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Abstract

Cubozoans (box jellyfish) undergo remarkable body reorganization throughout their life cycle when, first, they
metamorphose from swimming larvae to sessile polyps, and second, through the metamorphosis from sessile polyps to
free swimming medusae. In the latter they develop complex structures like the central nervous system (CNS) and visual
organs. In the present study several aspects of cell proliferation at different stages of the life cycle of the box jellyfish
Tripedalia cystophora and Alatina moseri have been examined through in vivo labeling of cells in the synthetic phase (S
phase) of the cell cycle. Proliferation zones were found in metamorphosing polyps, as well as in juvenile medusae, where
both the rhopalia and pedalia have enhanced rates of proliferation. The results also indicate a rather fast cell turnover in the
rhopalia including the rhopalial nervous system (RNS). Moreover, T. cystophora showed diurnal pattern of cell proliferation in
certain body parts of the medusa, with higher proliferation rates at nighttime. This is true for two areas in close connection
with the CNS: the stalk base and the rhopalia.
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Introduction

Cell proliferation serves two purposes in all organisms: growth

and maintenance/cell turnover. Both these functions are normally

important throughout the life history of an animal but especially so

during certain processes like metamorphosis where many new cell

types are needed. Cnidarian medusae are the result of polyp

metamorphosis, and this change is highly interesting since the

animal changes from a sessile to a free living form. In this change a

great expansion of the nervous and sensory systems is called for.

Cubozoans (Cnidaria) have a complex life cycle including

planula larvae, sessile polyps and free swimming medusae

(Figure 1). Among cnidarians only cubozoans undergo a complete

metamorphosis from polyp to medusa in that the entire polyp

turns into a single medusa [1,2]. The cubozoan polyp has to

undergo severe body reorganization and among other things it

develops complex visual organs. The first sign of metamorphosis is

the transformation of the circular oral pole into a quadrangular

shape (Figure S1). The polyp tentacles then congregate at the four

corners while the distal part of the tentacles degenerate and is

reabsorbed [3]. Ultimately the basal part of the polyp tentacles,

either singly or as a fused group, become the four eye carrying

structures, called rhopalia, and in-between the rhopalia four

medusa tentacles grow de novo. Once the external signs of

metamorphosis appear in the Caribbean species Tripedalia
cystophora and the conditions are optimal (water temperature

28uC) one polyp is completely converted into a single medusa in 4

to 5 days [3]. Here the new juvenile medusae have four primary

tentacles, but during the first week a new small tentacle appears on

each side of primary ones. Sexual maturity of the medusae is

reached in 10–12 weeks.

Cubozoans also stand out from all other cnidarians by

possessing a remarkable visual system. This visual system is

distributed on the four rhopalia, which hang by flexible stalks near

the rim of the box-shaped bell of the medusa. Altogether they have

24 eyes of four morphological types [4–8]. Each rhopalium carries

a pair of pit eyes, a pair of slit eyes and two lens eyes: the upper

lens eye (ULE) and the lower lens eye (LLE). It has been shown

that the medusae use this unique visual system for optimizing

feeding, avoiding obstacles and navigation in their habitats [9–11].

As previously described [12] each rhopalium also contains a

major part of the central nervous system (CNS); the rhopalial

nervous system (RNS). Most of the visual information is

presumably processed by the approximately 1000 nerves forming

the RNS, sometimes referred to as the box jellyfish brain [13], but

little is known about the functionality of cnidarian CNSs. Most is

known from hydrozoans [14,15], and interestingly it has been

indicated that in the hydrozoan Hydra oligans, there is a relatively

fast cell turnover in the ring nerve, which here constitutes the CNS

[16]. In the cubozoan rhopalia, in close connection with the RNS,

three-four layers of cells (posterior cell sheet) are found and from

their appearance in TEM they are assumed to be undifferentiated

[17]. A possible function of the posterior cell sheet might be,

therefore, to serve as a source of new nerve cells and also support a

fast cell turnover in the rhopalium including in the RNS.

In this study we took the advantage of in vivo labeling of cells in

the synthetic phase (S phase) of the cell cycle [18], to examine

some morphological details of the metamorphosis from polyp to

juvenile medusa of the cubozoans T. cystophora and Alatina
moseri. We have also examined proliferation patterns in adult non-

growing rhopalia to test the hypothesis, that the RNS has a cell
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turnover acquiring new cells originating from the posterior cell

sheet. Finally, we examined a possible diurnal rhythm in the

proliferation in T. cystophora hypothesized from the diurnal

activity pattern described for the species which rest at night [19].

Materials and Methods

Cultures
The material used came from our cultures at University of

Copenhagen. The cultures of T. cystophora originate partly from

Werners cultures [3] and partly from pregnant females collected at

La Parguera, Puerto Rico (no specific permissions required, no

endangered or protected species were collected, GPS coordinates:

17u15924.099N, 67u04903.799W). The polyps are kept in 50 l tanks

at 22uC in darkness and a salinity of 3.0 psu. The medusae of T.
cystophora are raised in 250 l tanks at 28uC and a salinity of

3.0 psu where they reach adult size (bell diameter = 9–10 mm) in

about 10 weeks. The medusa tanks had a day:night cycle of 8:16 h

with light between 0900 hr and 1700 hr. The cultures of A. moseri
were established by mixing ripe eggs and sperm from medusae

caught off the coast of Hawaii. The culture tanks are similar to

those of T. cystophora except for having a salinity of 3.5 psu. All

culture tanks are fed SELCO (INVE Technologies, Dender-

monde, Belgium) enriched artemia daily.

