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Abstract

Formal models have linked prehistoric and historical instances of technological change (e.g., the Upper Paleolithic transition,
cultural loss in Holocene Tasmania, scientific progress since the late nineteenth century) to demographic change. According
to these models, cumulation of technological complexity is inhibited by decreasing— while favoured by increasing—
population levels. Here we show that these findings are contingent on how complexity is defined: demography plays a
much more limited role in sustaining cumulative culture in case formal models deploy Herbert Simon’s definition of
complexity rather than the particular definitions of complexity hitherto assumed. Given that currently available empirical
evidence doesn’t afford discriminating proper from improper definitions of complexity, our robustness analyses put into
question the force of recent demographic explanations of particular episodes of cultural change.
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Introduction

One of the key insights of cultural evolutionary theory is that

cumulative culture crucially depends on demography [1]. Indeed,

a wide variety of models of cultural transmission has reproduced

the result that changes in population size may drive cultural

change: increases in the former favour cumulation, while decreases

may occasion cultural loss ([2–7], but see [8]). These model-

theoretical findings are used to explain particular cultural

transitions, e.g., the loss of culture in Holocene Tasmania, the

Upper Paleolithic transition, or the growth of scientific knowledge

since the Industrial Revolution.

Interestingly, although said models express cumulation in terms

of complexity increases, they differ considerably in how they

construe the latter term (i.e. complexity). Characterizations have

been given in terms of change in fitness [2]; in terms of

transmission inaccuracy [3–6]; and in terms of the number of

elements a cultural trait consists of [7]. This may be an asset rather

than a drawback: if there is convergence of results, demographic

change may be offered as a possible explanation of a broad suite of

patterns of cultural change, viz. all patterns that can be plausibly

construed as cumulative under one of the various characterizations

on offer. This is especially pertinent in case empirical evidence is

not sufficiently abundant to prefer one particular construal of

cultural change.

Consider for instance the Upper Paleolithic transition, which

according to Powell et al [4] is characterized by "substantial

increase in technological and cultural complexity, including the

first consistent presence of symbolic behavior, such as abstract and

realistic art and body decoration […], systematically produced

microlithic stone tools […], functional and ritual bone, antler, and

ivory artifacts, grinding and pounding stone tools, improved

hunting and trapping technology […], an increase in the long-

distance transfer of raw materials, and musical instruments." As

intuitively plausible as this may seem, it still needs to be established

that the Late Pleistocene cultural complexity referred to by Powell

and colleagues really is adequately captured by the characteriza-

tion of complexity assumed in current models (including their

own). For example, does the emergence and consistent presence of

symbolic behaviour demonstrate that cultural skills become more

complex in the sense of becoming harder to transmit faithfully?

That is, was Upper Paleolithic symbolic behaviour actually more

error-prone than previous (non-symbolic) behaviour? Or is this

transition better understood in terms of an increase in the number

of elements cultural behaviours encompassed, with symbolic

behaviours encompassing more elements than previous (non-

symbolic) behaviours? Does the same apply for long-distance

transfer of raw materials? For hunting technologies? Currently

available evidence does not afford conclusive answers to these

questions; arguably, the answers are underdetermined by any

conceivable evidence. In this epistemic situation, the diversity of

characterizations of complexity—and of model assumptions more

generally—may save the day: the larger the set of intuitively

plausible definitions of complexity in the family of demographic

models, the more likely it is that at least one empirically valid

characterization of the considered pattern of change is included in

the set. That is, the more robust the relation between population

size and cumulative cultural change is under variations of

characterizations of cumulation and of modelling assumptions,
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the more credible or widely applicable are demographic explana-

tions of cultural change. Conversely, if the dependence fails to

obtain under some characterizations or auxiliary assumptions, an

episode of cultural change can only be justifiably attributed to

demographic change in case empirical evidence speaks against

these unfavourable characterizations or assumptions.

