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Abstract

A new moisture adjusted vegetation index (MAVI) is proposed using the red, near infrared, and shortwave infrared (SWIR)
reflectance in band-ratio form in this paper. The effectiveness of MAVI in retrieving leaf area index (LAI) is investigated using
Landsat-5 data and field LAI measurements in two forest and two grassland areas. The ability of MAVI to retrieve forest LAI
under different background conditions is further evaluated using canopy reflectance of Jack Pine and Black Spruce forests
simulated by the 4-Scale model. Compared with several commonly used two-band vegetation index, such as normalized
difference vegetation index, soil adjusted vegetation index, modified soil adjusted vegetation index, optimized soil adjusted
vegetation index, MAVI is a better predictor of LAI, on average, which can explain 70% of variations of LAI in the four study
areas. Similar to other SWIR-related three-band vegetation index, such as modified normalized difference vegetation index
(MNDVI) and reduced simple ratio (RSR), MAVI is able to reduce the background reflectance effects on forest canopy LAI
retrieval. MAVI is more suitable for retrieving LAI than RSR and MNDVI, because it avoids the difficulty in properly
determining the maximum and minimum SWIR values required in RSR and MNDVI, which improves the robustness of MAVI
in retrieving LAI of different land cover types. Moreover, MAVI is expressed as ratios between different spectral bands,
greatly reducing the noise caused by topographical variations, which makes it more suitable for applications in
mountainous area.
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Introduction

In recent decades, numerous spectral vegetation indices (VIs)

derived from remotely sensed data have been developed to

monitor the Earth’s vegetation cover and retrieve vegetation

parameters such as leaf area index (LAI), fractional vegetation

cover, biomass, and photosynthetic activity [1–4]. These VIs are

often algebraic combinations of spectral reflectance in the red and

near infrared (NIR) wavebands, for example, the most commonly

used simple ratio (SR) [5] and normalized difference vegetation

index (NDVI) [6]. They have been proved to be better than a

single spectral band alone for estimating biophysical parameters of

vegetation. However, the effectiveness of their applications is

limited to different degrees by the effect of perturbing factors such

as atmospheric conditions, topography, illumination and viewing

geometry, sensor calibration, and soil background [7–8]. In forest

ecosystems, the background often refers to all materials below the

tree canopy (overstorey), including understorey (grass, shrub),

moss, litter, and soil [9].

Varieties of VIs have been developed to reduce part of noise

caused by these perturbing factors. Based on the so-called soil line

concept [10], several soil adjusted VIs have been proposed to

correct the perturbation of soil background, such as PVI [11],

SAVI [12], WDVI [2], TSAVI [13], MSAVI [14], OSAVI [8],

and GESAVI [15] (see Table 1). These two-band SAVI family

indices appear to be less sensitive to soil brightness changes, but

are more applicable to retrieving biophysical parameters of

vegetation with relatively homogeneous canopies such as grass-

lands and croplands [7–8]. In order to enhance the sensitivity to

vegetation change and minimize the noise caused by other factors,

some three-band vegetation indices were developed by incorpo-

rating the blue or shortwave infrared (SWIR) bands. For instance,

the atmospherically resistant vegetation index (ARVI) was

designed to minimize atmospheric noise [16], and enhanced

vegetation index (EVI) can reduce both the effects of atmospheric

condition and soil background [17]. The modified normalized

difference vegetation index (MNDVI) [18] and reduced simple

ratio (RSR) [19] which combine the reflectance in the red, NIR,

and SWIR bands are able to reduce the background effects.

Although these indices might have some advantages for specific

purposes, they are not based on the band ratio form and much of

the noise may be retained or even enhanced [20–21]. It has been

recognized that taking ratios between different spectral bands has

the advantage of reducing unwanted noise caused by topography
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because the topographic effects often make the reflectances in the

different bands change in similar proportions in the same

direction. Therefore, efforts should be made to develop three-

band index in band-ratio form.

In this study, we develop a new three-band VI in band-ratio

form, namely a moisture adjusted vegetation index (MAVI) (see

Table 1). The sensitivity of MAVI to LAI is evaluated using LAI

measured in two forest and two grassland areas and Landsat-5

data. Furthermore, the background reflectance effects of MAVI on

forest canopy LAI retrieval are also investigated using the canopy

reflectance of Jack Pine and Black Spruce forests with different

background conditions simulated by the 4-Scale model [22].

Finally, we investigate how MAVI responds to topographical

variations relative to other VIs and whether this ratio principle

helps reduce topographical influence on VIs.