Labeling protocols
Proliferating cells were visualized by in vivo labeling using a

thymidine analogue 5-ethynyl-29-deoxyuridine (EdU) that is being

incorporated into DNA instead of thymidine during the S phase of

the cell cycle. Polyps and medusae of T. cystophora and A. moseri
were incubated with 20 mM EdU (Click-iT EdU Kit, catalogue

number C10424, Life Technologies Europe BV, Nærum, Den-

mark) for different lengths of time (see later). After EdU treatment

the specimens were anesthetized with 4% MgCl2 in sea water and

fixed with 4% paraformaldehyde in 0.1 M phosphate-buffered

saline (PBS), pH = 7.3 for 4 h at room temperature or overnight at

4uC. This procedure was followed by 3 washes (15 min each) with

0.1% NaN3 in 0.1 M PBS, pH = 7.3. Until further processing the

samples were stored in 0.1% NaN3 at 4uC. After storage they were

rinsed in 0.1 M PBS, pH = 7.3 for 6 h followed by overnight

incubation in blocking and permeabilization solution (saponin-

based permeabilization and wash reagent with 1% NSS provided

by the manufacturer) at 4uC. The following day the samples were

incubated in the reaction cocktail provided by the manufacturer

(2.5 ml Alexa 488, 10 ml CuSO4, 50 ml Reaction buffer additive,

438 ml 0.1 M PBS, pH = 7.3) for 24 h at 4uC in the dark. The

incubation in the reaction cocktail was followed by 3 washes

(15 min each) with saponin-based wash reagent. As negative

control we used specimens not treated with EdU, but otherwise the

specimens underwent all the procedures described above.

Figure 1. Life cycle of Tripedalia cystophora. Schematic diagram illustrating the life cycle of T. cystophora. The planula larva settles on the bottom
and undergoes the first metamorphosis into a sessile primary polyp with two tentacles. The primary polyp grows into a fully grown polyp that usually
possesses from 7 to 9 tentacles. At this stage much asexual reproduction takes place (not shown). Under optimal conditions the grown polyp
undergoes the second metamorphosis and forms juvenile medusa with four primary tentacles. Sexual maturity of the medusae is reached in
approximately three months. Fertilization is internal and the diagram shows a pregnant female with bell completely filled by larvae and an adult male
with ripe spermatophores (orange spheres).
doi:10.1371/journal.pone.0102628.g001
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Figure 2. Proliferation zones during the metamorphosis of Tripedalia cystophora polyps. T. cystophora polyps during different stages of
metamorphosis stained with DAPI (A9,B9, C9, D9, E9) and S phase cells visualized with EdU (A99, B99, C99, D99, E99). (A-A999) Non-metamorphosing polyp.
The S phase cells in non-metamorphosing polyps are dispersed throughout the entire body including the tentacles (A999). (B-B999) Polyp in the early
stage of metamorphosis (stage of congregating tentacles). High density of S phase cells defining a proliferation zone is seen around the mouth and at
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After visualization of the EdU labeling all the polyps and

medusae were stained with the nuclei stain 49, 6-diamidino-2-

phenylindole (DAPI, 0.1 mg/ml, Life Technologies Europe BV,

Nærum, Denmark) and mounted in Vectashield (Sigma-Aldrich,

Brøndby, Denmark) on glass slides.

The specimens were scanned either on a laser-scanning confocal

microscope (TCS SP2, Leica, Germany) or in a spinning-disc

epifluorescent microscope (IX81, Olympus, Tokyo, Japan) and the

final resolution of the images was set in Photoshop (CS 7.0.1.,

Adobe Systems).

In vivo labeling of Tripedalia cystophora and Alatina
moseri polyps and medusae

All specimens were starved for 24 to 36 h prior to EdU labeling.

Polyps: one hundred non-metamorphosing T. cystophora polyps

were separated from the culture tank and placed in a Petri dish.

Metamorphosis was induced by placing the dish in an incubation

chamber and raising the temperature to 28uC. During the

following two weeks the polyps in different stages of metamor-

phosis were collected for the labeling procedure. In the case of A.
moseri the temperature was raised in the entire culture tank and

polyps were collected for the labeling procedure directly from the

tank. The metamorphosing and non-metamorphosing polyps of

both species were incubated in 20 mM EdU in 500 ml sea water for

24 h at 28uC in 1.5 ml eppendorf tubes placed in the incubation

chamber.

Juvenile medusae (1–3 days old): specimens were incubated in

20 mM EdU in 10 ml sea water for 8 h (T. cystophora) or 24 h (A.
moseri) at 28uC in a Petri dish (h= 6 cm) placed on the water

surface in the culture tank.