In this paper, we offer a cultural-evolutionary model that is

based on yet another characterization of complexity, and we

examine whether it can be safely added to the family of models

that show a relation between cultural and demographic change. If

it can, the dependence of cumulative culture on demography

would stand even firmer. If it can not, patterns of cultural change

that are cumulative in our newly introduced terms have not yet

been shown to be susceptible to demographic explanation.

We characterize cumulation, like some existing contributions to

the literature, in terms of increasing complexity. Yet rather than

characterizing transmission accuracy or the sheer number of

elements in a cultural trait, we follow Herbert Simon [9] in taking

complexity to consist in the density of interaction between the

elements of a trait: cultural change is cumulative in case the

transmission of cultural traits sustains ever more intricate

interdependencies between the components or elements of these

traits. To illustrate the plausibility of the assumption, consider the

production of early stone tools. Figure 1 presents action

hierarchies for Oldowan and Late Acheulean flake detachment

(after [10]; see also references therein). The latter is more complex

than the former not primarily because it has more constitutive

elements, but rather because these elements are organized in a

more elaborate hierarchical structure that comprises more nested

levels: the addition of platform preparation to the superordinate

goal of percussion in Late Acheulean flake detachment introduces

four nested levels, so that the method contains six nested levels in

total (versus four in Oldowan flake detachment). The success of the

superordinate level (i.e. percussion) is thus contingent on four

elements (rather than three, as in Oldowan production), namely

position core, hammerstone grip, strike plus platform preparation,

and the success of the latter is itself contingent on the interplay of a

whole set of lower-level actions. Action hierarchies for multi-

component blade technologies would be even more intricate. Here

the success of percussion would, for example, depend on stringent

selection/importation of raw materials [11–13] and on the

properties of other components (such as the haft). The more

intricately these elements are interrelated, the more difficult it

becomes to predict how changes in one place will affect elements

elsewhere in the hierarchy. Even a very small error introduced

during transmission in one element may have profound repercus-

sions on the performance of other elements, and thus on success

overall (which in turn makes it difficult to predict expected changes

through time, see [14]). Therefore, in cases like these, complexity

defined as transmission inaccuracy and complexity as defined by

Simon (let us call it S-complexity) need to be carefully

distinguished.

The literature on cultural evolution has not overlooked S-

complexity. Most importantly, the intricate interaction between

the material components of technologies has been offered as

evidence that cumulative cultural changes can not have been the

result of individual learning: "[Several technologies] are very

complicated artifacts with multiple interacting parts made of many

different materials. (…) Determining the best design is, in effect, a

high dimensional optimization problem that is usually beyond

individual cognitive capacities…" [15]. Similarly, Mesoudi and

O’Brien have introduced a two-peaked fitness landscape in their

experimental study of the transmission of projectile-point design

[16]. Despite this supporting role of S-complexity in cultural-

evolutionary theory, it has not yet been implemented in cultural-

evolutionary models.

There is at least one reason to expect that doing so has strong,

and negative, repercussions for demographic explanations. The

intuition behind the dependence of cumulative cultural change on

demography is strength in numbers: larger populations can sustain

a more complex culture simply because they are more likely to

contain individuals whose cultural traits are at least as good as

those of the individuals they imitated from previous generations.

However, under the assumption that mentor selection is imperfect,

populations as a whole profit from such outstanding individuals

only insofar as these can be detected by others as suitable objects of

imitation—and here larger populations are clearly at a disadvan-

tage. At high levels of S-complexity, this disadvantage may

become insurmountable. For under these conditions, only very

sizable populations will contain any individuals who have been

able to avoid the slight transmission inaccuracy in cultural

transmission that would have interfered with overall success of

the complex cultural trait. These individuals might not in turn be

able to transmit their traits, however, since potential students

might be unable to find them in a population of this size.

