization of heterogeneity in HCS
We optimized the assay and performed an HCS screen to

measure the activation of the STAT3 signaling pathway in

response to interleukin 6 (IL-6) and/or Oncostatin M (OSM) using

an antibody against phospho-STAT3-Y705 [49]. The assay was

optimized and validated for timing and duration of activation, as

well as robustness in several cancer and normal cell lines (Figure

S1). The induction of STAT3 by IL-6 in Cal33 cells exhibited a

high level of cell-to-cell variation even at the optimal exposure

time of 15 minutes and a dose that produced maximal activation

Heterogeneity in HCS: Application to Drug Discovery
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($50 ng/ml IL-6). The variability in the fluorescence intensity of

the nuclear localized, activated (phosphorylated) STAT3 was

easily observed in the images (Figure 1A). Despite this cell to cell

heterogeneity within each well, the assay was highly reproducible

by standard criteria (a Z’$0.5, and a signal-to-background .5)

and exhibited a typical dose-response (Figure 1B). However, the

reproducibility indicated in Figure 1B is a measure of the well-to-

well reproducibility and does not give any indication of the cell-to-

cell variability demonstrated by the large error bars (61 SD)

within a well (Figure 1C). Application of standard assay

performance criteria like Z’ to the characterization of cell-to-cell

reproducibility would result in a highly negative Z’, indicating high

cell-to-cell variability, as we observed in Figure 1A and 1C, but no

insight into the nature of the cellular heterogeneity. Clearly a

different approach to characterizing cellular heterogeneity is

needed as a complement to determining the Z’ and S/B for an

assay.

To determine whether the high degree of variation in the level

of STAT3 activation was unique to the Cal33 cell line, and/or

activation by IL-6, we validated the assay on a panel of 5 cell lines

and then compared the activation of STAT3 by 2 different

cytokines, IL-6 and OSM. Figure 2 shows example distributions of

STAT3 activation by 5 doses of IL-6 or OSM in the 5 cell lines

(data provided as DataArchive S1). To visualize the distribution

and statistical parameters of the cellular responses we used a

standard box plot with an overlaid histogram that we refer to as a

‘histo-box plot’ (see Figure S2 for more details). The interquartile

range (IQR, the ‘box’) extends from the 1st quartile to the 3rd

quartile and comprises 50% of the data. The histogram extends

from the lower inner fence (LIF) to the upper inner fence (UIF).

Outliers, points outside the range from LIF to UIF (indicated as

individual points on the plot), as well as reference indicators of the

average (white line) and the 10th and 90th percentiles (black dashed

lines) are presented in the plot. Note that although a standard box

plot indicates the median of the distribution, here for reference we

show the more commonly used assay parameter, the average

value. Clearly the distributions of the activation of STAT3 vary

widely between these cell types, and cytokines.

As illustrated in Figure 2, Cal33 cells exhibit a bimodal

distribution in response to IL-6 and a more ‘‘normal’’ distribution

(though with more outliers) in response to OSM, demonstrating

that different signaling ligands can induce distinct patterns of

heterogeneity in the same cell type. In contrast, 686LN and MCF-

10A cells exhibit a similar distribution of responses to both IL-6

and OSM. The 686LN cells were <4-fold more sensitive to IL-6

and <2-fold less sensitive to OSM than either Cal33 or MCF-10A

cells. The breast cancer cell lines, MCF-7 and MDA-MB-468,

showed little or no response to IL-6, with an apparent dose-

dependent increase in outliers, indicating that a small subset of the

cells respond to IL-6 to the same extent as Cal33 or 686LN cells

and with the same sensitivity as Cal33 cells. The breast cancer cells

exhibit very different responses to OSM. The MDA-MB-468 cells

response to OSM is similar to the MCF-10A cells, while the

majority of MCF-7 cells respond over a range from seemingly non-

responsive to low level responders with outliers exhibiting a high

level response comparable to MCF-10A and MDA-MB-468. In

summary, we observed differences in distributions between cell

lines and between cytokines that varied from narrow to broad,

bimodal vs. normal and variation in the number of outliers. The

presence of macro-heterogeneity, micro-heterogeneity and a

variable % of outliers were evident in these data.

To ensure that the observed heterogeneity was not due to

instrumental or measurement variability (instrument systems

response), we compared HCA measurements of standard fluores-

cent beads and DNA content in Cal33 cells with measurements of

the same samples by flow cytometry (Table S1, Figure S3). In both

cases the imaging CV was 2–3% higher than the flow cytometry

CV, as expected, but still only about 5% for beads and about 8%

for DNA content, well below the CV of < 50% in Figure 1C.

Therefore, instrumental systems response is not an explanation for

the heterogeneity.