Adult medusae: eight adult T. cystophora medusae were treated

with 20 mM EdU in 80 ml sea water during daytime for 5 h at

28uC in a Petri dish (h= 10 cm) placed on the water surface of the

culture tank. Two of them were fixed right after EdU treatment

(5 h). To trace the migration of marked S phase cells during one

week we kept the other six medusae in a separate part of the

culture tank. This separate chamber had a flow of water and

medusae were fed daily. The size of the chamber allowed the

treated medusae to swim and behave in their natural way. In pairs

the medusae were fixed 24 h after EdU treatment (day 1), 72 h

after treatment (day 3) and 168 h after treatment (day 7). Two

rhopalia were removed from each of the eight jellyfish and

sectioned on a Vibratome (VT1000s, Leica, Wetzlar, Germany)

resulting in 50 mm sections which were then mounted in Elvanol

on chromalun-coated glass slides.

Mid-sized medusae: four mid-sized (bell diameter = 5–6 mm)

medusae were treated with 20 mM EdU in 40 ml sea water for 5 h

during the day (from 1100 hr till 1600 hr) at 28uC in a Petri dish

(h= 10 cm) placed on the water surface in the tank and four

medusae were treated likewise at night (from 2200 hr till 0300 hr).

Both groups had been fed in the morning the day before resulting

in the medusae being starved for 24 or 36 h in daytime and

nighttime experiments respectively. After the treatment the

medusae underwent the EdU visualizing protocol. All the medusae

were then dissected into quarters. Because of the tissue density in

the rhopalium the scan could not reach the deeper cell layers and

the jellyfish quarters, therefore, were then embedded in gelatin

and sectioned on the Vibratome.

Data analysis
The percentage of labeled S phase cells in the four main body

parts of the juvenile medusae (the rhopalium, the pedalium, the

manubrium including gastric filaments and the bell) was calculated

from the ratio of EdU-stained cells to DAPI-stained cells. Cells

were counted manually using Cell counter plugin of ImageJ

software (ImageJ 1.46). To look for areas of higher proliferation

rate, the data were tested in a one-way ANOVA followed by a

Tukey-Kramer post hoc test. In the daytime vs. nighttime

experiments the number of S phase cells in 2006200 mm area of

the three predefined body parts (the bell area midways over the

radial channel, a randomly chosen pedalium and a randomly

chosen stalk base) and an entire rhopalium were counted and the

two datasets from each body part were compared using unpaired,

2 sided student t-tests. In the chase experiments using fully grown

rhopalia the number of S phase cells were counted from all

sections of four whole rhopalia after 5 h, 1 day, 3 days, and 7 days.

Results were compared using a one-way ANOVA followed by a

Tukey-Kramer post hoc test. All statistical tests had a critical P-

value of 0.05.

TEM
Rhopalia dissected from the medusae by cutting the rhopalial

stalk midways were fixed in 2.5% glutaraldehyde, 2.0% parafor-

maldehyde, and 3.0% sucrose in 0.15 M sodium cacodylate

buffer. After 5–6 days in fixative they were washed twice in

0.15 M sodium cacodylate buffer and post fixed in 1% osmium

tetroxide for 1 h at room temperature. They were then

dehydrated in a series of ethanol, transferred to pure acetone,

and embedded in Epon 812 resin. Sections of 50 nm thickness

were made on an Ultracut microtome (UCT, Leica, Germany)

and put on single slot grids. The sections were contrasted with 4%

uranyl acetate for 20 min at room temperature and with 2% lead

citrate for 5 min at 5uC.

Results

Proliferation zones changes during Tripedalia cystophora
polyp metamorphosis

We found that in non-metamorphosing T. cystophora polyps the

labeled S phase cells appear to be dispersed all over the body of the

polyp including the tentacles (Figure 2A-A999). Immediately after

metamorphosis starts, indicated by the polyp tentacles gathering in

the four corners of the body (Figure 2B9), we observed clear

proliferation zone in the area surrounding the mouth and in the

proximal part of the tentacles (Figure 2B-B999). In the next step of

the metamorphosis there were no longer labeled cells in the

tentacles proper indicating that they have started to degenerate

but their proximal part still constitutes a part of the proliferation

zone marking the area where the rhopalia are being formed

(Figure 2C-C999).

Later during metamorphosis when the eyes have become visible

on the forming rhopalia (Figure 2D9) we still observed zones of

high proliferation in the rhopalia and around the mouth where

the tentacle bases (B999). (C-C999) Metamorphosing polyp in the early stage of rhopalia formation. A proliferation zone is found in the oral end of the
polyp and especially in the forming rhopalia (C999). (D-D999) Metamorphosing polyp in the late stage of rhopalia formation (forming eyes visible on the
rhopalia). The highest number of S phase cells is again in the forming rhopalia but also in the growing medusa tentacles (D999). (E-E999) Polyp in the
late stage of metamorphosis. An additional proliferation zone is observed in the forming manubrium and gastric filaments (E999). Scale bar, 300 mm
(A) applies to all the pictures.
doi:10.1371/journal.pone.0102628.g002
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amongst other things the ring nerve is being reorganized [20]

(Figure 2D-D999). In this stage the four primary tentacles of the

future medusa also start to appear (Figure 2D9) indicated by clear

proliferation zones between the rhopalia. In the last stage of the

metamorphosis the polyp is in principle a medusa attached to the

substrate by the apex of the bell (Figure 2E). At this stage the

before mentioned proliferation zones prevailed, but additionally a

high density of S phase cells was found in the gastrodermal part of

the apical end of the animal (Figure 2E-E999). Here the

manubrium, the mouth of the medusa, is being formed along

with the gastric filaments. Further, at this stage, there was a

seemingly uniform dispersal cell proliferation in the bell.

