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Abstract

Objective: To model the potential interaction between previously identified biomarkers in children sarcomas using artificial
neural network inference (ANNI).

Method: To concisely demonstrate the biological interactions between correlated genes in an interaction network map,
only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A
backpropagation neural network was used to model the potential interaction between genes. The prediction weights and
signal directions were used to model the strengths of the interaction signals and the direction of the interaction link
between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to
optimize generalization ability of the model.

Results: Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in
Ewing’s sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different
functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of
cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various
signaling pathways, including Wnt, Fas/Rho and intracellular oxygen.

Conclusions: The ANN network inference approach and the examination of identified genes in the published literature
within the context of the disease highlights the substantial influence of certain genes in sarcomas.
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Introduction

Although computer technologies have evolved over the past

decades, debate regarding on the suitability of data mining

techniques to identify ‘‘true’’ biomarkers continues due to the fact

that these techniques are fundamentally based on mathematical

paradigms. Furthermore, the connection between the statistical

and the biological significance of the findings are not well

described and validated. Questions regarding the advantage of

these techniques and the relevance of the selected biomarkers to

biological processes might explain why very few biomarkers that

have been discovered using these approaches have seen clinical

applications.

Additionally, many of the published studies assumed that

biomarker discovery involves merely marker selection and

classification. Markers with high statistical power and able to

accurately predict the disease group are treated as ‘‘best’’ markers

for clinical use, even though their biological interactivities are not

tested in silico. This might explained why clinical trials on these

markers have failed. We believe that the identification and

validation of biomarkers in silico are equally important in

biomarker discovery and are vital for clinical trial development.

An in silico simulation of possible biological interaction between

the selected candidate markers provides information on the nature

of the markers (i.e. proactive or inactive), state of the markers (i.e.

on or off) and possible chemical changes on the markers. These

information can subsequently improve the success rate in clinical

trials and patient care. In short, the biology of phenotype is more

than just a list of markers; it is the complex interaction of biological

components that defines phenotype.

We previously identified a list of high potential marker

candidates that are able to differentiate small round blue cell

tumors (SRBCTs) in children [1]. This study builds on previous

work which has modeled the interaction between these markers to
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reveal their potential biological relevance in child sarcoma cancers

using a bespoke artificial neural network based interactive

algorithm.

The sarcoma groups in the SRBCTs dataset reported by Khan

et al. [2] were used in this study. The selection of biomarker panels

for the SRBCTs dataset was performed using a hybrid genetic

algorithm-neural network (GANN) model, as has been reported in

our previous work [1]. The aim of this GANN approach was to

identify sets of features that possess significant statistics information

and statistical comparison between classification methods based

upon gene sets reported by Khan et al. and the GANN model has

been elaborated. This study focused on modeling interactions

between these features in order to infer their potential biological

significance in sarcoma cancers.

It is difficult to objectively compare the biological relevance of

individual genes identified between studies, as complex biology

cannot be quantified using numerical analyses. Published literature

[3,4] has argued that the biological relevance between features can

be achieved using correlation analysis and a pre-defined baseline

value of the parameter which is known to be biologically

meaningful. However, this information alone is not sufficient for

comparing which feature has more biological meaning than

another, as the full biological function of the features and the

biochemical reaction mechanisms underlying regulatory interac-

tions between features cannot be fully known without conducting a

thorough assessment in clinical materials relevant to the disease

status in order to describe behaviors of these features in vivo. This

clinical assessment and validation is not within the remit of this

paper and instead of looking for more biological meaningful

features, this paper reports a complementary set of genes to those

reported by Khan et al [2].

For the sake of conciseness of the interpretation of the biological

relevance on the selected genes in the dataset, the biological

functionality of the genes associating with 2 types of sarcomas, and

interactions that are of potential relevance on the basis of plausible

biological explanations and the correlation analysis of the genes

were studied in this paper.

Materials and Methods

In this section, we describe the SRBCTs dataset and the selected

biomarkers by the GANN model. We then describe the framework

of the interactome network analysis constructed using ANNs.