Materials and Methods

We devised a model with successive generations of agents, each

of whom learns from a parent of the previous generation through

oblique, pay-off based transmission—much as in [3–6,8]. Adjust-

ments to these models, required to implement S-complexity, were

based on Stuart Kauffman’s so-called NK-logic [17]. In line with

Herbert Simon’s proposal, N here stands for the number of

components, whereas K expresses the level of interaction between

components. Let us explain the model in more detail.

The agent-based model (implemented in Netlogo, code

available from the authors) contains a population of P agents,

each of whom exhibits a variant of a cultural trait (say, a

technology or technological skill). The configuration of any variant

is given by a binary string of N elements. For example, if N~5,

the string 01101 would refer to a variant which differs in the

second element from a variant characterized by 00101. We follow

Kauffman in assuming that each element can be only in two states

(0 or 1). Although it is in principle possible to extend the model

assuming any number of possible states, working with binary

values is intuitive enough. For example, consider percussion in

Late Acheulean flake detachment (see Figure 1b), which consists of

four elements: platform preparation, positioning of the core,

holding the hammerstone, and striking. For each of these actions

we could assign a 1 when the action is executed in one way, and a

0 when executed in another way. Percussion on a prepared

platform would then be represented by the string 1111, percussion

on the ground by the string 0111, and so forth. Evidently, one

could increase the level of precision by adding more elements. For

instance, one could characterize platform preparation with a

three-element string, stating values for hammerstone selection,

positioning of the core and light percussion.

To any variant is assigned a skill or fitness value, z, which is

defined as the average of the contributing values of each of the N
individual elements; the contributing value of each element is in

turn determined by its own state (0 or 1), and by the state of K
other elements. In case of K~0, changing the state of one element

(e.g., from 0 to 1), will only affect the value of the element itself. In

case of K~1, the contributing value of an element may change

directly or as a result of a change in the single other element

influencing it. The interaction parameter K can be any natural

number between 0 and N{1.
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By changing the parameters N and K we can tune the

complexity of cultural traits. The least complex trait is one for

which N~1 and, per definition, K~0. Complexity increases with

increasing N; further, for any N, maximal complexity is obtained

when K~N{1. Under the latter circumstances, a change in one

element affects the fitness of all other elements. In line with

previous research [3–6], we use transmission inaccuracy as an

additional measure of complexity. However, whereas transmission

inaccuracy has been previously expressed only as the magnitude of

the error naı̈ve individuals make, in our paper it is determined by a

copy error rate m, i.e. a number expressing the probability that a

transmission error will be made, where an error consists in

unfaithful replication of an element of the copied sequence.

Multiple errors (i.e. elements changing states) may occur in the

same transmission attempt. The impact of these errors can, like z,

be expressed as a real number between 0 and 1.

Figure 2 illustrates the NK-logic, as well as transmission over

successive generations, for a population size P~1. On the left is

represented a trait with three elements (N~3) without interde-

pendencies between elements (K~0). The variant of the trait in

Generation 1 is 000, with an average fitness of 0.4. Now the

offspring in Generation 2 will try to imitate the cultural parent in

Generation 1. Note that in case Pw1, offspring will get the

opportunity to select a cultural parent, but more on this below.

Imitation happens with copy error rate m, which is in our model

defined as the probability of an element changing state in a

transmission attempt. So for m~0:01, any element has a 1%

chance of changing state (from 0 to 1 or from 1 to 0). In the

worked-out example, we assume deterministic inaccuracy for the

sake of clarity: in each generation, exactly one element changes

state. From Generation 1 to Generation 2, the third element is

copied inaccurately, and thus receives a new contributing value

Figure 1. Action hierarchies for (a) Oldowan flake detachment; (b) Late Acheulean flake detachment (redrawn detail from [10]). Lines
connect subordinate elements with the superordinate element they instantiate. In (b), dashed lines indicate action chunks which are identical to
those defined in (a).
doi:10.1371/journal.pone.0102543.g001
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(from 0.3 to 0.6, the magnitude of the error being 0.3). Since

K~0, this mutation does not affect any other element in the

string.