From gross morphological examinations there are indications

that the metamorphosis is similar in all examined cubozoans

[2,3,21]. Our data on proliferation patterns in T. cystophora and

A. moseri confirms the similarity at least between these two species

(Figure 3). We observed the same pattern in non-metamorphosing

polyps with the S phase cells dispersed throughout the main body

and tentacles (Figure 3A, B). When entering the metamorphosis,

the proliferation zones from T. cystophora were also found in A.
moseri: the area around the mouth, especially where the rhopalia

and the new tentacles are formed (Figure 3C–F).

Proliferation zones in juvenile cubozoan medusae
We followed the proliferation into the juvenile medusae (1–3

days old, bell diameter = 1.0–1.2 mm, long axis of rhopalium

= 100–175 mm) of both species (Figure 4). The total number of the

cells (Table S1) in the four areas of interest of T. cystophora was

counted from the DAPI-stained cells and used to calculate the

percentage of S phase cells (Table 1) (Figure 4A-A99, Figure S2).

The pedalium had the highest rate with 18.5% of the cells entering

the S phase during the 8 h long incubation. The least were found

in the bell were only about 1.9% of cells were labeled. The

rhopalium and the pedalium (Figure 4B, C) both had significantly

higher rates of proliferation than the manubrium and the bell

(Figure 4D, E), (One-way ANOVA, F(3,12) = 27.4, P,0.0001,

followed by Tukey-Kramer post hoc Test, 0.0001,P,0.0058).

There was no difference between the rhopalium and pedalium or

between the manubrium and bell (One-way ANOVA,

F(3,12) = 27.4, P,0.0001, followed by Tukey-Kramer post hoc

test, P = 0.062 and 0.83 respectively). The micrographs indicate

that the manubrium (Figure 4D) also constitutes a zone with

enhanced proliferation rate, but the results showed that this is due

to the fact that the cells here are in general small and the cell

density is therefore higher when compared to the bell (8.4 cells/

100 mm2 in the manubrium vs. 0.6 cell/100 mm2 in the bell). In

order to check if the bell is growing by cell enlargement instead we

compared the cell density in the bell of juvenile, sub-adult and

adult medusa (Figure S3). We found that the cell density in the bell

increased with age: 0.62 cell/100 mm2 in juveniles, 0.85 cell/

100 mm2 in sub-adult medusa and 1.76 cell/100 mm2 in adult

medusa.

Proliferation in adult Tripedalia cystophora rhopalia
We also examined the proliferation in fully grown rhopalia

(medusa diameter = 9–9.5 mm, long axis of rhopalium = 500–

600 mm) of T. cystophora (Figure 5). We mapped the location of S

phase cells and counted their numbers in the entire rhopalium just

after incubation with EdU (5 h) (Figure 5C) and again after 24 h

(day 1), 72 h (day 3) and 168 h (day 7) (Figure 5D–F). After 5 h all

the marked cells were located either in the posterior cell sheet

(Figure 5C, white dashed area), in the gastrodermis (Figure 5C,

black dashed area) or in the epithelium of the rhopalium. After

both 72 and 168 h there were still labeled cells in the original

Figure 3. Comparison of proliferation zones during metamor-
phosis in Tripedalia cystophora and Alatina moseri. (A, B) Dispersed
proliferation in the non-metamorphosing polyps. The overall pattern of
proliferating cells is the same in two species with labeled cells seen
throughout the body. (C, D) Both species show high S phase cells
density in the early metamorphosis at the distal end of the body
especially where the rhopalia are forming. Still, T. cystophora shows
higher concentration of labeled cells (C). (E, F) The most apparent
proliferation zone is found in the forming rhopalia and in the area
surrounding the mouth where the ring nerve is reorganizing. At the end
of the metamorphosis there are some differences between two species.
Again A. moseri has fewer labeled S phase cells (F) than T. cystophora. It
is also evident that the cells (at least the nuclei) are smaller in T.
cystophora than in A. moseri (note the difference in scale bars). (G, H)
Negative controls. Scale bars, 300 mm (A) applies to C, E, G; 600 mm (B)
applies to D, F, H.
doi:10.1371/journal.pone.0102628.g003
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Figure 4. Proliferation zones in juvenile medusae of Tripedalia cystophora and Alatina moseri. (A-A99) The marked area (white dashed line)
indicates where DAPI-stained (A) and EdU-stained (A9) nuclei were counted in a pedalium of a juvenile medusa. (B–E) Proliferation zones in juvenile
medusae of T. cystophora. The highest rate of proliferation is found in the rhopalia (B) and in the proximal part of the pedalia (before the first ring of
nematocytes) (C). The rate of cell proliferation in the manubrium and gastric filaments (D) seems to be as high as in the rhopalia (B) and pedalia (C),
but this is due to very high cell density in the manubrium. The proliferation rate is as low as in the bell (see also Table 1 and results section for details
on statistics). (F–I) Proliferation zones in juvenile medusae of A. moseri. As seen for the polyps, the overall proliferation pattern is the same for two
species, and proliferation zones are again found in the rhopalia (G) and pedalia (H). The manubrium (white dashed line) and gastric filaments (black
dashed line) also display many S phase cells (I). PE represents pit eye; SE, slit eye; ULE, upper lens eye; LLE, lower lens eye; St, stalk; Cr, crystal. Scale
bars, 50 mm (A, A9, A99, B); 100 mm (C, D, G, H, I); 300 mm (E, F).
doi:10.1371/journal.pone.0102628.g004
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positions but additional labeled cells were found in association