In this study, simple biological explanations for the heteroge-

neity observed in Figure 2 could include a dependence on cell

cycle and/or expression level of the IL-6 receptor. We investigated

the potential cell cycle dependence of the activation of STAT3 and

found there was no correlation between cell cycle phase and

STAT3 activation by IL-6 (Figure S4). Western blot analysis of the

expression levels of IL-6 in the cell lines indicates that

responsiveness is not directly correlated with total receptor

expression (Figure S5). Determination of the molecular basis of

Figure 1. Heterogeneity in the activation STAT3 in Cal33 cells. Cal33 cells were treated with IL-6 (50 ng/ml) for 15 min. then fixed and labeled
with an antibody to phospho-STAT3-Y705. A) Pseudocolor image of STAT3 activation shows a high degree of heterogeneity in the intensity of the
Cy5-labeled secondary antibody (color scale at lower right indicates mapping of relative fluorescent intensities to colors). Scale bar is 100 um (lower
left). B) The standard deviation of the well average STAT3 activity in replicate wells (EC50 = 3.3 ng/ml, error bars are 61s, N = 8) indicates the assay is
highly reproducible despite the observed cellular heterogeneity (Z’ = 0.54) C) The standard deviation of the cellular STAT3 activity (error bars are 61s)
indicates the high variability in the cell-to-cell STAT3 Activity consistent with the appearance of the image (A).
doi:10.1371/journal.pone.0102678.g001
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the heterogeneity is an important challenge and is being pursued

with a range of experimental approaches, including live cell,

kinetic studies of STAT3 activation, but is beyond the scope of this

investigation.

Because the Cal33 cells exhibited a bimodal distribution in

response to IL-6 and a more normal distribution in response to

OSM, we decided to examine those dose-responses in more detail

(Figure 3, DataArchive S1). STAT3 activation by IL-6 in Cal33

cells exhibited a bimodal distribution, with a $10% apparently

non-responding subpopulation at all concentrations tested

(Figure 3A and 3B). For comparison of distributions with different

means, or potentially log-normal distributions [50], we also used a

log-scaled histo-box plot (see Figure S2). Linear scale plots

(Figure 3A & 3C) allow visualization of the intensity range,

separation and size of the subpopulations. When plotted on a log

scale (Figure 3B & 3D), the apparent width of a distribution is

proportional to the linear CV, independent of the mean intensity,

allowing direct comparison of the subpopulation CVs (micro-

heterogeneity). The linear scaled histo-box plot exhibits a narrow

distribution of cells at the unstimulated level of STAT3 intensity

(highlighted in blue), with only a few outliers of activated cells (,

2%). Upon activation with IL-6, there remains a distinct and

persistent subpopulation (<10% at the saturation level of

stimulation-100 ng/ml) of apparently non-responding cells (high-

lighted in blue in Figure 3) and a heterogeneous population of

responding cells. The log scaling (Figure 3B) showed that the CV

of the distribution of the unstimulated cell population is about the

same as that of the stimulated population (58% and 50%

respectively). The presence of the 2 sub-populations, responding

and apparently non-responding is an example of macro-hetero-

geneity. Macro-heterogeneity is distinguished from outliers in that

outliers are singular observations that are well separated from the

median, above the UIF (median +1.5*IPR) or below the LIF

(median – 1.5*IPR), and of insufficient density to be detected

above the background in a histogram. The limits of detecting a

subpopulation will depend on the number and distribution of cells

and may include subpopulation distributions with significant

overlap. Multiplexed assays, looking at multiple parameters will

assist in further defining the sub-populations [31].

Cal33 cells exhibited a different distribution of STAT3

activation in response to OSM. At the OSM saturation

concentration, STAT3 activation was observed in essentially all

the cells (Figure 3). The bimodal distribution was only apparent at

intermediate OSM concentrations (3.62 ng/ml and 8.68 ng/ml)

suggesting two subpopulations of cells, one activated at a lower

dose of OSM, while the other responding at a higher dose, in

contrast to the persistence of the IL-6 resistant subpopulation even

at high doses of IL-6 (Figure 3C and D). Overall, OSM stimulation

of Cal33 cells resulted in a higher degree of activation of STAT3

than stimulation with IL-6. To evaluate whether the cells that do

Figure 2. Variation in the cellular distributions of STAT3 activation by IL-6 and OSM in several cell types. Top series) Histo-box plots of
the activation of STAT3 by IL-6 after 15 min exposure to IL-6 at the indicated concentrations in 2 HNSCC cell lines, 1 breast cell line and 2 breast
cancer cell lines. Bottom series) The activation of STAT3 by OSM was measured at 15 min. in the same 5 cell lines as above. Note: 686LN cells were
found to be much more sensitive to IL-6 and much less sensitive to OSM than the other cell lines, so the concentrations were adjusted appropriately.
doi:10.1371/journal.pone.0102678.g002
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not appear to respond to IL-6 stimulation were in fact capable of

phosphorylating STAT3, we induced cells with combinations of

IL-6 and OSM (Figure S6). Even at the lowest concentration of

OSM tested (2.78 ng/ml) cells co-induced with any concentration

of IL-6 did not exhibit a non-responding subpopulation. Further-

more, at this low concentration of OSM (2.78 ng/ml), OSM alone

did not induce a STAT3 response, suggesting there may be some

cooperativity between IL-6 and OSM activation of STAT3. This

will be investigated in more detail in a future study.

Although the analysis of heterogeneity described above using

the histo-box plot provides insights into functional responses, such

interactive analysis is limited to relatively small numbers of

experiments where throughput is not critical. For large scale

profiling and particularly in compound screening, a method to

identify and quantify heterogeneity is needed in order to compare

large numbers of compounds, targets, or assays and to make

decisions about next steps, efficiently.

Selection and evaluation of the heterogeneity indices
(HI’s)

Based on the results described above we selected properties for

characterization of the distributions that corresponded to the

features that were identified as variable in the histo-box plots and

descriptors that can be interpreted in a biologically meaningful

way. Figure 4 defines the three selected descriptors of the

distributions and the indices selected to quantify those features,

cell diversity (DIV), non-normality (nNRM) and percent outliers

(%OL). We compared the performance of several metrics for

calculating DIV and nNRM, using model distributions and cell

data, and found QE and KS gave the most consistent and robust

results (Figure S7). The indices can be used for relative comparison

or threshold values can be established for classification of samples.