Small round blue cell tumors (SRBCTs) dataset
The SRBCTs cDNA microarray dataset was originally studied

by Khan et al. [2], with the scope of identifying marker genes that

are able to distinguish 4 different types of blue cell tumors which

often masquerade as one another in childhood. This was

performed with ANN classification models in conjunction with

Principle Component Analysis (PCA). The original dataset

contained 88 samples with 2,308 genes, distributed into 4 different

tumor types, i.e. rhabdomyosarcoma (RMS), Ewing’s sarcoma

(EWS), Burkitt lymphoma (BL) and neuroblastoma (NB). Amongst

the 88 samples, 25 were in the RMS group, 29 in EWS, 11 in BL,

18 in NB and the remaining 5 samples were unknown.

Feature selection using genetic algorithm-neural
network (GANN)

The GANN is a hybrid model which we have previously applied

to the screening of datasets for genes of statistical relevance [1,5–

7]. In the GANN model, genetic algorithm (GA) and ANN co-

evolve in the learning process. In brief, a population of

chromosomes each representing a subset of microarray genes

was first generated and the fitness for each chromosome was

computed as a solution to the problem using multilayered ANNs.

These fitness values were then iteratively evaluated using GA’s

operators and ANNs, and a rank order of the genes based on their

fitness values was produced. The evaluation process was iterated

3,000 times and the whole process cycle was repeated 5,000 times.

The complete parameter settings on the GANN model can be

found in our work [1].

The previously reported panel of 96 genes [1] is summarized in

Table 1. Among these genes, 44 were complementary to the top

96 genes reported by Khan et al. [2].

Interactome Network Map
The concept of the interactome network map in which the

internal organization and functional regulation of cells can be

presented using network/graph theory was initially set out by

Barabási and Oltvai [8]. In the network map, a single gene is

symbolized by a node, and the link between genes is known as an

edge, which can be presented with an arrow to indicate the

direction of the link from a source node to a target node.

Interactome network maps have been used to demonstrate

interactions between biological components. These originally

utilized off-the-shelf or publicly available modeling tools to analyze

associations between biological molecules [9–13], but later used

customized data mining tools to comprehensively model the

interaction between biological molecules. These customized

regulatory networks were initially Boolean-based [14,15], then

evolved to Bayesian probability [16–18], dynamic ordinary

differential equations (ODEs) [19] and in recent years, ANNs

[20–25]. These and other approaches have been reviewed

elsewhere [26–30]. An ANN network inference approach was

chosen to model the interactions between sarcoma-related

microarray genes for the SRBCTs dataset in this study. For

reference, we refer to this approach as Artificial Neural Network

Inference (ANNI).

Artificial neural network inference (ANNI)
ANNs have been extensively used for biomarker identification

and classification [31–37] due to their ability to cope with

complexity and nonlinearity within the biology datasets. These

features enable ANNs to address a particular question by

identifying and modeling patterns in the data [38,39]. The

underlying structure of the multilayer perceptron (MLP) is a

weighted, directed graph [24], interconnecting artificial neurons

(i.e. nodes) organized in layers with artificial synapses (i.e. links)

which carry a value, (i.e. weight) transmitting data (i.e. signals)

from one node to the other nodes. All incoming signals from the

input layer will be processed based upon a set of defined

parameters (i.e. error computation function, acceleration measure,

input weights) by the nodes in the intermediate layer (i.e. hidden

layer) and an activation function is applied to the resulting sum.

This sum is then used to determine the output result (i.e. predicted

value) generated by the nodes in the output layer. Due to the

connectionist computation in ANNs, the architecture of the ANN

can be easily modified to address different questions and able to

compose complex hypotheses that can explain a high degree of

correlation between features without any prior information from

the datasets. Hence, a backpropagation MLP was chosen as ANN

to model the gene-gene interaction in this paper.

This study hypothesized that the expression (i.e. up- or down-

regulation) of a biomarker can be explained using the remaining

biomarkers in the gene pool, if these biomarkers are able to

explain one particular categorical outcome (i.e. a disease status).

Herein, we explored the influences of all biomarkers among
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Table 1. Summary of the previously selected 96 genes by GANN.