with the retinas of the lens eyes (Figure 5E, F, red arrowheads).

Surprisingly, there was a tendency of a decline in the number of

marked cells over time (Table 2). The differences were not

significant though (One-way ANOVA, F(3,12) = 3.3, P = 0.06,

followed by Tukey-Kramer post hoc Test, 0.14,P,0.99).

Diurnal pattern in the proliferation in Tripedalia
cystophora

The number of cells entering the S phase at night and during

the day was compared in four predefined areas of the medusa. The

four areas were 1) 2006200 mm of the bell area midways on the

top of the radial channel (Figure 6A, B, white dashed square), 2)

2006200 mm midways on the pedalium (Figure 6C, D, white

dashed square), 3) 2006200 mm at the stalk base (Figure 6E, F,

white dashed square) where the ring nerve enters the stalk

(Figure 6E, F, black dashed area), and 4) the entire rhopalium

(long axis of rhopalium = 350–450 mm) (Figure 6G, H). We found

that the number of S phase cells in the pedalium, the stalk base,

and the rhopalia was higher during nighttime for each of these

areas in all the samples (Table S2). The averages of these cell

counts were significantly higher during nighttime than during

daytime (Table 3) (student t-test, 2 sided, non-paired, P = 0,006,

P = 0,006 and P = 0,008, respectively, n = 4). In the case of the

stalk base we found five times more cells in the S phase at night. In

the bell half the samples had the most labelled cells during the day

and half during the nighttime (Table S2) and the difference

between the averages was not statistically significant (student t-test,

2 sided, non-paired, P = 0.23, n = 4) (Table 3).

Discussion

Using in vivo labeling we have marked the S phase cells and

described proliferation patterns in polyps and medusae of the

cubozoans T. cystophora and A. moseri. We have focused on the

reorganization, formation and growth of especially the CNS. We

show that when the polyp metamorphoses into the juvenile

medusa, the new forming structures are associated with zones of

enhanced proliferation, indicating that they are formed de novo;

still we cannot completely rule out a possible role of reorganization

and/or redifferentiation of already existing cells. A high rate of

proliferation is found in some body parts (pedalia and rhopalia) in

all the examined life stages including adult medusae where growth

has arrested. This suggests that these areas which include a large

part of the CNS have a high rate of cell turnover.

Proliferation zones in cubozoan polyps
During their lifecycle cubozoans undergo two metamorphoses:

first when they metamorphose from larva into primary polyp and

second when the polyp becomes a free swimming medusa

(Figure 1). Here we have examined the latter. The previous

knowledge on metamorphosing polyps in cubozoans stems entirely

from descriptions on the gross morphological level of the process

[2,3,8,20–22]. We went further and looked at some of the details

using in vivo labeling of S phase cells [18] and described

proliferation zones in metamorphosing polyps of T. cystophora and

A. moseri. Cell proliferation appears to be distributed throughout

the body including the tentacles in non-metamorphosing polyps

(Figure 2A999). This is comparable with the results from the other

cnidarian polyps: Aiptasia diaphana, Nematostella vectensis as well

as in Aurelia aurita, where dividing cells were also found in the

entire polyp including the tentacles [23–25].

Profound changes of proliferation in T. cystophora polyps were

observed at the onset of the metamorphosis when complex

structures like rhopalia, tentacles, manubrium, ring nerve and

gastric filaments develop. The identification of proliferation zones

in many of the above mentioned structures was not unexpected,

since these body parts need to be formed de novo to form the new

medusa. The ring nerve constitutes the largest part of the CNS in

cubozoans, and curiously when becoming a medusa it loses its

gastrodermal part and greatly expands the epidermal part [26,27].

In the polyps of A. moseri we observed a slightly different

pattern of the proliferation. The overall proliferation zones were

the same but we still found proliferating cells in the tentacles of A.
moseri polyps at the stage when rhopalia are forming (Figure 3D).