In this assay the Cal33 negative control wells (no IL-6) showed

only a small percentage of cells with activated STAT3 while the

majority were narrowly distributed (Figure 3). We used these

‘homogeneous’ negative control wells to establish a threshold value

for DIV and nNRM, equal to the mean +3*SD of the well-to-well

values of the index. For %OL the threshold was selected based on

a normal distribution. The normal distribution has a UIF-LIF

range of 4 SD (mean 6 2 SD) that contains 95.5% of the

population and therefore the expected %OL is 4.5%. Therefore

the threshold of .4.5% indicates more outliers than would be

expected if the distribution were normal. Figure 5 shows the

application of the selected threshold values for classification of

wells as heterogeneous. To examine the suitability of the candidate

heterogeneity indices and thresholds we used the data sets for IL-6

and OSM induction in the five cell lines (Figure 2). The results are

presented as bar graphs of the three parameters (Figure 6). When

stimulated with IL-6 (left panel), Cal33 cells exhibit a gradual

increase in DIV, a consistently high nNRM and a decrease in

%OL. On the other hand, OSM (right panel) has little effect on

the HI’s below 8.6 ng/ml but induces a nearly 2-fold greater

increase in DIV, with essentially no change in nNRM or %OL,

consistent with the distributions in Figure 3. The other cell lines

exhibit different patterns of response to IL-6 and OSM. 686LN

and MCF-10A cells respond essentially the same to IL-6 and

OSM. MCF-7 and MDA-MB-468 cells respond to IL-6 with an

increase in nNRM and %OL, but no increase in DIV, while OSM

induces a significant increase in DIV, with a small increase in

nNRM in the MCF-7 cells. It is interesting that the pattern of

heterogeneity induced by OSM in MCF-7 cells is very similar to

that induced by IL-6 in Cal33 cells. In nearly all cases OSM

induces a more normally distributed response, which is still

heterogeneous, while the response to IL-6 is much more variable.

The interpretation of the three HI’s is accomplished by applying

a binary decision tree (Figure 5) that classifies a population

distribution as ‘‘homogeneous’’, ‘‘homogeneous with outliers’’,

micro-heterogeneity, micro-heterogeneity with outliers, macro-

heterogeneity, or macro-heterogeneity with outliers. We use

‘‘homogeneous’’ as a relative term, since cell populations always

exhibit some heterogeneity.

We evaluated the effect of two known inhibitors of STAT3

activation on the IL-6 stimulated distributions in Cal33 cells.

Pyridone-6 is a pan-Janus-activated-kinase (Jak) inhibitor [51] and

Stattic is reported to interact with the SH2 domain of STAT3,

inhibiting dimerization and nuclear translocation [52]. Both

compounds inhibited IL-6 induced STAT3 activation with

IC50s of 0.066 mM and 10 mM, respectively (Figure 7 and Figure

S8, DataArchive S2). Figure 7A and 7C display log-scaled histo-

box plots of pyridone-6 and Stattic inhibition of Cal33 cells,

respectively. The IC50s are shown as dashed lines. Pyridone-6

treated samples appear to have an increasing fraction of inhibited

cells starting at the lowest concentration and a stable population of

STAT3 activated cells up to about 0.1 mM, resulting in a

broadening of the distribution. These trends are reflected in the

HI’s (Figure 7B). For pyridone-6 the DIV index is above threshold

up to the IC50, but the increase in the nNRM index indicates the

presence of differentially responding sub-populations of cells,

macro-heterogeneity with outliers. Above 1 mM the cells are

essentially all inhibited, except for a few outliers, some of which

appear to be STAT3 activated cells.

Stattic, in contrast, displayed a stable population distribution

with no evidence of inhibition until the concentration reaches the

IC50 at which point there is a very steep inhibitory effect. Stattic

showed essentially no change in HI’s up to the IC50 indicating

that nearly all the cells have essentially the same sensitivity to this

compound, and therefore respond at the same dose level

(Figure 7D). Thus, while pyridone-6 has a more potent IC50,

Stattic has a more uniform effect as a modulator of STAT3

activation. In both cases the compounds show an increase in %OL

above the IC50, exceeding the selected threshold of 4.5%, and

persisting even at the highest dose tested. This indicates that

neither compound is entirely effective at inhibiting the activation

of STAT3.

An important consideration in the application of the HI’s is the

sample size requirements. To address this we performed power

Figure 3. Visual analysis of phenotypic heterogeneity using the histo-box plot. Population distributions of STAT3 activity in Cal33 cells at
the peak induction time of 15 min. Relative Activity refers to the cell average nuclear intensity of the labeled pSTAT3. Cells with intensity below the
90th percentile of the untreated cells (left most histogram) are colored in blue to highlight the apparently non-responsive subpopulations. ‘‘Count’’
indicates the total number of cells measured. A) Linear-scaled dose-response distributions of STAT3 activity at the indicated concentrations of IL-6
show a persistent subpopulation of cells with a distribution comparable to the unstimulated cells. The well average EC50 = 3.3 ng/ml. B) Log-scaling
of the same distributions in A shows that the CV of the responding cells (far right) is similar to the unstimulated cells (far left). C) Linear-scaled
population distributions of STAT3 activation by OSM at the indicated concentrations also show a non-responding subpopulation at 8.68 ng/ml, but
unlike IL-6 there are only a few outliers that are apparently non-responsive at 50 ng/ml and the responding cells appear to be more normally
distributed. D) Log-scaling of the same distributions in C shows that the CV of the responding cells (far right) is similar to the unstimulated cells (far
left).
doi:10.1371/journal.pone.0102678.g003
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analysis for the HI’s (Table S2). For the DIV and nNRM indices in