Compare this with the right-hand side of Figure 2, where K~1,

which means that each element interacts with one other element in

the string. In this example, these interactions are one-sided

influences, of the first element on the second element, of the

second on the third, and of the third element on the first. The

interactions in this example are regular, but this need not to be the

case. For if, for example, K~3, an element has three links coming

in, but an average of K links coming out. Now, for example, if the

third element changes state, as when going from Generation 1 to

Generation 2, the value of that element changes (from 0.3 to 0.6)

and so does that of the first element (from 0.7 to 0.3). In this case,

the improvement with regard to the third element does not lead to

an increase in overall skill or performance value, since this

improvement interferes negatively with the contributing value of

the first element. When that element changes state, as it happens

from Generation 2 and Generation 3, its value increases, but now

the second element is maladjusted (its contributing value drops to

0.0; note that our model also allows for positive interferences).

Even incremental innovation, characterized by deliberately

changing one component or constitutive action at a time, is

therefore a very delicate matter; although one element may

contribute positively to overall performance, there is a chance that

it does do so at the price of lowering the contribution of several

other elements. Consequently, for higher N and K , it gets

increasingly harder for agents to find a configuration which

outperforms its predecessor, and even small copy error rates may

have large detrimental consequences. As a result, only very sizable

populations will be lucky enough to contain an individual who

does better than its parent.

Simulations proceeded as follows. We first generated NK-tables.

An NK-table lists all string combinations for N elements, each with

a corresponding, predefined contributing value (initially being

drawn from a Uniform [0,1]; later we also considered Normal

[0,1] and Gumbel [0,1] distributions). The string combinations

with corresponding overall values on the right-hand side of

Figure 2 could be interpreted as representing part of a predefined

NK-table for N~3, K~1. If an agent would try out a certain

configuration, say 101, its overall performance would be simply

given by the average fitness value given in the 101-row of the NK-

table (i.e. f0:4,0:2,0:6g in the example). We generated 200 NK-

tables for each combination N[f10,25,50g and

K[f0,1,2,3,4,6,9,15,20,24,30,40,49g, which amounts to 6,000

NK-tables in total.

Populations of size P[f10,20,50,100,500g (and for a selected

range of parameter settings of size P[f1000,5000,10000g; more

on this in the Results section) had to "explore" these 6,000 NK-

tables. Simulations were initialized at step 1 by assigning to each

agent of Generation 1 the same string of size N, with a

configuration and fitness randomly drawn from the NK-table

under consideration. Each one of the next steps of the simulation

consisted of the following sub-steps:

1. a new generation of P agents is introduced;

2. each individual of the new generation selects a cultural parent

from the previous generation, and this depending on the

parent’s fitness;

3. the individual copies the selected parent’s trait with copy error

rate m[f0:01,0:03,0:05,0:1,0:5g;
4. each individual receives a fitness based on its acquired trait;

5. the new generation replaces the parent generation and the

average and maximum fitness of the population, �zz and zmax,

are measured.

Pay-off biases are thus implemented in the second sub-step. We

considered two implementations, one in which parent selection is

perfect, i.e. the single best parent is selected by each offspring

individual (BEST); in the other, parents are selected proportionally

to their fitness (WEIGHTED).

After 100 steps (i.e. after 100 generations), simulations were

stopped, and three measures were computed. First, the maximum

fitness of the last generation, or

zmax~max(z1,T ,:::,zp,T ,:::,zP,T ),

where T~100 and refers to the last generation.

Second, the average cumulation between the first and later

generations (as in [2]), or

Dz~
1

T

XT

n~1

(
1

P

XP

p~1

zp,tn{
1

P

XP

p~1

zp,t1
),

where T refers to the last generation, t1 to the first generation,

and tn to the nth generation.