Materials and Methods

Ethics Statement
Field LAI measurements were performed in Tiantongshan

Mountain forest, Maoershan Mountain forest, Hulunbeier grass-

land, and Xinlinhaote grassland (described in Section 2.2 and

Section 2.3). The ground measurement permits were issued by

Tiantongshan Forest Ecosystem Observation and Research

Station in Zhejiang Province, Maoershan Forest Ecosystem

Observation and Research Station in Heilongjiang Province,

Hulunbeier Grassland Ecosystem Observation and Research

Station of the Ministry of Agriculture, and Inner Mongolia

Grassland Ecosystem Research Station the Chinese Academy of

Sciences, respectively.

2.1 Design of MAVI
The SWIR band within the 1.5–1.75 mm range provides

valuable complementary information relative to visible and NIR,

regarding the geometrical structure of the canopy and on the

optical properties of the underlying soil [23]. SWIR reflectance is

strongly related to the canopy-equivalent water thickness, which

provides a possibility of inferring canopy closure from remotely

sensed data [24]. Panigrahy and Parihar proved that classification

accuracy of crops was significantly improved by incorporating

SWIR reflectance [25]. This band has been used to develop

vegetation indices together with red and NIR bands in many

previous studies [26–27]. Nemani et al. and Brown et al. used

SWIR reflectance to modify NDVI and SR, resulting in a

decreased sensitivity to background noise while improving their

correlations with LAI [18–19]. Lymburner et al. indicated that the

specific leaf area vegetation index (SLAVI = NIR/(R+SWIR)) had a

strong positive correlation with specific leaf area index [28].

Because SWIR reflectance is sensitive to water content in the

canopy as the canopy liquid water absorption is linearly related to

LAI [29], a new vegetation index incorporating SWIR reflectance

for improving LAI retrieval, namely the moisture adjusted

vegetation index (MAVI) is developed empirically as:

MAVI~ NIR{Rð Þ= NIRzRzSWIRð Þ ð1Þ

which can be rewritten as

MAVI~NDVI= 1zSWIR= NIRzRð Þð Þ ð2Þ

In general, an increase in the vegetation amount (LAI) causes a

decrease in the SWIR and red reflectance and an increase in the

NIR reflectance and NDVI. Because the absolute amount of the

change in the red reflectance is usually less than that in the NIR

and SWIR reflectance, the value of SWIR= NIRzRð Þ in

Equation (2) decreases as the LAI increases. Consequently, the

numerator and denominator in Equation (2) show an inverse

relationship when the vegetation amount changes. This indicates

MAVI potentially has higher sensitivity to LAI than NDVI. MAVI

is expressed as ratios between the reflectance of the three bands,

which gives it the potential to minimize the influences of external

Table 1. Formulas of several commonly used vegetation indices.

Vegetation index Formula Reference

Simple ratio (SR) SR = NIR/R [5]

Normalized difference vegetation index (NDVI) NDVI = (NIR–R)/(NIR+R) [6]

Perpendicular vegetation index (PVI) PVI = (NIR-aR-b)/(a2+1)1/2 [11]

Soil adjusted vegetation index (SAVI) SAVI = (NIR–R)/(NIR+R+L)(1+L) [12]

Weighted difference vegetation index (WDVI) WDVI = NIR-aR [2]

Transformed soil adjusted vegetation index (TSAVI) TSAVI = a(NIR-aR-b)/(R+a(NIR-b)+X(1+a2)) [13]

Modified soil adjusted vegetation index (MSAVI) MSAVI = (2NIR+1–((2NIR+1)2–8(NIR–R))1/2)/2 [14]

Optimized soil adjusted vegetation index (OSAVI) OSAVI = (NIR–R)/(NIR+R+Y) [8]

Generalized soil adjusted vegetation index (GESAVI) GESAVI = (NIR–aR–b)/(R+Z) [15]

Atmospherically resistant vegetation index (ARVI) ARVI = (NIR-RB)/(NIR+RB), RB = R-c(B–R) [16]

Modified normalized difference vegetation index (MNDVI) MNDVI = NDVI6(SWIRmax–SWIR)/(SWIRmax–SWIRmin) [18]

Enhanced vegetation index (EVI) EVI = 2.56((NIR–R)/(NIR+6R27.5B+1)) [17]

Reduced simple ratio (RSR) RSR = SR6(SWIRmax–SWIR)/(SWIRmax–SWIRmin) [19]

Moisture adjusted vegetation index (MAVI) MAVI = (NIR–R)/(NIR+R+SWIR) This paper

Note: B, R, NIR, and SWIR are the surface reflectance in the blue, red, near infrared, and shortwave infrared bands, respectively. SWIRmax and SWIRmin are the maximum
and minimum surface reflectance in the SWIR band, respectively. SWIRmax and SWIRmin are defined as the 1% minimum and maximum cutoff points in the histogram
of the SWIR band reflectance here. a and b are the slope and intercept of the soil line, respectively. L, X, Y, and Z are soil background adjusted factors. c is an atmospheric
self-correcting factor which depends on aerosol types.
doi:10.1371/journal.pone.0102560.t001
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perturbing factors, such as the changes of illumination and

observation geometry, complex topography, and instrument

calibration defects.