GANN rank Symbol Image Id. GeneID Truncated p-value for each cancer

EWS BL NB RMS

1 MLLT11 812105 10962 8.65610212 4.12610216 7.27610217 1.33610210

2 IGF2 207274 3481 1.03610207 5.65610211 7.74610206 4.78610209

3 FCGRT 770394 2217 1.03610213 6.87610213 5.69610210 2.27610207

4 CAV1 377461 857 5.21610211 1.00610210 1.02610208 8.49610208

5 FGFR4 784224 2264 5.20610208 5.44610208 2.90610208 8.32610211

6 CD99 1435862 4267 8.12610212 6.96610213 8.43610209 1.04610205

7 IGF2 296448 3481 1.33610207 9.71610210 5.37610205 7.89610209

8 MAP1B 629896 4131 1.30610205 4.24610211 1.90610207 1.41610204

9 KDSR 814260 2531 2.11610209 2.49610208 1.13610207 8.03610208

10 FNDC5 244618 252995 2.53610207 4.58610209 3.63610206 2.13610208

11 CDH2 325182 1000 9.87610207 4.86610207 2.95610208 1.41610204

12 OLFM1 52076 10439 3.29610208 2.29610210 1.26610203 1.77610208

13 RCVRN 383188 5957 1.00610207 4.69610214 8.68610208 4.22610203

14 PTPN13 866702 5783 2.74610208 9.53610209 1.26610206 2.33610207

15 HLA-DMA 183337 3108 3.76610204 1.90610207 1.15610206 2.84610204

16 MYL4 461425 4635 8.30610206 1.03610206 2.28610206 1.25610206

17 SGCA 796258 6442 1.83610207 1.02610206 5.97610207 2.05610208

18 GAP43 44563 2596 1.03610204 1.71610205 3.22610205 9.14610205

19 PSMB8* 624360 5696 2.76610203 1.72610206 2.00610205 1.16610206

20 PMS2L12* 878652 392713 2.25610203 4.03610211 3.34610207 9.49610204

21 EHD1* 745019 10938 1.13610205 1.38610209 2.90610204 1.45610203

22 TNNT2 298062 7139 3.20610205 1.70610205 1.97610205 1.91610205

23 CBX1* 786084 10951 3.86610208 1.76610203 1.86610209 2.85610203

24 RBM38 814526 55544 2.84610205 2.50610207 1.06610209 2.41610203

25 TNNT1 1409509 7138 4.90610205 4.05610207 5.91610206 3.63610206

26 CRMP1 878280 1400 1.12610204 2.46610211 4.80610207 1.90610203

27 HLA-DQA1 80109 3117 1.46610203 1.80610205 2.67610205 2.64610204

28 DPYSL4 395708 10570 7.62610204 1.63610210 3.05610206 5.67610205

29 PIM2 1469292 11040 2.74610203 6.31610206 9.72610206 1.36610205

30 CTNNA1 21652 1495 1.09610205 5.03610211 1.13610206 8.77610204

31 SELENBP1 80338 8991 2.12610207 2.77610210 1.46610208 7.56610204

32 ELF1 241412 1997 7.03610204 4.75610205 5.19610206 9.91610204

33 KIF3C 784257 3797 4.80610203 8.36610211 1.90610205 3.69610205

34 GYG2 43733 8909 9.70610207 5.56610208 8.77610206 1.03610205

35 LSP1* 143306 4046 1.22610205 4.34610210 4.77610204 6.24610207

36 MT1L 297392 4500 2.20610203 2.50610206 1.84610204 7.29610204

37 CHD3* 379708 1107 1.99610207 4.37610209 1.09610206 4.37610204

38 EST (CDK6) 295985 1021 3.08610210 3.26610203 2.66610206 1.63610204

39 TNFAIP6 357031 7130 7.93610207 1.92610207 3.07610206 1.34610205

40 WAS* 236282 7454 7.36610204 7.88610208 3.27610207 1.10610203

41 GAS1 365826 2619 1.72610204 4.78610211 4.69610209 2.04610203

42 HCLS1 767183 3059 1.42610203 6.05610206 3.06610206 1.66610204

43 MYO1B 377048 4430 2.41610205 2.77610215 5.34610207 1.71610202

44 ARPC1B* 626502 10095 1.37610203 8.58610205 1.49610204 1.47610203

45 HOXB7* 1434905 3217 4.75610207 4.65610206 1.80610211 1.89610202

46 PRKAR2B 609663 5577 3.77610204 2.19610205 4.23610203 1.16610207

47 G6PD* 768246 2539 1.67610205 2.72610203 7.13610206 5.18610204

48 GATA2 135688 2624 3.42610203 5.37610208 1.67610205 1.01610205

49 CSDA* 810057 8531 3.77610204 2.10610202 4.99610210 7.21610204

Gene-Gene Interaction Modeling for Childhood Sarcomas
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Table 1. Cont.