this assay, to achieve a power level of 0.8 requires <900 and

<1100 cells respectively. This number of cells is easily achievable

in standard assay formats such as 384 well microplates. In this

assay, which was implemented in the 384 well format, 1000 cells/

well represents about 4 fields/well at 10x.

Discussion

The significance of heterogeneity in the development of
therapeutics and diagnostics

Heterogeneity is a characteristic of cellular populations that is

fundamental to biological processes including development,

differentiation, and immune-mediated responses [9]. Analysis of

heterogeneity is expected to be useful in a wide range of biological

applications including the differentiation of stem cells and the

development of assays in differentiated neuronal cells, where we

would expect to find significant heterogeneity. Certainly, in the

context of this cancer example, heterogeneity in the response to a

potential therapy is ‘‘bad’’, however, in other applications

heterogeneity analysis may be essential to characterizing the

response of a subpopulation of interest, or even as a primary

readout for screening. When heterogeneity is associated with

dysregulated genetic-based and/or non-genetic-based functions, it

can play a critical role in the progression of complex diseases such

as cancer [53], where intra-tumor heterogeneity poses a formida-

ble challenge to the development of therapeutics [15,54] as well as

diagnostics [15,25,33]. Thus identifying, quantifying and charac-

terizing heterogeneity in patient samples and disease relevant

models for drug discovery using validated cell-by-cell analysis

methods [15,33,53,55] represents an important unmet need. To

address this need we have defined and developed heterogeneity

indices (HI’s) (Figure 4) that enable the full potential of HCA and

other cell-by-cell analytical methods. As a specific example, we

applied these indices to identify, quantify, and characterize

intrinsic heterogeneity in the activation of STAT3 in response to

two cytokines and small molecule perturbagens. Based upon these

results, we recommend a new paradigm for the application of

these or similar HI’s to the discovery of small molecule probes and

therapeutics. Heterogeneity in the response to such probes may

have important implications for understanding fundamental

mechanisms of biological regulation and, as a mainstay in

personalized medicine, lead to the development of novel

therapeutic strategies for complex diseases (see below).

High Content Screening (HCS) was developed as a tool to

automatically acquire, process, store, analyze and view large

amounts of cellular data, creating an efficient platform for cell-by-

cell analysis [22,56–59]. However, the traditional focus in drug

discovery on high throughput screening encouraged most

researchers to focus on well average assays as a standard. This

approach increased the throughput of screening but sacrificed the

information on heterogeneity in the population [30]. As a result,

Figure 4. Three indices for characterizing cellular heterogeneity. Three indices that provide information about the distribution were chosen.
Cell Diversity (DIV) characterizes the overall heterogeneity in the population without regard for the specific shape of the distribution, using the
Quadratic Entropy, a metric that is sensitive to the spread of the distribution as well as the magnitude of the differences between phenotypes in the
distribution. Non-Normality (nNRM) indicates deviation from a normal distribution, distinguishing between micro- and macro-heterogeneity.
%Outliers (%OL) indicates the fraction of cells that respond differently than the majority.
doi:10.1371/journal.pone.0102678.g004
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although heterogeneity is widely recognized as a fundamental

characteristic of biological systems, relatively little is known about

the nature of heterogeneity in the cellular or tissue response to

current pharmaceuticals.

Although a well average assay may exhibit a very good Z’, and

therefore a high degree of reproducibility [27,28], the cell-to-cell

heterogeneity within a well can be significant (Fig 1, 2, 3, 6, 7). In

developing new drugs it is not sufficient to modulate the ‘‘average’’

cell if heterogeneity exists, particularly for cancer therapeutics.

Thus we aimed to identify a simple set of metrics, the HI’s, that

could be automatically calculated and reported along with the

standard well-level read-outs of mean and SD, and the well-to-

well, plate-to-plate and day-to-day metrics of Z’, S/B, and CV, to

rapidly determine if heterogeneity exists and to quantify the extent

of the heterogeneity (Figures 4, 5, 6, 7).

As HCA is utilized more extensively to quantitate cellular

heterogeneity, there must be a focus on the development of quality

control standards and practices such as those that have been

successfully implemented in flow cytometry. To distinguish the

‘‘system’’ variability (includes sample preparation, instrument

response and algorithm performance) from the variability in

biological responses (i.e. intrinsic biological heterogeneity) we used

fluorescent calibration beads with a narrow and well characterized

distribution (Figure S3 and Table S1). These highly uniform beads

established that the minimum limit of variability in measurements

of intensity in this assay, CV of 5–8%, was well below the observed

heterogeneity in STAT3 activation. Minimizing the ‘‘system’’

variability is critical to performing quantitative fluorescence

imaging and has been discussed in detail [60–62].