2.2 Study Areas
The effectiveness of MAVI is tested using LAI measured in two

grassland and two forest areas (Figure 1). Table 2 summarizes the

major characteristics of these four areas. Tiantongshan Mountain

lies in Zhejiang Province of eastern China. The study area is

located in the subtropical monsoon climate zone with a mean

annual temperature of 16.2uC and mean annual precipitation of

1374.7 mm [30]. The elevations are mostly below 500 m. The

forests consist of evergreen and deciduous broadleaf species and

coniferous species. Maoershan Mountain is located in Heilong-

jiang Province of northern China. It covers an area of 266.2 km2.

The mean annual temperature and precipitation in this area are

2.8uC and 723.8 mm, respectively [31]. The elevation in this hilly

highland varies from 250 m to 817 m with a mean elevation of

428 m. It is covered by a regenerative forest with various types,

including broadleaf, needle-leaf, and mixed forest. The forests are

approximately 50 years old.

The two grassland areas are near Hulunbeier City and

Xilinhaote City of the Inner Mongolian Plateau. The elevation

in Hulunbeier grassland varies from 650 m to 700 m. The mean

annual temperature varies from 22.0uC to 21.0uC, and annual

precipitation ranges from 350 mm to 400 mm [32]. It is a

representative meadow steppe ecosystem with the height of the

grass ranging from 0.3 m to 0.5 m. The average elevation in the

Xilinhaote grassland is approximately 1100 m. The Xilinhaote

grassland belongs to the semiarid grassland climate region with a

mean annual temperature of 2.0uC and mean annual precipitation

of about 350 mm, mainly occurring from June to August [33].

This site is a typical steppe ecosystem in northern China.

2.3 LAI Measurement
Field LAI measurements at Maoershan and Tiantongshan were

carried out from 12 to 20 July and from 19 to 25 September, 2009,

respectively. Each area had 23 plots in needle-leaf forests,

broadleaf forests, and mixed forests which represent major

vegetation species in the study areas. These plots were located

on relatively flat terrains and composed of relatively homogeneous

vegetation species. Two LAI-2000 (Li-Cor, Nebraska, USA) units

were used to measure LAI. One unit was set up at an open

location close to the observation plots to acquire A readings

(above-canopy) at 30 s intervals. The other one was used to record

B readings below the canopy at each sampling plot. A 270u view

cap was used on each of LAI-2000 units to avoid the influence of

the operator on the sensor. At each sampling plot, two 50 m

parallel transects separated by 25 m were laid in the centre of the

plot. Along each transect, measurements were made just above the

ground level at 6 equally spaced spots using LAI-2000. At each

spot, two B readings were made at random locations within a 1 m

diameter circle. For each sampling spot, LAI was calculated using

the A and B readings acquired simultaneously. Because of the

Figure 1. Areas in which LAI was measured. The effectiveness of the newly developed moisture adjusted vegetation index (MAVI) is tested using
LAI measured in two grassland and two forest study areas in China: (A) Tiantongshan Mountain forest, (B) Maoershan Mountain forest, (C) Hulunbeier
grassland, (D) Xinlinhaote grassland. The images composed of reflectance in bands 4, 3 and 2 from Landsat-5 TM are also shown.
doi:10.1371/journal.pone.0102560.g001
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relatively severe multiple scattering effect of blue wavelength on

the data of the fifth ring of LAI-2000, only the data of rings1–4

was used to calculate LAI. The LAI value for a plot was computed

as the mean of 24 LAI measurements (2 LAI/spot66 spot/

transect62 transect). LAI measurements were conducted when the

sky was overcast or in hours just after sunset. The values of

measured LAI in Maoershan and Tiantongshan range from 1.61

to 6.55 and from 3.41 to 6.66, respectively.

The LAI in Hulunbeier and Xilinhaote grasslands was

measured from 21 to 26 June and from 29 June to 4 July, 2010,

respectively. In the study areas of Xilinhaote and Hulunbeier, 51

and 52 plots were set up, respectively. Two 40 m parallel transects

were placed at a distance of 25 m in each plot. Five sampling spots

were spaced in 10 m intervals along each transect. A narrow

groove about 0.05 m deep was created at each sampling spot to

allow the upper surface of the LAI-2000 sensor head to be placed

at the same level as the ground surface to measure LAI of the short

grass. At each plot, the mean LAI value was obtained from 12

LAI-2000 readings arranged in a sequence: starting with one A

reading (above-grass reading), followed by 10 B readings (below-

grass reading in each groove), and ended with another A reading.