This suggests that even though the tentacles disappear not all their

cells degenerate in this species, but some of them are probably

being reprogrammed and obtain new functions in the forming

medusa. The importance of this probable reuse needs future

experiments with dedifferentiating and apoptosis markers to be

evaluated.

It should be noted, that the species examined to date belong to

the same clade (Carybdids) within Cubozoa and data from the

other clade (Chirodropids) like Chironex fleckeri is called for in

order to better embrace the diversity of the metamorphosis in

cubopolyps.

Proliferation zones in juveniles
We quantified the proliferation rate in the rhopalia, pedalia, the

manubrium including the gastric filaments and in the bell of

juvenile medusae of T. cystophora. We found the highest

proliferation rate in the pedalium (Figure 4C) where 18.5% of

the cells entered the S phase during the 8 h incubation. This fast

growth matches the observation that in juvenile T. cystophora the

tentacles grow rapidly including the addition of a new tentacle on

each side of the primary ones. A high proliferation rate in the

tentacle bulbs has also been found in another cnidarian

Podocoryne carnea (Hydrozoa) [28]. Interestingly, in T. cystophora
this zone of enhanced proliferation stops at the first nematocyte

battery with only few labeled cells seen between the first and the

second ring of nematocytes, and almost no S phase cells in the rest

of the tentacle. There are two possible explanations for this pattern

of forming new cells: either the complete nematocytes batteries are

being formed in the pedalium including nematocytes progenitor

cells and the tentacle is growing solely by adding these rings at the

proximal part of tentacle, or the nematocyte precursors are formed

in the pedalium and then migrate out through the tentacle to the

more distal nematocyte batteries where they differentiate. The

latter explanation seems more likely since the place of nematogen-

esis in the hydrozoan medusa Clytia hemisphaerica was reported to

be in the tentacle bulb. A flow of the mitotic cells from the tentacle

bulb then disperses them throughout the whole tentacle [29].

Table 1. Percentage of S phase cells in predefined areas of
juvenile Tripedalia cystophora (see also Figure 4, Figure S2 and
Table S1).

predefined area % S phase cells *

rhopalium 13.060.3

pedalium 18.563.0

manubrium 3.660.5

bell 1.960.4

* values are means 6 S.E.M, n = 4.
doi:10.1371/journal.pone.0102628.t001
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We found another proliferation zone in the rhopalia (Figure 4B)

where 13.0% of the rhopalial cells entered the S phase within 8 h.

This proliferation rate indicates rapid cell turnover in the

rhopalium, since the relative growth of the rhopalia follows that

of the bell where only about 1.9% of the cells entered S phase,

which also have to compensate for the shown increase in cell

Figure 5. Cell turnover in adult Tripedalia cystophora rhopalia. (A, B) TEM pictures of the cells in posterior cell sheet. These cells have typical
morphology of undifferentiated cells (small nuclei, little cytoplasm) (A). Dividing cells in the posterior cell sheet (B). (C) Vertical peripheral section of
adult rhopalium. Labeled cells are after 5 h localized in the posterior cell sheet (white dashed area), gastrodermis (black dashed area) and epidermis.
(D) Horizontal central section through LLE of rhopalium. Labeled cells, 24 h (day 1) after treatment, do not change localization and are still observed
in the posterior cell sheet (white dashed line), gastrodermis (black dashed line) and epidermis. (E, F) Within one week labeled S phase cells migrated
into the retinas of ULE (E, red arrowheads) and LLE (F, red arrowheads). (E) Vertical central section of an adult rhopalium. (F) Horizontal peripheral
section through ULE of an adult rhopalium. PE represents pit eye; SE, slit eye; ULE, upper lens eye; LLE, lower lens eye; St, stalk; Cr, crystal. Scale bars,
5 mm (A); 1 mm (B); 200 mm (C–F).
doi:10.1371/journal.pone.0102628.g005
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density (Figure S3). This suggested high cell turnover is interesting,

not least as the rhopalia holds a major part of the CNS. Thus, it

becomes important to know the future of the new cells, e.g.

whether they differentiate into nerve cells constantly replacing

parts of the CNS. Such a system is indicated in the CNS of

another cnidarian, Hydra oligans [16].

Cell proliferation in fully grown rhopalia
Tissue homeostasis is an important physiological phenomenon

that ensures a dynamic balance between cell proliferation and cell

death during maintenance in all multicellular organisms. Progen-

itor cells are continuously recruited to differentiate into wanted

specific cell types while damaged or unwanted cells are eliminated

mostly through programmed cell death (apoptosis) [30].

Once the medusae of T. cystophora become sexually mature

they stop feeding and arrest their growth (personal observations).

However, at this stage we still observed a high rate of proliferation

in the rhopalia supporting the above suggestion that if the cells

complete the initiated cell cycle resulting in division they are

mainly supporting cell turnover. Under the assumption that the

same tissue of same sized animals have similar cell densities we

have used literature data to estimate that the total number of cells

in an adult rhopalium excluding the gastrodermis is approximately

13500 (1000 nerve cells, 2000 cells of posterior cell sheet [17],

2500 photoreceptors [31,32] and considering the average size of

an adult rhopalium being 4006600 mm with an average diameter

of the epithelial cells of 8 mm, the estimate of the number of

epithelial cells is around 8000). We found an average of 520

labeled cells after the 5 h of incubation in the adult rhopalium

(excluding the gastrodermis) which is about 4% of all the cells.