Selecting heterogeneity indices (HI’s) to apply to single
cell analyses

We considered three properties of the distribution of data that

are significant in the biological interpretation of heterogeneity and

selected HI’s to describe each: 1) How variable is the response? 2)

Is there more than one type of response? and 3) Are there outlier

cells that respond differently? We evaluated several statistical

measures of distribution width (diversity) including the IQR,

Shannon Entropy (SE) [63], Differential Entropy(DE) and

Quadratic Entropy (QE) (see Figure S7). We used the QE, which

has been shown to provide a quantitative measure of species

diversity and incorporates information not only on the number of

different species in a population, but also on the magnitude of the

differences between biological species [64,65]. The QE has also

been shown to be useful in quantitation of the diversity of cellular

phenotypes in cancer tissue sections for diagnostic application

[33], and we have extended that use to the characterization of

cellular diversity (DIV) in HCA assays.

To further characterize the population responses with respect to

the presence of subpopulations (i.e., discrete phenotypic cell states)

we adopted the definition of macro- and micro-heterogeneity

proposed by Huang [9]. Macro-heterogeneity refers to the

variability in one or more cell traits that results in discrete

Figure 5. Decision tree for interpreting the Heterogeneity Indices. Using thresholds established for each index, DIV, nNRM and %OL, a binary
decision tree can be used to characterize heterogeneity in a given sample. The thresholds for DIV (0.03) and nNRM (0.05) were selected as the mean +
3 SD for each index in replicate negative control wells for Cal33 cells. The threshold for %OL (4.5%) is the percent outliers expected for a normal
distribution.
doi:10.1371/journal.pone.0102678.g005
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phenotypes and a multimodal distribution. Examples of macro-

heterogeneity include the distinct states of progenitor vs. differen-

tiated cells, the phases of the cell cycle and the time dependent

changes in the intracellular distribution of proteins such as

transcription factors. Micro-heterogeneity is defined as the

apparently continuous random variation in a single phenotype,

leading to a normal (or log-normal) distribution of the cell trait.

Examples include population noise, such as the prolonged

expression level of a protein during development, and temporal

noise based on stochastic fluctuations of a cell trait within a single

cell over time that are not usually synchronized between cells in

the population.[9]. Based on these definitions, the distinction

between micro- and macro-heterogeneity is equivalent to a

normality test. We evaluated several potential measures of

distribution shape including skewness, kurtosis, mean-median

ratio and the Kolmogorov-Smirnov (KS) test relative to a normal

distribution with the same mean and SD, also known as the

Lilliefors test [66] (see Figure S7). The KS test is an established

measure of normality [67,68] and the use of KS analysis is well

known in HCA [30,35,36,69–71]. The deviation of the distribu-

tion from micro- to macro-heterogeneity, results in an increase in

the KS statistic, which we use as a non-normality index (nNRM),

indicating that there may be more than one mechanism of

response or that the cells may be in more than one state and

therefore should be further evaluated.

The third index of heterogeneity quantifies the percentage of

outliers. The presence of outlier cells that respond distinctly from

the majority is usually completely ignored in HCA. These outliers

may be critically important in the development of therapeutics,

especially in cancer, where a small number of resistant sub-clones

may exist prior to treatment, then undergo positive selection,

resulting in only a transient beneficial response and consequently

result in high rates of relapse [72]. The percent outlier index

(%OL) was chosen based on the standard statistical definition of

outliers used in box plots: samples outside the range from the lower

inner fence to the upper inner fence. Other choices of outlier

definitions could also be applied, but this particular definition is

consistent with our choice of the histo-box plot for reviewing

heterogeneity. The biological interpretation of outliers is chal-

lenging due to the relatively small numbers, but requires further

evaluation when detected.

The combination of these three heterogeneity indices (HI’s) can

be used to classify the heterogeneity in a cell population using a

binary decision tree as shown in Figure 5. The criteria for selecting

classification threshold values will vary depending on the project.

For example, in the IL-6 activation assay, the negative control

Figure 6. Comparison of the activation of STAT3 across 5 cell lines. Application of the HI’s to the data in Figure 2. Left Panel) Activation of
pSTAT3 by exposure to IL-6 for 15 min at the indicated concentrations. Right Panel) Activation of pSTAT3 by exposure to Oncostatin M for 15 min at
the indicated concentrations. Red Bars) Diversity index (DIV) indicating the relative heterogeneity associated with the activation of pSTAT3. The
horizontal red line indicates the selected threshold for classifying populations a heterogeneous. Green Bars) The non-Normality index (nNRM)
indicating the extent of deviation from a single, normally distributed population. The green horizontal line indicates the selected threshold for
classifying a population as having macro-heterogeneity. Blue Bars) The percent outliers (%OL) indicates the percentage of cells with an activity level
that is above the upper inner fence or below the lower inner fence. The horizontal blue line indicates the selected threshold that is used to classify a
population as having more than the expected number of outliers.
doi:10.1371/journal.pone.0102678.g006
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wells were nearly ‘homogeneous’ while in the inhibition assay,

where all wells contained IL-6, the maximally inhibited wells were

most nearly ‘homogeneous’. We chose to use threshold values that

were 3 SD above the mean DIV or nNRM in replicate control

wells as indicating a substantial increase in heterogeneity relative

to the control. Alternatively, for the nNRM index an absolute

threshold could be defined based on the critical values for the KS

test [66,68]. To achieve 99% confidence in the determination of

non-normality, the KS statistic must be $1.031/!N, where N is

the sample size. In this study the minimum sample size was about

2,000 cells per well which results in a critical KS value of 0.02. We

used a more conservative threshold of 0.05. For %OL we defined

an absolute threshold based on the percentage of a normally

distributed population that would be classified as outliers (4.5%).