Once again the 270u view cap was used to avoid operator

interference with the sensor. All measurements were made near

sunrise, sunset, or when overcast. The LAI of Hulunbeier and

Xilinhaote grasslands is shown to vary from 0.46 to 4.06 and from

0.65 to 4.7, respectively. A GPS device was used to survey the

geographical position of the centre of each plot in these four study

areas.

2.4 Remotely Sensed Data Processing
Four Landsat-5 Thematic Mapper (TM) scenes covering these

four study areas were downloaded from United States Geological

Survey (USGS) (Table 2). These images were registered to within

half a pixel with ground control points recorded in the field

campaign. Radiometric correction was made using the gain and

offset parameters of each band included in the Landsat-5 TM

header files. Surface reflectance was obtained after atmospheric

correction using the 6S code [34], with inputs of a continental air-

mass, mid-latitude summer, a uniform target, and 40 km

atmospheric visibility. Surface reflectance images were projected

to the UTM/WGS84 coordinate system with a 30 m spatial

resolution. The LAI sampling plots were positioned on the surface

reflectance images using latitude/longitude coordinates measured

by GPS. Because the plots were approximately 50 m650 m and

the pixel size of TM image was 30 m, the average surface

reflectance in red, NIR, and SWIR bands was extracted from a 3

by 3 pixels window centered on each plot. The average surface

reflectance in bands 3, 4 and 5 from Landsat-5 TM of each plot

was used to calculate VIs.

2.5 VI-LAI Modeling
The semi-empirical exponential function based on the modified

Beer’s law is used to fit VI-LAI relationships:

VI~VI?{ VI?{VIg

� �
exp {KVI LAIð Þ ð3Þ

where VI‘ is the asymptotic value of a specific VI when LAI

reaches infinity (in fact, this limiting value is always reached when

LAI approaches 8); VIg is the VI value of the bare soil (LAI = 0).

The difference between VI‘ and VIg controls the dynamic range of

the VI. KVI is an extinction coefficient determining the sensitivity

of VI to LAI.T
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The Marquardt-Levenberg algorithm [35] is used to determine

the optimal fitting parameters of each selected VI (NDVI, SAVI,

OSAVI, MSAVI, RSR, MNDVI, and MAVI, see Table 1) in the

four study areas in terms of the largest adjusted coefficient of

determination (R2) of each VI-LAI relationship. For each VI, these

fitted parameters depend on illumination and viewing geometries,

soil optical properties, and leaf inclination [13], [36]. The

performance of MAVI is assessed through comparing its ability

to predict LAI with the abilities of other VIs to predict LAI. The

soil adjusted factors of these VIs (Table 1) are set as the values

recommended by their authors (L = 0.5, X = 0.08, Y = 0.16, and

Z = 0.35).

2.6 Assessing Sensitivity of VIs to Forest Background
Reflectance

Forest background reflectance has an important influence on

the accuracy of canopy LAI estimation in the case of low to

intermediate canopy cover [9]. The canopy reflectance of Jack

Pine and Black Spruce forests with different background

conditions simulated by Brown et al. [19] is used here to

investigate the sensitivity of VIs to background disturbances.

They employed the 4-Scale model [22] to simulate the canopy

reflectance of Jack Pine and Black Spruce forests with different

types of backgrounds. The in situ spectroradiometric measure-

ments of the backgrounds, including lichen, sphagnum moss, and

forest soils, taken in the two sites are used in the simulations of

canopy reflectance. A synthetic background of 50% of water and

50% of moss spectra, representing an extreme case, is also used to

simulate the canopy reflectance of Black Spruce forest. In the

simulations, the canopy LAI of Jack Pine and Black Spruce forests

is allowed to change from 0.5 to 6 at an interval of 0.5 to analyze

the change in the sensitivity of VIs to background reflectance with

canopy density. A complete description of these modeled data can

be found in Brown et al. [19].

The sensitivity of VIs to background reflectance (TVI) can be

characterized as [37]:

TVI~(sVI=s)|100% ð4Þ

Figure 2. The best fitted relationships between LAI and vegetation indices. The MAVI and three soil adjusted vegetation indices (SAVI,
OSAVI, and MSAVI) are compared in the four study areas: (A) Tiantongshan, (B) Maoershan, (C) Hulunbeier, and (D) Xilinhaote. The statistics of the
best fitted VI-LAI relationships are listed in Table 3. MAVI produces a higher R2, smaller normalized RMSE of retrieved LAI compared with the three soil
adjusted vegetation index in both forest and grassland areas.
doi:10.1371/journal.pone.0102560.g002
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where sVI refers to the standard deviation of VI values

corresponding to a given LAI value and s is the standard

deviation of the VI over the whole range of measured LAI. A

smaller TVI value indicates higher efficiency and low sensitivity to

background reflectance for a VI.