This crude estimate provides a preliminary insight into the

rhopalial cell turnover which has to be further investigated using

apoptosis markers.

Our findings support the hypothesis, that the posterior cell sheet

is an area of cell division. In the rhopalia of adult T. cystophora
medusae marked cells occurred after initial labeling in the

posterior cell sheet, gastrodermis and epithelium only. To test if

some of these cells are incorporated into the RNS or the eyes, we

followed them for one week post-incubation. 24 h post-incubation

the location of the labeled S phase cells had not changed

(Figure 5D), but after both 72 and 168 h we found labeled cells

further inside the rhopalium in association with the retinas of the

lens eyes (Figure 5E, F, red arrowheads). This proves that at least

some of the new cells differentiate into nerve cells, either

photoreceptors or retina associated neurons, which are the only

cells found in the retina [17]. Whether they originate from the

posterior cell sheet is not known, though.

Interestingly, there is an indication of a decline in the number of

labeled cells over time. After 168 h about one third of the

originally labeled cells were still found in the posterior cell sheet.

We hypothesize that after cell division one of the daughter cells

stays behind in the posterior cell sheet and the other differentiates

and migrates into the retina or other parts of rhopalium. The fact

Table 2. Counts of S phase cells in fully grown rhopalia of
Tripedalia cystophora after 5, 24, 72 and 168 h (see also
Figure 5).

timescale count of S phase cells *

5 hours 3826141

24 hours 3746130

72 hours 129629

168 hours 96631

* values are means 6 S.E.M, n = 4.
doi:10.1371/journal.pone.0102628.t002

Figure 6. Diurnal change in the rate of proliferation in
Tripedalia cystophora. (A, C, E, G) Proliferation during daytime in the
bell area midways over the radial channel (A), in the pedalium (C), at the
stalk base (E) and in the rhopalium (G). The same areas were likewise
labeled during nighttime (B, D, F, H). White dashed squares indicate
areas of cell counting (2006200 mm). Black dashed area indicates where
the ring nerve enters rhopalial stalk (stalk base). The proliferation in the
pedalium (D), stalk base (F) and rhopalium (H) is significantly higher at
night than during the day (see result section for details on statistics). PE
represents pit eye; SE, slit eye; ULE, upper lens eye; LLE, lower lens eye;
Cr, crystal. Scale bars, 300 mm (A–F); 200 mm (G, H).
doi:10.1371/journal.pone.0102628.g006
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that we only observed a small number of labeled S phase cells in

the retina again suggests a high cell turnover in rhopalium, but as

mentioned before, this has to be further investigated using

apoptosis and/or cell death markers to draw any final conclusions.

Difference in day and nighttime proliferation in Tripedalia
cystophora

Our results strongly suggest that in T. cystophora there is a

diurnal pattern of proliferation in the pedalium, stalk base and

rhopalium. In the bell, the observed difference between day and

night proliferation patterns was not statistically significant. For

practical reasons (the medusae only feed in light) we could not

starve the medusae for the exact same period of time (24 vs 36 h)

and it is not possible, therefore, to completely exclude that the

diurnal pattern is caused by this difference. Diurnal rhythms in cell

division has previously been demonstrated to occur from

unicellular organisms to humans [33]. Further, in mammals the

diurnal rhythm in proliferation can also be confined to some tissue

specific cells [34].

Two of the areas of enhanced nocturnal proliferation, the

rhopalia and stalk base, are in close connection with parts of the

CNS. We speculate that this is due to the suggested cell turnover in

the CNS mostly being initiated at night where little sensory input

needs processing. Still, we do not know whether the labeled S

phase cells will successfully finish the cell cycle resulting in their

division and subsequent differentiation or whether they stop at the

S/G2 phase cell cycle check point for a longer period of time.

Even if they continue the cell cycle and differentiate into new

nerve cells this process will probably take a few days [35,36],

which means that the coupling we see between proliferation and

resting does not necessarily mean that possible change/renewal of

the CNS happens at night.

Supporting Information

Figure S1 Top view of proliferation zones during
metamorphosis of Tripedalia cystophora polyp. T.
cystophora polyp during different stages of metamorphosis stained

with DAPI (A9, B9, C9, D9, E9) and S phase cells visualized with

EdU (A99, B99, C99, D99, E99). (A-A999) Non-metamorphosing polyp

showing dispersed S phase cells in oral pole, tentacles and body.

(B-B999) At the beginning of metamorphosis, in the stage of

congregating tentacles, the shape of the oral pole is clearly circular

(B9). Four proliferation zones can be observed at the bases of the

tentacles marking the areas of the forming rhopalia (B999). (C-C999)

The shape of the oral pole has changed into quadrangular (C9) and

the proliferation zone is expanding in the developing rhopalia and

the area surrounding the mouth (C999). (D-D999) Proliferation

zones still prevail in the rhopalia, which now have developing eyes,

and in the area surrounding the mouth (D999). (E-E999) In the last

stage of metamorphosis an additional proliferation zone is

observed in the forming manubrium including the gastric

filaments. S phase cells are distributed in the bell of the future

medusa (E999). Scale bar, 300 mm (A) applies to all the pictures.