For screening or other large scale profiling applications, these

indices can be sorted, clustered or viewed as heat maps to identify

Figure 7. Heterogeneity in the response to inhibitors of STAT3 activation. Cal33 cells were exposed to Pyridone-6 (A&B) or STATTIC (C&D)
at the indicated concentrations for 3 hours prior to stimulation with 50 ng/ml of IL-6. A) Inhibition by Pyridone-6. Log scaled distributions are plotted
to normalize CV. B) Three heterogeneity parameters were calculated from the linear scaled data, DIV (red), nNRM (green) and %OL (blue). C) Log
scaled distributions of inhibition by Stattic. D) The same three heterogeneity parameters are plotted for the linear scaled distributions of Stattic
inhibition. The vertical dashed lines indicate the IC50 for the compounds calculated from the well-averaged signal intensities.
doi:10.1371/journal.pone.0102678.g007
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cell population profiles that indicate more complex biology. For

visual analysis of the distribution we found the histo-box plot to be

much more useful than the standard box plot. For multiparameter

assays, the heterogeneity indices can be evaluated on each

readout, or a dimension reduction approach such as principal

component analysis [73,74] can be applied first and the HI’s

calculated for the principal components.

Application and impact of heterogeneity analysis in drug
discovery

For the reasons stated above it is important to apply

heterogeneity analysis throughout the early drug discovery process

from assay design and implementation through secondary screens,

SAR analysis and into pre-clinical studies (Figure 8). The

development of disease relevant models and assays begins with

the analysis of patient samples to identify suitable biomarkers and

assay readouts, and to establish differences in the organization and

heterogeneity profiles of those biomarkers in diseased and normal

tissues. Physiologically relevant models that recapitulate the

disease state may require more complex architecture, including

multiple cell types, which also lead to heterogeneity in assay

readout(s). The methods proposed here can be applied in both

cases to characterize and track heterogeneity, and to optimize the

model. For example, in the Cal33 assay used here, not all of the

cells responded to IL-6 activation of STAT3, whereas all cells

responded to OSM (Figure 3). Choosing IL-6 stimulation for lead

identification may limit the screen to selecting compounds that

have mechanisms present in only a subset of cells (i.e., those that

are IL-6 dependent), ultimately reducing therapeutic efficacy and

necessitating combination strategies (see below). A more appro-

priate assay may be one using OSM and/or a combination of

cytokines as the inducer, but the choice should optimally be driven

by an understanding of the pathway and the role heterogeneity

plays in the dysregulation of STAT3 in cancer tissue.

During implementation of an assay in a screening campaign,

HI’s would be reported alongside the compound potency and

assay performance statistics (Figure 8 and S9), flagging compound

concentrations that exceed the established thresholds (Figure 5). A

DIV that indicates heterogeneity will be an alert that a compound

induced variable responses within the cell population, and the

nNRM and %OL will further classify the heterogeneity. Applying

the decision tree described in Figure 5 to the pyridone-6 data in

Figures 7 and S9, the DIV index indicates heterogeneity below

0.56 mM, while the nNRM index shows a concentration

dependent macro-heterogeneity in the inhibitory response (nNRM

HI.0.05) indicating sub-populations of cells with different

sensitivities to pyridone-6 inhibition. Furthermore, both com-

pounds show an increase in %OL above the IC50, indicating that

some cells continue to activate STAT3, even in the presence of

inhibitor. Although representing only a small percentage of the

cells, resistance to treatment may have important implications in

cancer therapy. The %OL feature should provide additional

information for selection and optimization of hits and leads, as well

as a readout that could be used to screen combinations of

compounds for improved efficacy with respect to outlier cells.

In drug development, compounds where macro-heterogeneity is

identified would need to be further studied, perhaps starting with

the histo-box plot. Compounds exhibiting heterogeneity present

two options: (1) deprioritize in favor of compounds that modulate

the cell population more uniformly; or (2) select the compounds for

efficacy in a specific sub-population for use in a combination

therapy strategy. In this study pyridone-6 and Stattic exhibited

very different, dose dependent heterogeneity profiles, consistent

with their different reported mechanisms of action. The objective

of monitoring heterogeneity in secondary assays should be to

identify potential differences in MOA between lead compounds

and to more fully characterize the range of cellular responses,

enabling more informed decisions in selecting compounds to

advance through drug development.

Finally, it is important to follow the heterogeneity profile while

investigating SAR in the lead optimization stage to ensure that

changes in the compound structure do not introduce additional or

undesirable heterogeneity in the response, implying additional

mechanisms of action. Furthermore, the heterogeneity profile can

be used in combination with biological potency to drive the SAR

of a lead series towards a non-disease profile.

Importance of heterogeneity analysis in understanding
biological regulation and in developing optimized cancer
therapeutic strategies

Darwinian-like clonal evolution significantly contributes to the

genetic heterogeneity within tumors, which contributes to the

observed phenotypic diversity [53,75,76]. Additional intra-tumoral

phenotypic diversity results from epigenetic changes [43,53,75] or

as a consequence of heterotypic signaling within an abnormal

micro-environment [76,77]. This phenotypic diversity and plas-

ticity, in conjunction with the complexity of STAT3 signaling and

regulation that involves crosstalk with several other pathways (e.g.