GANN rank Symbol Image Id. GeneID Truncated p-value for each cancer

EWS BL NB RMS

43 MYO1B 308231 4430 3.59610205 2.84610211 5.94610206 1.31610202

51 EID1* 244637 23741 2.25610203 4.54610205 5.89610207 7.23610204

52 PSMB10* 68977 5699 1.24610203 2.80610205 3.74610204 1.76610203

53 FHL3* 796475 2275 2.56610205 3.26610211 4.42610207 5.07610203

54 ITPR3* 435953 3710 1.31610203 8.08610205 1.15610207 1.22610206

55 DPYSL2 841620 1808 2.99610205 4.26610215 2.83610204 5.63610207

56 BIN1 788107 274 2.93610205 2.53610207 3.05610203 1.97610205

57 PFN2 486110 5217 5.41610203 1.02610215 9.16610206 2.33610202

58 TLE2 1473131 7089 2.88610207 5.70610209 2.24610208 1.06610203

59 PGAM2* 283315 5224 3.25610203 1.21610205 2.51610202 5.78610208

60 ISG20* 740604 3669 9.18610204 1.04610204 1.26610204 7.18610204

61 RDX* 740554 5962 6.12610207 4.86610211 2.57610205 1.62610203

62 PPP1R18* 208699 170954 1.94610207 2.46610206 3.19610203 3.19610203

63 CCND1 841641 595 6.10610204 1.67610209 2.10610203 3.21610206

64 SMPD1* 729964 6609 3.03610205 2.00610208 1.07610204 2.74610203

65 MEIS3P1* 450152 4213 3.42610204 2.82610210 7.84610206 3.17610203

66 MYH10* 823886 4628 2.77610203 7.30610213 4.38610206 1.72610202

67 IFITM3 809910 10410 1.45610203 2.50610211 6.00610209 5.59610204

68 ARSB* 502055 411 2.91610204 9.78610210 2.01610202 4.32610203

69 BCKDHA* 740801 593 1.62610205 4.15610211 9.91610206 1.08610202

70 NF2* 769716 4771 3.40610204 3.62610207 6.50610209 9.26610208

71 CLEC3B* 345553 7123 1.24610203 2.45610204 1.07610203 2.73610203

72 HSPB2 324494 3316 1.77610202 1.37610209 2.10610209 1.74610206

73 NFKB1* 789357 4790 2.05610205 4.94610205 1.92610205 1.31610202

74 GNA11* 221826 2767 4.08610207 1.12610214 8.04610204 8.58610203

75 IGF2 245330 3481 7.93610204 4.43610204 8.16610204 7.51610204

76 APLP1 289645 333 1.39610203 1.10610211 1.18610205 8.82610208

77 NFIC* 265874 4782 1.18610204 3.84610209 2.50610205 1.90610202

78 TEAD4* 346696 7004 1.61610202 1.37610209 1.92610205 9.80610206

79 HLA-DPB1 840942 3115 3.38610202 7.46610206 4.75610205 8.64610204

80 HMGA1* 782811 3159 3.37610204 7.05610205 5.88610204 8.40610207

81 MEST* 898219 4232 1.06610205 2.25610206 5.69610205 1.20610206

82 PTPN12* 774502 5782 1.32610207 4.28610207 2.82610205 9.16610205

83 IGLL1* 344134 3543 2.55610203 7.44610205 7.19610206 3.55610202

84 PTTG1IP* 505491 754 5.37610206 1.63610212 4.99610203 1.83610203

85 AKAP7* 195751 9465 9.97610204 1.06610202 9.20610204 1.05610203

86 SERPINH1* 142788 871 1.73610202 3.87610211 3.42610204 1.14610204

87 SEPT4* 66714 5414 8.07610204 3.62610207 2.87610204 5.90610205

88 CITED2* 491565 10370 5.18610209 9.60610210 8.45610204 1.00610205

89 TXNRD1* 789376 7296 3.23610203 3.25610202 2.39610206 6.32610207

90 EST (RND3) 784593 390 1.92610206 1.30610213 1.51610204 7.13610204

91 TRIP6* 811108 7205 3.74610207 4.99610210 3.88610208 3.27610202

92 EST (YAP1) 308163 10413 3.09610205 7.70610216 4.73610209 8.68610204

93 TAF15* 1474955 8148 6.55610203 1.38610205 2.34610203 3.45610202

94 RXRG* 358433 6258 2.31610202 1.70610208 5.13610207 2.87610204

95 SERPING1 756556 710 2.82610203 2.01610209 2.45610205 7.04610203

96 MYL1* 628336 4632 1.74610203 1.72610203 2.51610202 1.51610203

*indicates complement genes. Truncated p-value is the product of p-value of the gene expression value by its rank order in the GANN model and subsequently adjusted
using Benjamini and Hochberg false discovery rate.
doi:10.1371/journal.pone.0102483.t001
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themselves and provide a complete view of all of the possibilities of

network interactions for all biomarkers. Therefore, the principle of

the algorithm is to show the relationship between genes from the

same pool, to shed light on how these molecules interact with each

other and to identify new relationships between these molecules by

iteratively calculating the influence that multiple variables may