Finally, third, the cumulation between the first and last

generation (as in [4]), given by

D�zz~(
1

P

XP

p~1

zp,T ){(
1

P

XP

p~1

zp,t1
):

In order to compare the performance of populations of varying

sizes, we applied, for each parameter combination, a Wilcoxon

signed-rank test, comparing the sample of 200 observations

(corresponding to the 200 NK-tables explored for each parameter

combination) obtained for the populations under test. This

pairwise Wilcoxon comparison is appropriate, since we let

populations of varying sizes always explore the same NK-tables

and let them start with identical initial strings/fitnesses.

Note that our model does not allow complexity and population

size to evolve. This means we are able to compare only how

populations of a fixed size are able to sustain a technology of a

given complexity. Yet, we follow our benchmark studies [3,4]

here, and assume that from such comparisons can be inferred

causal claims (i.e. claims about the extent to which demographic

change may favour cultural change). Although we believe that this

inferential step needs extra argument, we thus take it to be

unproblematic here. Importantly, this does not undermine a

negative result of our study: if it demonstrates the comparative

advantage of larger over smaller populations to be non-robust,

Figure 2. Illustration of the NK-logic. Left, N~3, K~0: Copy errors only affect the fitness of the element in question. Right, N~3, K~1: Copy
errors affect the fitness of the element in question and the fitness of one (given K~1) other element. The direction of these interactions is
represented by the arrows underneath the string of Generation 1.
doi:10.1371/journal.pone.0102543.g002
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demographic explanations are compromised, regardless of wheth-

er or not the causal inference can be justified.

Results

Figure 3 compares populations of P~10 and P~500, assuming

Uniform distributions and WEIGHTED pay-off bias, with red

dots plotting the p-values resulting from the two-sided Wilcoxon

signed-rank tests for the parameter combinations marked by the

black dots below. Here the null hypothesis is that populations of

sizes P~10 and P~500 produce: no significantly different

maximum fitness (upper part, p-values for zmax); no significantly

different average cumulation between the first and later genera-

tions (middle part, p-values for Dz); and no significantly different

cumulation between the last and first generation (lower part, p-

values for D�zz). So red dots under the black dashed line indicate

parameter combinations for which the null hypothesis should be

rejected for a significance level of 0.05. For those combinations

where we observed a significant difference, we checked whether it

was in favour of P~500 (so P~500 outperforming P~10) by

means of one-sided tests. Since this turned out always to be the

case, we do not explicitly refer to the results of these one-sided tests

in the remainder.

The graphs exhibit several patterns. Let us start with the p-

values for Dz and D�zz. Generally, larger populations outperform

smaller populations (so red dots fall under the 0.05 threshold) as

long as complexity, expressed either as m, N, or K is low. When

complexity increases, the larger populations of P~500 still

produce higher maxima than the smaller populations of P~10
(as evident from the p-values for zmax), but the former lose their

consistent advantage over the latter for two reasons. First, by

lowering zmax-values, higher values of N and/or K lead to

invisibility of good parents, i.e. they contrast less with lower-skilled

individuals. Consequently, given WEIGHTED pay-off bias, the

contribution of inferior parents to transmission increases. Impor-

tantly, this holds for small and large populations alike. Second,

higher values of m and K result in instability, in the following sense.

For cumulation to occur, successive generations must be able to

build on previous achievements; populations thus must be able to

transmit a relatively stable knowledge base. That high values of m

Figure 3. Comparison of P = 10 and P = 500, assuming Uniform distributions and WEIGHTED pay-off bias. Red dots indicate p-values
from two-sided Wilcoxon signed-rank tests for zmax (upper), Dz (middle) and D�zz (lower), and this for parameter combinations marked by the black
dots below.
doi:10.1371/journal.pone.0102543.g003
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undermine this may be self-evident, but high values of K have a

similar effect. Consider for instance the case where m~0:01 and

N~50. In this case, there is a 39.5% chance of at least one

element changing state during transmission, an error which affects

the fitness of K other elements. Now if K is high, say K~49, a

good innovation is very easily lost; a transmission error in one

element leads to 50 new draws, which, for a Uniform distribution,

will average out close to 0.5. So even if the transmission error is

beneficial (i.e. it leads to a higher contributing value for the

element itself), it will be largely undone by the new values drawn

for the element’s interdependent elements. More colloquially,

excellent traits can be expected to deteriorate dramatically in

transmission if even one of their elements would change state.