2.7 Assessing Topographical Effects on VIs
The study area in Maoershan Mountain is selected to assess the

topographical effects on VIs. It is a low elevation highland with a

mean slope of 14.2u. As the altitude increases, the slope and forest

age increase slowly due to relatively frequent deforestation at flat

terrains and lower altitudes. In assessing topographical effects on

VIs, pixels with slopes from 3u to 27u are binned into 5-degree

slope intervals. The pixels with slopes more than 27u are excluded

since they are too few in the study area. The five classes are tagged

by the median value of the slope range of each class hereafter (i.e.,

5u, 10u, 15u, 20u, 25u). In each class, the mean values at every

aspect angle of the selected VI are calculated. The study area is

covered by high density forests with almost closed canopies, so the

effects of soil background on VIs are negligible. Because the study

area is relatively small, the atmospheric conditions of each pixel

can be assumed identical, and as the study area is composed of

relatively homogeneous vegetation species, the variations of a VI

within each slope class are assumed a result of topography.

The coefficient of variation (CV ) is used to evaluate the effects

on VIs resulting from topography variation. It is defined as,

CV~sslope=Mean|100% ð5Þ

where sslope and Mean are the standard deviation and the mean

value of VI corresponding to a given slope class, respectively. The

CV value represents the noise caused by topographic variations. A

smaller CV value indicates a smaller topographic effect.

As the second criterion, the topographic effects on VIs can also

be expressed in the following way:

Figure 3. The best fitted relationships between LAI and vegetation indices. The MAVI and three selected vegetation indices (NDVI, MNDVI,
and RSR) are compared in the four study areas: (A) Tiantongshan, (B) Maoershan, (C) Hulunbeier, and (D) Xilinhaote. MAVI produces the largest R2 and
the smallest normalized RMSE of estimated LAI in Tiantongshan and Hulunbeier. The performance of MAVI based on R2 and RMSE is only slightly
second to RSR in Maoershan and Xilinhaote. These results prove that MAVI has stable correlations with LAI under different cover types through
incorporating the SWIR reflectance in band-ratio form.
doi:10.1371/journal.pone.0102560.g003
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Figure 4. Canopy reflectance of Jack Pine and Black Spruce forests against LAI for different backgrounds. The canopy reflectance of
Jack Pine and Black Spruce forests is simulated using the 4-Scale model against LAI for different backgrounds (moss, lichen, and forest soil). A
synthetic background consisting of 50% of water and 50% of moss is also included for the Black Spruce forest [19]. The sensitivity of MAVI to
background reflectance disturbances is investigated using these modeled results.
doi:10.1371/journal.pone.0102560.g004
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VI~m| cos izn ð6Þ

cos i~ cos hs cos hz sin hs sin h cos s{Að Þ ð7Þ

where i is the incidence angle defined as the angle between the

direction of the sun and the local surface normal, which represents

one of the most important perturbations in remote sensing over

mountainous terrain [38]. m and n represent the slope and

intercept of the linear regression line between VI and cosi; hs and

Qs are the solar zenith angle and the solar azimuth angle,

respectively; h and A are the slope and aspect of an inclined pixel,

respectively. These are derived from the 30 m DEM of the study

area. The coefficient of determination (R2) of the regression

represents the sensitivity of VI to topographic variations. The R2

value increases as the topographic effect increases.

Results and Discussions

3.1 Relationships between VIs and LAI
Seven VIs including NDVI, SAVI, OSAVI, MSAVI, RSR,

MNDVI, and MAVI, full descriptions found in Table 1, are

selected and calculated from the TM surface reflectance image to

investigate their sensitivity to LAI. Figure 2 and Figure 3 show the

best fitted relationships between the selected VIs and LAI in the

four study areas. All VIs are almost linearly correlated with LAI in

Figure 5. Background reflectance effects on vegetation indices at different LAI values in Jack Pine forest. The effects of different
backgrounds (moss, lichen, and forest soil) on the selected vegetation indices (SAVI, OSAVI, MSAVI, MNDVI, RSR, MAVI, NDVI, and SR) are simulated
using the 4-Scale model for the different LAI levels in Jack Pine forest. The forest background strongly affects the values of SAVI, OSAVI, MSAVI, and
NDVI as the LAI values are less than 2. MAVI and SR can reduce the effects of forest backgrounds at low LAI values. RSR and MNDVI show the smallest
background reflectance effects among these vegetation indices.
doi:10.1371/journal.pone.0102560.g005
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the Tiantongshan, in which vegetation density is relatively high

and in a smaller range compared with other areas. RSR, SAVI,

OSAVI, and MSAVI also show approximately linear correlations

with LAI in the remaining three study areas. NDVI, MNDVI and

MAVI increase rapidly with increasing LAI at low LAI values, and

increase slowly with increasing LAI at high LAI values.