have upon a single one. The main advantage of this algorithm lays

in its multi-factorial consideration of each input which allows the

magnitude of interaction (i.e. inhibitory, stimulatory, bi- or

unidirectional) of a given pair of parameters to be determined

on the basis of a matrix of full interaction, and by iteratively

examining the weights and prediction performance of each single

input expression from all the others within the set.

Figures 1 and 2 present a schematic and a diagrammatic

representation of the interaction algorithm, respectively. A

summary of the parameter settings for the algorithm is depicted

in Table 2.

Multilayer perceptron (MLP). A 3-layered MLP with

backpropagation learning and sigmoid activation function was

applied to model gene-gene interactions for sarcoma cancers in

SRBCTs data. To prevent any relationships being omitted in the

interaction analysis, iterative calculation of the influence that

multiple genes may have on a single gene was performed in the

following way: The process begins with the first input gene in the

gene pool, which was defined as an output node in the ANN and

omitted from the pool. The remaining genes were then used to

predict the omitted gene, and the weights of the trained ANN

model were stored. This process was repeated by omitting the

second input gene as an output node in ANN and the remaining

genes as the input nodes in ANN and so on. The process was

iterated until all the genes in the dataset were used as an output.

The average values of these iterations were then computed as the

interaction score values.

Figure 1. Overview of the interaction algorithm.
doi:10.1371/journal.pone.0102483.g001
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The learning process. Given the initial connection weight v
is randomized in-between range 21 to 1, uk is the sum linear

output value from the input signal x of node k and b is the bias

value, the input signal x and the output signal y of node k can be

expressed as follows:

xk~
Xn

i~1

vkixi ð1Þ

and

yk~f (ukzbk), ð2Þ

where v[ 1,2,3,:::,nf g is the connection weights of the input

signals x[ 1,2,3,:::,nf g and f(?) is the sigmoid activation function

which can be defined as:

f (v)~
1

1zexp({av)
, ð3Þ

where v is the local signal in the node and a is the slope parameter

of the sigmoid function.

In the iterative learning cycle, the weights are adjusted based on

the output error d (see Eq. 4), the total sum-of-squares error based

on the difference between the network output y and the target

output d of the sample case. In Eq. 4, N is the total number of

sample patterns and s is the sample pattern.

d~
1

2

XN

s~1

(ds{ys)
2 ð4Þ

If both the network output and the target output are identical,

no adjustment on the weight in the current learning cycle T is

required for this sample pattern and a new sample pattern is fed

into the network and the learning cycle continues. If the match is

not perfect, the adjustment of the weight Dv is the proportion of

the input signal xi of node k, the learning rate g and the size of the

error d:

Dv(T)~gdkxi ð5Þ

The new weight for the next learning cycle T+1 can then be

written as:

vki(Tz1)~vki(T)zDv(T) ð6Þ

To reduce the chance of trapping in endless learning cycle, a

momentum a is applied in the learning process and thus, the Eq. 6

can be rewritten as:

vki(Tz1)~vki(T)zgdk(T)xizavkj(T{1) ð7Þ

Interaction. To define an interaction map for the genes, the

weights of the trained ANN models were used to illustrate and

score the interaction between genes, such as the intensity of the

relationship between a source gene and a target gene, and the

nature of the relationship either stimulatory or inhibitory (i.e.

positive or negative sign in correlation result, respectively). The

Pearson correlation coefficient r with a cutoff value of 0.7 was

implemented in the algorithm to remove the least significant

interaction scores.