Interestingly, although the qualitative results for Dz and D�zz are

the same, large populations are, in sustaining traits of higher

complexity, slower to lose their advantage with respect to the

former. An explanation for this is that the variance of D�zz is larger

than that of Dz for P~10, in particular in cases where a

population effect is found for Dz but not for D�zz. So, even if under

these conditions the mean and median values of Dz and D�zz are

similar, the variance of D�zz will be too sizable to yield a significant

difference in the test for it. This evidently leaves the question why

D�zz would exhibit a larger variance in the first place. Here the

explanation is that, when m and/or K are sufficiently but not

exceedingly high, small populations, due to their size, go through

repetitive, quick episodes of substantial loss and cumulation. In

case of Dz, these fluctuations are averaged out by averaging over

T , resulting in variances lower than those of D�zz.

Note that further increasing population size does not solve said

issues of invisibility and instability, as can be gleaned from Table 1.

That table gives the p-values of Wilcoxon signed-rank tests for

P~10 versus populations sized P[f1000,5000,10000g, and this

for the two first parameter combinations for which P~500 didn’t

outperform P~10. It appears that under these conditions even

populations of 10,000 individuals are not significantly better at

sustaining highly complex cultural traits than populations of only

10 individuals.

Further, comparisons between populations of size P~10 and

populations of size P[f20,50,100g support the idea that size

effects are transitive. That is, for these smaller population sizes, no

effects were observed that were not also present when comparing

P~10 and P~500.

Finally, trends observed for P~10 versus P~500 for Uniform

distributions also occur under Normal [0,1] and Gumbel [0,1]

distributions (see Figure S1 and Figure S2).

Trends are different under the assumption of BEST pay-off

bias, where offspring is able to identify and imitate the single best

individual in the parent generation. As can be seen in Figure 4,

demography now more generally makes a difference in sustaining

cumulative culture. Only when transmission is highly erroneous

(m~0:5) or K~0, population size contributes little to accumula-

tion.

Note that the results for BEST pay-off bias reinforce our earlier

argument concerning invisibility. BEST pay-off bias by construction

removes the invisibility constraint: however small the contrast between

the best cultural parent and the lesser-skilled members of her

generation, the BEST condition guarantees that she will be identified

by all offspring. Under these circumstances, P~500 retains its

advantage over P~10 for higher N’s and K ’s, except when m is high.

Discussion

This study examined the robustness of a regularity suggested by

previous modelling efforts, namely a strong dependence of

cumulative culture on demography. More particularly, the aim

was to verify whether that link was independent from—rather than

an artifact of—previous models’ assumptions about cumulation.

To that effect, we added a measure of complexity to those already

implemented in cultural-evolutionary models, and we adapted

existing models so that cumulative cultural change could be

expressed in terms of what we called ’S-complexity’ (after Herbert

Simon). This complexity is a function not only of a trait’s number

of components (N), but also of the number of interactions between

these components (K ). Our hypothesis was that in the face of

increasing S-complexity, the link between demographic change

and cumulative culture would collapse.

The results of the simulations reported here lend support to our

hypothesis: except under the highly optimistic assumption of

BEST pay-off bias, large populations tend to lose their advantage

in sustaining cumulative cultural change when cultural traits get

too intricate. We identified two reasons for this. The first is that

high S-complexity weighs heavily on social learners’ ability to

stand out under WEIGHTED pay-off bias. That is, except when

pay-off biased selection is perfect and offspring is able to identify

the single best individual in the parent generation, offspring is very

often imitating inferior parents whose pay-offs are insufficiently

different from even the best individuals in the population. The

second reason is that cumulative culture demands stability or

continuity, which is undermined not only by high copy error rate,

but also by high values of K . When K is high, even a slight change

in a trait’s set-up will have a profound impact on the trait’s overall

value. Thus, the slightest error in transmission has the potential to

completely destroy a previous achievement; the latter may be

haphazardly reinvented on a later date, but not due to a

cumulative process of building improvements on improvements.