PI3K, RAS, NFkB, NOTCH) [78–83], enables small molecule

perturbagens to induce both micro- and macro-heterogeneous

responses. For example, fluctuations in the expression of signaling

components can alter the kinetics of a specific step targeted by a

small molecule, inducing micro-heterogeneity. Alternatively mac-

ro-heterogeneity, such as evidenced by the presence of apparently

non-responder subpopulations, could result from changes in

protein expression that result in dysregulation of the crosstalk

involved in negative feedback or the activation of compensatory

pathways. In fact these latter two mechanisms are among the most

common for generating resistance to targeted therapies in cancer

[72,84–87]. Thus, heterogeneity presents a major challenge to

optimizing therapeutic regimens, as the targeting of a predominant

tumor subpopulation often only provides transient benefit and will

inevitably result in the emergence of resistant populations, and

relapse [72].

Recent studies suggest that knowledge of the tumor composition

and the response of component subpopulations to single drugs, in

conjunction with computational and experimental modeling, can

identify drug combinations that minimize the outgrowth of

resistant subpopulations in tumors, while enhancing tumor free

survival in mice [8,88]. Importantly, the experimentally validated

computational simulations demonstrated that the optimal drug

combination predicted depended on whether the entire tumor

population, or only a particular subpopulation, was examined.

These results further emphasize the need to incorporate intra-

tumor heterogeneity and the expected evolutionary trajectories

into rational drug combination design.

The development of comprehensive, unbiased target based

mutagenesis and genome-wide gain- and loss-of-function technol-

ogies that can anticipate clinically relevant resistance, represents

an alternative, or perhaps complementary approach to modeling

and therapeutically addressing tumor heterogeneity [72,90,91]. It

is likely that the future of personalized cancer medicine will involve

a comprehensive bioinformatics analysis of a biopsy that will reveal

the presence of distinct cell populations [6,89] and consultation of

an established drug-genotype database that will allow clinicians to

computationally determine optimal, patient-specific combination

therapies. We hypothesize that heterogeneity analysis will be

essential to the implementation of a QSP-driven approach that
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includes the highly coordinated, parallel optimization of comple-

mentary lead structures, where each structure has a clinically

relevant resistance profile that is addressed by its counterpart,

which will lead to polypharmacologic therapies that effectively

drive the tumor into a state of ‘checkmate’, thereby providing

sustainable remissions and higher cure rates.

Supporting Information

Figure S1 Time course and dose-response of the
activation of STAT3 in Cal33 cells. A) Dose-response of IL-

6 indicated by logistic regression curve fit to well average

intensities in 3 replicate wells. Error bars (61s of the cell-by-cell

Figure 8. Heterogeneity analysis applied throughout the early drug discovery process. Heterogeneity analysis is required to guide
decisions throughout the drug discovery process, beginning with defining disease relevant biology in clinical samples, and establishing benchmarks
for subsequent analyses. Next disease relevant models, which by necessity will be heterogeneous, are developed and optimized. Heterogeneity is
characterized in the models, and thresholds for HI’s are established along with potency criteria to select hits. Screening hits are advanced to
secondary assays based on their potency and HI profile. Heterogeneity of response to compounds will be model dependent, and assessing
heterogeneity in orthogonal secondary assays will provide insights into understanding the MOA. Monitoring the heterogeneity profile during SAR
and lead optimization is essential to keeping lead development on target and mechanism of the disease relevant biology.
doi:10.1371/journal.pone.0102678.g008
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intensities) indicate the high variability in the cell-to-cell STAT3

activity B) Dose-response of OSM activation of STAT3 fit as in A.

Error bars (61s of the cellular intensities) again indicate a high

degree of heterogeneity. C) Well average STAT3 activity in Cal33

cells that were exposed to the indicated concentrations of IL-6 for

the times indicated by color. Error bars (61s of the 3 replicate

wells) indicate the assay is highly reproducible despite cellular

heterogeneity. D) Same as C) except cells were exposed to the

indicated concentrations of OSM. Time indicated by colors.

(TIF)

Figure S2 Use of Histo-Box plot for visualization of
distributions. A) Histograms of simulated, normally distributed

data with the indicated mean and a CV = 30% for all unimodal

distributions. The 2 bimodal distributions combine the distribu-

tions with means of 500 and 10 and CV = 30%, equally weighted

(‘500+10’) and with a 90:10 split (‘500(90%)+10(10%)’). Each

distribution consists of 2000 random numbers. B) The same

distributions as in A, logarithmically scaled. The key defines the

reference points labeled on the plot (A).

(TIF)

Figure S3 Quantitating the Reproducibility of Intensity
Measurements by Flow and Imaging Cytometry. A)

Histogram of the total intensity of 2 mm flow cytometry standard

beads measured by flow cytometry shows peaks for single beads

(red, CV = 2.8) and double beads (blue). B) Histogram of the same

beads centrifuged in the wells of a 384 well microplate and imaged

to measure total bead intensity also shows peaks for single beads

(red, CV = 5.2) and double beads (blue). C) The histogram of total

nuclear intensity in Cal33 cells fixed in suspension, labeled with

Hoechst and measured by flow cytometry. Cell cycle modeling

identifies 3 subpopulations, G0/G1 (red), S (hashed), and G2/M

(blue). D) The histogram and cell cycle modeling of the same cells

centrifuged in the wells of a 384 well microplate then imaged and

analyzed for total nuclear intensity.