Table 3 shows the best fitted relationships between the selected

VIs and LAI in the four study areas. In order to facilitate the

comparison, the RMSE for each VI is normalized by the

difference between the maximum and minimum value of each

VI corresponding to the whole range of measured LAI. The fitted

parameters in the VI-LAI relationships vary considerably with VIs

and cover types. The dynamic ranges (VI‘-VIg) of these selected

VIs are quite different in the four study areas. This is particularly

true in Xilinhaote where the dynamic range is relatively larger.

Among these two-band VIs, MSAVI has the largest dynamic

range values of 0.8693, 0.7391, 0.8206, and 0.8784 in Tiantong-

shan, Maoershan, Hulunbeier, and Xinlinhaote, respectively,

while NDVI has the smallest dynamic range values of 0.354,

0.4002, 0.4956, and 0.7552 in these areas. These results are in

agreement with the previous findings of Wu et al. [36]. NDVI

presents R2 values of 0.3703, 0.5338, 0.6667, and 0.6647 in the

four study areas, which are larger than those of the three soil

adjusted VIs (SAVI, OSAVI, and MSAVI), and has smaller

normalized RMSE of 0.2278, 0.2171, and 0.1415 in Tiantong-

shan, Maoershan, and Xinlinhaote, respectively, indicating this

Figure 6. Background reflectance effects on vegetation indices at different LAI values in Black Spruce forest. The effects of different
backgrounds (moss, lichen, forest soil, and the mixed background of water and moss) on the selected vegetation indices (SAVI, OSAVI, MSAVI, MNDVI,
RSR, MAVI, NDVI, and SR) are simulated using the 4-Scale model for the different LAI levels in Black Spruce forest. The results are similar to those of
Figure 5, but RSR and MNDVI do not perform much better than other vegetation indices in reducing the effect of the mixed background of water and
moss.
doi:10.1371/journal.pone.0102560.g006
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ratio-based simple vegetation index has some advantages for

retrieval of LAI over more complex VIs. OSAVI shows better

efficiency than SAVI and MSAVI in all study areas. The three soil

adjusted VIs all present stronger correlations with LAI in grassland

areas than seen in forest areas, suggesting they are more applicable

for retrieving LAI for vegetations with relatively homogeneous

canopies such as grasslands and croplands than for vegetations

with distinct canopy structure such as forests.

The three-band VIs (MNDVI, RSR, and MAVI) all perform

significantly better than the two-band VIs in estimating LAI in

Maoershan and Xinlinhaote. However, MNDVI and RSR are

poorer predictors of LAI compared with two-band VIs in

Tiantongshan and Hulunbeier, which may be due to their non-

ratio forms and the difficulty in properly determining the values of

SWIRmax and SWIRmin in them. Instead, MAVI produces the

largest R2 of 0.6975 and 0.6924 and the smallest normalized

RMSE of 0.1501 and 0.1176 in Tiantongshan and Hulunbeier,

respectively, indicating the superior performance of MAVI over

other VIs in retrieving LAI. These results prove that MAVI has

stable correlations with LAI under different cover types due to

incorporating the SWIR reflectance in band-ratio form.

3.2 Sensitivity of VIs to Background Reflectance in Forest
Canopy LAI Retrieval

Figure 4 shows the canopy reflectance in the red, NIR, and

SWIR bands simulated by the 4-Scale model for Jack Pine and

Black Spruce forests with different background types. The red and

SWIR reflectance decreases with increasing LAI for both Jack

Pine and Black Spruce forests over the entire range of LAI. The

canopy NIR reflectance shows different curves, depending on

background types. At LAI values less than 2.0, the canopy NIR

reflectance decreases with increasing LAI over the moss and lichen

backgrounds due to the increase in the probability of observing

shadowed background, while the canopy NIR reflectance increas-

es slowly with increasing LAI at LAI values above 2. For non-

vegetative backgrounds, the canopy NIR reflectance increases with

increasing LAI over the entire range of LAI. The effects of

different backgrounds on the canopy reflectance in the red, NIR

and SWIR bands decrease with increasing LAI. The canopy

SWIR reflectance presents an inverse curvilinear trend with

increasing LAI and reaches an asymptote at an LAI of

approximately 5, while the canopy red reflectance reaches an

asymptote at an LAI of approximately 3. The similarity of SWIR

reflectance across different backgrounds (lichen, moss and soil)

compared to the range shown in the red and NIR reflectance, and

the large sensitivity of SWIR to LAI are the main reasons for the

better performance of RSR compared with SR in estimating

canopy LAI [19]. This also demonstrates that the canopy SWIR

reflectance can be used to quantify the vegetation amount as well

as canopy closure in most cases [23–24].