These results add to the suspicion that the dependence of

cumulative culture on demography is not general, but applies to a

specific range of cases (for empirical evidence questioning this

dependence, [18,19]; but see [20]). Previously, it has been shown

to obtain only under a limited number of assumptions concerning

learning biases [8,21]; here it has been shown to obtain only

Table 1. p-values from Wilcoxon signed-rank tests assuming Uniform distributions, comparing P~10 with
P~500,1000,5000,10000, and this for the lowest parameter combinations for which P~500 doesn’t outperform P~10.

m N K P~500 P~1,000 P~5,000 P~10,000

for D�zz 0.01 50 30 0.578356 0.700264 0.667116 0.592619

0.01 50 40 0.12138 0.108733 0.12138 0.140984

for Dz 0.03 50 40 0.119341 0.118763 0.12524 0.119341

0.03 50 49 0.691245 0.590933 0.578356 0.557679

doi:10.1371/journal.pone.0102543.t001
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insofar as previous assumptions about complexity are not violated

and one makes the additional, highly optimistic assumption that

naı̈ve individuals are always able to identify and get the

opportunity to learn from the single best parent in the population.

How does this bear on explanations of particular episodes of

cultural change? Since assumptions about complexity couldn’t be

discounted by means of robustness analysis, the only option seems

to attempt to discount them on empirical grounds. If it would turn

out that the Upper Paleolithic transition (for instance) didn’t

correspond to increases of S-complexity, Powell et al’s explanation

[4] would stand firm. Conversely, it would compromise Powell et

al’s account if the transition were marked by the emergence of

more intricate innovations, with increasing interdependencies

among components (e.g., between procuring, transporting, pre-

processing, and processing materials). We take it that as regards

the Upper Paleolithic transition the choice between Powell et al’s

and our assumptions about complexity are underdetermined by

the available evidence; so that currently neither their demographic

explanation nor its negation can be discarded. So contrary to

Powell et al’s claims, it still may very well be that increased

cognitive capacity (e.g., increased causal understanding of the

interdependencies between components) gave rise to the Late

Pleistocene emergence of modern human behaviour; or that some

other factor or combination of factors made us modern.

More generally, this study shows the importance and usefulness of

robustness analysis. Besides sorting out claims which hold indepen-

dently from the simplifying assumptions of the models they are based

on, robustness analysis usefully guides data gathering: it tells for which

assumptions we still need empirical confirmation (i.e. those assump-

tions which it cannot discount) and for which we can remain blissfully,

or at least safely, ignorant (i.e. those assumptions which are inessential

to the phenomenon of interest). Robustness analysis therefore is and

should be an integral part of model building and assessment.

Supporting Information

Figure S1 Comparison of P = 10 and P = 500, assuming Normal

[0,1] distributions WEIGHTED pay-off bias. Red dots indicate p-

values from Wilcoxon signed-rank tests for zmax (upper), Dz (middle)

and D�zz (lower), and this for parameter combinations marked by the

black dots below.

(TIFF)

Figure 4. Comparison of P = 10 and P = 500, assuming Uniform distributions and BEST pay-off bias. Red dots indicate p-values from
Wilcoxon signed-rank tests for zmax (upper), Dz (middle) and D�zz (lower), and this for parameter combinations marked by the black dots below.
doi:10.1371/journal.pone.0102543.g004
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Figure S2 Comparison of P = 10 and P = 500, assuming

Gumbel [0,1] distributions WEIGHTED pay-off bias. Red dots

indicate p-values from Wilcoxon signed-rank tests for zmax (upper),

Dz (middle) and D�zz (lower), and this for parameter combinations

marked by the black dots below.

(TIFF)
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