(TIF)

Figure S4 The distributions of STAT3 activation for cell
cycle subpopulations. Histograms of STAT3 activation in

unstimulated and IL-6 stimulated Cal33 cells (the cell cycle states

identified in the legend). Inset DNA histogram of the cumulative

population shows the mapping of DNA intensities to cell cycle

states.

(TIF)

Figure S5 Western Blot Analysis of Receptor Expres-
sion. A) Western blots of receptor expression in five cell lines, with

Tubulin as a control. B) Quantitation of total density in western

blot bands for the IL-6 receptor, relative to Cal33 cells. C)

Quantitation of OSM receptor expression, relative to Cal33. D)

Quantitation of IFNc receptor expression, relative to Cal33.

(TIF)

Figure S6 STAT3 activation by Combinations of Cyto-
kines. To assess the interaction between the IL-6 and OSM

pathways, Cal33 cells were exposed to combinations of IL-6 and

OSM for 15 min. Top Row) The activation of STAT3 by IL-6

alone. Left Column) The activation of STAT3 by OSM alone.

The arrows point to the location of the population non-responsive

to IL-6. Note that with the addition of OSM all cells treated with

IL-6 show activated STAT3.

(TIF)

Figure S7 Evaluation of Potential indices of Diversity
and Normality. A) Model distributions and cell data were used

to evaluate the performance of selected metrics for characterizing

the distributions. The 50:50 mix consists of 2 unit normal

distributions of equal population that are separated by ‘d’ standard

deviations (sd). The 90:10 mix consists of 2 unit normal

distributions with 90% and 10% of the population, separated by

‘d’ standard deviations. B) Selected Diversity and Normality

indices were used to evaluate the model distributions for values of

‘d’ ranging from 0–10 sd, and the Cal33 data for IL-6 and OSM

stimulation. For the Cal33 data, the diversity indices all show

similar response, while the model data show some key differences.

The IQR (interquartile range) is not sensitive to the small 10%

subpopulation, and the SE (Shannon entropy) and DE (Differen-

tial entropy, the Shannon entropy for a continuous distribution

function) both plateau when the 2 populations separate. Only the

QE (Quadratic entropy) shows a steady increase for both

distributions. Again, the general pattern of the ‘Normality’

measures is similar for the Cal33 data, but the model data show

key differences. The skewness and MMR (mean/median) are

insensitive to the 50:50 population because it is symmetric, The

kurtosis and KS statistic are sensitive to the variation in both

distributions, however the KS was preferred due to its direct

interpretation as a measure of normality.

(TIF)

Figure S8 Dose dependence of inhibitors of STAT3
activation by IL-6. STAT3 activation in Cal33 cells is inhibited

by Pyridone-6 (N) with an IC50 = 66 nM or STATTIC (&) with an

IC50 = 10 mM.

(TIF)

Figure S9 Integrating heterogeneity analysis into phe-
notypic screening. Heterogeneity indices are evaluated during

assay development and thresholds determined based on the goals

of the project. For drug discovery and cell/tissue profiling

programs that encounter phenotypic heterogeneity, HCS images

are analyzed to generate the features, statistical parameters and

HI’s. For samples or treatments with low Diversity (DIV) or a

normal distribution (low nNRM) standard statistics can be used. A

well or sample with a high HI and high nNRM or high %OL

would require more detailed analysis of the heterogeneity. If the

observed heterogeneity is biologically important in the context of

the project, further experiments aimed at understanding its

mechanism may lead to discovery of new targets or diagnostic

biomarkers. For pyridone-6, the DIV index for concentrations

below 5 mM indicates a high degree of heterogeneity (HI.0.03

from Figure 5) which is further characterized as macro-

heterogeneity since the nNRM indices are .0.5. At 5 mM the

DIV indicates a homogeneous population with low heterogeneity.

In all cases the %OL is below the HI threshold in Figure 5. The

high heterogeneity indices suggest further studies are needed to

understand the activity of pyridone-6 on these cells.

(TIF)

DataArchive S1 Data for the distribution of STAT3
activation in 5 cell lines stimulated with 10 concentra-
tions of IL-6 or OSM as plotted in Figure 2. Data provided

as a ZIP archive.

(ZIP)

DataArchive S2 Data for the inhibition of IL-6 induced
STAT3 activation by Pyridone-6 and Stattic as plotted in
Figure 7. Data provided as a ZIP archive.

(ZIP)

Table S1 Reproducibility of Intensity Measures. Flow

cytometry standard beads and Cal33 cells were used to quantify

the reproducibility of imaging intensity measurements on cells and

cell sized objects. Samples of beads or cells were split and run on

Heterogeneity in HCS: Application to Drug Discovery

PLOS ONE | www.plosone.org 14 July 2014 | Volume 9 | Issue 7 | e102678



either the ArrayScan HCA system or a flow cytometer for

reference. For beads, Ratio is (mean doublet total intensity)/(mean

singlet total intensity). For Cal33 cells, Ratio is (mean G2/M total

nuclear intensity)/(mean G0/G1 total nuclear intensity).

(DOCX)

Table S2 Power analysis of HI measures. Replicate

measures on 3 different days were used to determine the number

of cells required to achieve a power of 0.8 for the CV, KS and QE

measures of the distributions of STAT3 activity in Cal33 cells.

(DOCX)
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