Figure 5 and Figure 6 illustrate the background reflectance

effects on the calculated VIs at the different LAI levels in Jack Pine

and Black Spruce forests. In general, the effects of different

background reflectance on the canopy VIs decrease with

increasing LAI for all VIs in both Jack Pine and Black Spruce

forests, because the probability of observing background decreases

with increasing LAI. The moss background strongly affects the

values of SAVI, OSAVI, and MSAVI in both Jack Pine and Black

Spruce forests as the LAI values are less than 2, leading to larger

TVI values compared with other VIs (Figure 7). Similarly, the noise

induced to NDVI by forest background reflectance shows large

TVI values varying from 123% to 71% in Jack Pine forest and from

109% to 82% in Black Spruce forest corresponding to LAI from

0.5 to 1.5, which is in agreement with the conclusion of Nemani

et al. that NDVI alone cannot be used to estimate LAI in open

forest canopies [18]. SR presents relatively small TVI values

changing from 60% to 59% in Jack Pine forest and from 60% to

64% in Black Spruce forest corresponding to LAI from 0.5 to 1.5,

indicating that the background reflectance effects on SR are

Figure 7. Sensitivity of different vegetation indices to forest background reflectance. The background reflectance strongly affects the
values of SAVI, OSAVI, MSAVI, and NDVI in both Jack Pine and Black Spruce forests as the LAI values are less than 2, leading to larger TVI values of
them compared with other vegetation indices. RSR and MNDVI present small TVI values at low LAI values, indicating that the background reflectance
effects on them are smaller than other vegetation indices. MAVI has relatively small TVI values over the entire LAI ranges in both Jack Pine and Black
Spruce forests. The results demonstrate that MAVI that combines the red, NIR and SWIR reflectance can reduce the effects of background reflectance
on forest canopy LAI retrieval.
doi:10.1371/journal.pone.0102560.g007
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Figure 8. Variations of different vegetation indices with aspects in 5-degree slope intervals in Maoershan Mountain forest. The polar
angle represents aspect, and the radius represents the mean values of each VIs at a given aspect on different slopes. Topography strongly affects RSR
and MNDVI, resulting in negative biases on sun-facing slopes and positive biases on sun-backing slopes. The values of SR, NDVI, and MAVI increase as
the slope increases, which is similar to the changes of forest age with slope. It can be inferred that vegetation indices expressed in band-ratio form
are able to remove a large proportion of topographical noise.
doi:10.1371/journal.pone.0102560.g008
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smaller than those on NDVI, which supports the statement by

Chen and Cihlar that SR has the highest correlation with LAI in

boreal forests [39]. RSR and MNDVI can largely reduce the

effects of moss, lichen, and forest soil backgrounds on calculated

VIs at low LAI values (Figure 5–7), mainly due to the fact that the

SWIR reflectance in RSR and MNDVI can scale down the

increased NIR response in open stands associated with understory

vegetation or other highly reflective backgrounds [18]. However,

RSR and MNDVI do not perform much better than other VIs in

reducing the effect of the mixed background of water and moss

since SWIR is sensitive to wet background leading to the relatively

low SWIR reflectance (Figure 6). On the other hand, the efficiency

of RSR and MNDVI to reduce background reflectance effects is

strongly controlled by the maximum and minimum values of

SWIR reflectance in them, which is difficult to determine properly

in many practical applications.

MAVI has relatively small TVI values varying from 77% to 13%

in Jack Pine forest and from 76% to 14% in Black Spruce forest

over the entire LAI ranges (Figure 7). The results demonstrate that

MAVI that combines the red, NIR and SWIR reflectance can

reduce the effects of backgrounds on forest canopy LAI retrieval.

Its underlying physical mechanism is similar to those of RSR and

MNDVI, i.e., SWIR reflectance is highly sensitive to LAI at low

LAI values and has the largest values in open forest canopies,

which acts as an adjustment factor in the denominator of MAVI to

moderate the increased NIR in open stands (Figure 4). However,

the canopy SWIR reflectance is also sensitive to the wetness of

background, especially at low LAI values. Fortunately, the wetness

of background affects not only the canopy SWIR reflectance but

also the canopy NIR and red reflectance (Figure 4). The ratio form

of MAVI makes it possible to constrain the effects of the change in

the wetness of background partially and to be suitable for

retrieving LAI for forests with different types of backgrounds.

3.3 Topographic Effects on VIs
Figure 8 shows the band-ratio VIs (SR, NDVI, and MAVI) and

the non-band-ratio VIs (RSR and MNDVI) change with aspect at

different slopes. When the slope is 5u, each VI varies greatly with

aspect due to relatively large vegetation variations. When the slope

is larger than 10u, the changes of SR, NDVI, and MAVI at a given

slope are quite different from those of RSR and MNDVI. The

values of SR, NDVI, and MAVI increase as the slope increases,

which is similar to the changes of forest age with slope. However,

the values of RSR and MNDVI decrease on sun-facing slopes and

increase on sun-backing slopes as the slopes increase. At a given

slope, the values of RSR and MNDVI of sun-facing slopes are

much smaller than those of sun-backing slopes. The larger the

slope, the larger the difference with regard to sun-facing and sun-

backing slopes. Because forest ages are almost the same at all

aspect according to the ground reference data, the values of each

VI at a given slope should be independent of the aspect relative to

the sun. Therefore, it can be inferred that VIs expressed in band-

ratio form are able to remove a large proportion of topographical

noise. Topography strongly affects RSR and MNDVI, resulting in

negative biases on sun-facing slopes and positive biases on sun-

backing slopes.