(TIF)

Figure S2 Micrographs used to calculate the percentage
of S phase labeled cells. Four different body parts of juvenile

medusae stained with DAPI (A–D) and EdU (A9-D9) in order to

calculate the proliferation rates. 10 mm thick confocal stacks used

for cell counts of DAPI- and EdU-stained cells in bell (A-A99),

manubrium (B-B99), pedalium (C-C99) and rhopalium (D-D99).

White dashed line indicates the area of cell counts. Scale bar,

50 mm (A) applies to all the pictures.

(TIF)

Figure S3 Cell density in the bell of Tripedalia cysto-
phora changes with the age of the medusa. Bell of a

juvenile, sub-adult and adult T. cystophora medusa stained with

DAPI. The area of 1006100 mm used for nuclei counts in the bell

of juvenile (A), sub-adult (B) and adult medusae (C). Scale bar,

20 mm (A) applies to all the pictures.

(TIF)

Table S1 Counts of DAPI and EdU labeled cells in
predefined areas of four different body parts of juvenile
medusa of Tripedalia cystophora. Ratio of numbers of EdU

to DAPI labeled cells results in the percentage of the S phase cells

in the given body part (see also Figure S2).

(DOCX)

Table S2 Counts of EdU labeled cells in predefined
areas of 2006200 mm of four different body parts of mid-
sized medusa Tripedalia cystophora during daytime and
during nighttime (see also Figure 6).

(DOCX)
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Table 3. Counts of S phase cells at daytime and nighttime in predefined area of different body parts of Tripedalia cystophora (see
also Figure 6 and Table S2).

body part count of S phase cells * student t-test

daytime nighttime P - value

bell 1161 23610 0.2

pedalium 1365 4568 0.006

stalk base 1466 75616 0.006

rhopalium 94610 253646 0.008

* values are means 6 S.E.M, n = 4.
doi:10.1371/journal.pone.0102628.t003
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medusen von Tripedalia cystophora und Carybdea marsupialis (Coelenterata,

Cubozoa). Zoomorphology 104: 163–170.

23. Singer II (1971) Tentacular and oral-disc regeneration in the sea anemone,

Aiptasia diaphana. 3. Autoradiographic analysis of patterns of tritiated

thymidine uptake. Journal of embryology and experimental morphology 26:

253–270.

24. Passamaneck YJ, Martindale MQ (2012) Cell proliferation is necessary for the

regeneration of oral structures in the anthozoan cnidarian Nematostella

vectensis. BMC developmental biology 12: 34.

25. Gold DA, Jacobs DK (2013) Stem cell dynamics in Cnidaria: are there unifying

principles? Development genes and evolution 223: 53–66.

26. Satterlie RA (2002) Neuronal control of swimming in jellyfish: a comparative

story. Can J Zool 80: 1654–1669.

27. Chapman DM (1978) Microanatomy of the cubopolyp, Tripedalia cystophora

(Class Cubozoa). Helgoländer wiss Meeresunters 31: 128–168.

28. Spring J, Yanze N, Middel AM, Stierwald M, Groger H, et al. (2000) The

mesoderm specification factor twist in the life cycle of jellyfish. Developmental

biology 228: 363–375.

29. Denker E, Manuel M, Leclere L, Le Guyader H, Rabet N (2008) Ordered

progression of nematogenesis from stem cells through differentiation stages in the

tentacle bulb of Clytia hemisphaerica (Hydrozoa, Cnidaria). Developmental

biology 315: 99–113.

30. Green DR (2011) Means to an end: Apoptosis and other cell death mechanisms.

Cold Spring Harbor Laboratory Press.

31. Nilsson DE (2005) Photoreceptor evolution: ancient siblings serve different tasks.

Current biology: CB 15: R94–96.

32. Ekstrom P, Garm A, Palsson J, Vihtelic TS, Nilsson DE (2008) Immunohisto-

chemical evidence for multiple photosystems in box jellyfish. Cell and tissue

research 333: 115–124.

33. Johnson CH (2010) Circadian clocks and cell division: what’s the pacemaker?

Cell cycle 9: 3864–3873.

34. Biederbick A, Elsasser H (1998) Diurnal pattern of rat pancreatic acinar cell

replication. Cell and tissue research 291: 277–283.

35. Campbell RD, David CN (1974) Cell cycle kinetics and development of Hydra

attenuata. II. Interstitial cells. Journal of cell science 16: 349–358.

36. David CN, Campbell RD (1972) Cell cycle kinetics and development of Hydra

attenuata. I. Epithelial cells. Journal of cell science 11: 557–568.

Cell Proliferation in Cubozoans

PLOS ONE | www.plosone.org 11 July 2014 | Volume 9 | Issue 7 | e102628