Figure 9 depicts quantitatively the topographic effects on the

selected VIs. The CV values of MNDVI vary from 5.32% to

13.02% corresponding to the slopes from 5u to 25u, showing the

largest topographical noise among all the selected VIs. RSR has

the second largest CV values ranging from 7.09% to 9.81%. SR

presents medium CV values in the range from 3.14% to 5.37%.

The CV values are quite small for NDVI and MAVI ranging from

0.64% to 1.92% and from 0.80% to 2.56%, respectively, implying

that NDVI and MAVI can remove much of the topographic noise

through expressing in band-ratio form.

In general, the R2 values of linear correlations between VI and

the cosine of the incidence angle (cosi) increase as the slope

increases (Figure 9). The R2 values are in the range from 0.46 to

Figure 9. Effects of slope variations on different vegetation indices. Note: (A) the coefficient of variation (CV) of each vegetation index varies
with slopes, (B) the R2 values of linear correlations between vegetation indices and the cosine of the incidence angle vary with slopes. The CV values
of MNDVI vary from 5.32% to 13.02% corresponding to the slopes from 5u to 25u, which shows the largest topographical noise among all the selected
vegetation indices. RSR has the second largest CV values ranging from 7.09% to 9.81%. SR presents a medium CV values in the range from 3.14% to
5.37%. The CV values are quite small for NDVI and MAVI ranging from 0.64% to 1.92% and from 0.80% to 2.56%, respectively, implying that NDVI and
MAVI can remove much of topographic noise through expressing in band-ratio form. The conclusions based on R2 are also similar.
doi:10.1371/journal.pone.0102560.g009
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0.93 for RSR and from 0.64 to 0.96 for MNDVI in the study area,

indicating that VIs not based on band ratios are influenced

strongly by topographic variations. When the slope is above 20u,
the largest R2 values are 0.64 for SR and 0.41 for NDVI. The

results demonstrate that even VIs based on band-ratios still include

significant topographic effects on steep slopes, confirming the

findings of Burgess et al. [40] and Kusaka and Sakane [41]. When

the slope is 25u, the R2 value of MAVI is 0.25, which proves that

MAVI performs rather effectively in removing the effects of slopes.

SR is more sensitive to topographic variations on steep slopes than

NDVI and MAVI, which may be due to the relatively different

topographic effects on the red and NIR bands. Therefore, the

topographic effects should be removed before the applications of

VIs that are not based on band ratios, even when slopes are small.

The topographic effects on VIs expressed in band-ratio form can

usually be ignored on small slopes, but careful topographic

corrections are needed when they are used over the rugged

surface.

Conclusions

In this study, we develop a new three-band moisture adjusted

vegetation index (MAVI). Its performance is evaluated against

commonly used two-band VIs (NDVI, SR, SAVI, MSAVI,

OSAVI) and three-band VIs (MDNVI, RSR) with field measure-

ments made in two forest and two grassland areas in China. The

reflectance data simulated by the 4-Scale model is also use to

investigate the background reflectance effects of MAVI on forest

canopy LAI retrieval. The following conclusions can be drawn

from this study:

(1) MAVI is suitable for retrieving LAI using remote sensing

images. It produces a higher R2, smaller normalized RMSE of

retrieved LAI compared with two-band VIs in both forest and

grassland areas. The superior performance of MAVI over two-

band VIs is mainly due to its integration of the signals from the

red, NIR, and SWIR bands sensitive to the greenness, chlorophyll,

and water content of the vegetation.

(2) MAVI can reduce the background reflectance effects on

forest canopy LAI retrieval as effectively as RSR and MNDVI. It

outperformed RSR and MNDVI for retrieving LAI in the four

study areas without the need for inputting the maximum and

minimum SWIR values, which are notoriously difficult to

determine.

(3) Topography strongly affects VIs that are not based on band

ratios, such as RSR and MNDVI. Since MAVI is expressed as

ratios between spectral bands, it can greatly reduce the noise

caused by topographical variations, which makes it suitable for

application in mountainous area.

In this study, validation shows the robustness of MAVI in

retrieving LAI of forests and grasses. Because the SWIR

reflectance is also affected by the wetness of soils, especially when

vegetation density is low, the robustness of MAVI may need

further validation using more data from other ecosystems.
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