Monte-Carlo cross-validation (MCCV). To prevent the

ANN model from being over-trained, the MCCV strategy was

applied as follows. The sample set was randomly partitioned

(without replacement in the sample set) into 3 smaller groups:

training, test and validation, with the ratio of 0.6:0.2:0.2,

respectively. The training and test sets were used to train the

ANN model and the validation set was used to examine the

trained model. After the model was trained, all samples were re-

shuffled and re-partitioned into training, test, and validation sets.

This re-shuffle and re-partition process was repeated 50 times, and

each time, new different sets of training, test and validation

samples were randomly generated.

The entire process cycle was repeated 10 times for single gene.

The algorithm was coded in C and empirical work on simulated

dataset was presented in the subsequent section.

Visualization of interactome network maps
The Cytoscape software platform (version 2.8) for molecular

interaction display was used in this study. Cytoscape [40,41] is an

open-source software for analyzing complex biological networks

by visually interrogating the relationship of their components using

a variety of plug-ins.

Assessment of ANNI using a simulated dataset
A simulated dataset has been generated to assess the prediction

ability and the robustness of the optimum ANN parameters (see

Table 2) for correctly identify correlated features and to compute

their correlation values. This dataset was created using R and

contains 100 samples with 25,000 features in which 32 were highly

correlated, distributed into 2 major classes. Amongst these 25,000

features, 100 best predictive including 29 pre-defined correlating

features were pre-selected using a data mining algorithm.

Despite the obvious advantages of using well-characterised

simulated datasets for the testing of new analysis tools, it is

important to note that human biological data are complex and the

lack in the knowledge of actual biological correlation between

sample replicates, molecular relationship between a biological state

of a cell and transcript expression, biochemical reaction mecha-

nisms underlying regulatory interactions between features and

activity changes from one state to another. This makes artificial

data valuable for algorithm development, but is not of value for

comparing different methods.

To assess the predictive ability of the algorithm, criteria such as

number of hidden nodes used in the network, correlation analysis

comparing the predicted correlation scores for each pair of the

features with their actual correlation values, interaction signs

analysis comparing between the sign of the actual correlation value

and the sign of the predicted interaction score and true positive

rate (TPR) have been considered. Table 3 shows a summary of the

results.

High accuracy on the TPR, correlation result and predicted

interaction sign confirm the feasibility of this approach to

accurately identify the simulated features having strong correla-

tions. In terms of network architecture, there is no significant

improvement on TPR when the number of hidden nodes

increases, thereby suggesting that the number of hidden nodes

does not affect the predictive ability of the algorithm. A model with

2 hidden nodes performs equally good, or better than those

equipped with higher number of hidden nodes and lesser
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PLOS ONE | www.plosone.org 6 July 2014 | Volume 9 | Issue 7 | e102483



computational time is needed to process the query. Thus, 2 hidden

nodes were implemented in the algorithm.

A full, comprehensive empirical validation on the algorithm can

be found in Lemetre’s PhD Thesis [42].

Results and Discussion

Analysis of all 96 genes from the interaction analysis produced a

matrix of (966(96–1)) 9,120 potential interactions (Figure 3). Due

to the high dimensionality and complexity of the interactions

between all genes, it clearly appeared that no relevant information

could be elucidated in the map. Thus, only the 96 strongest

associations (based upon the averaged values of the scores leading

from a given input to the output), each associated to one of the 96

genes, were imported in Cytoscape and are presented in Figure 4.

The consequence of this is that for each of these 96 genes, only the

strongest interaction among all interactions with the other 95

genes was modeled. This greatly simplified the map, and facilitated

the interpretation and understanding of the key features within the

map. Table 1 presents the list of 96 genes with its truncated p-

values based upon the product of the p-values and its rank order in

Figure 2. Diagrammatic representation of the interaction algorithm.
doi:10.1371/journal.pone.0102483.g002

Table 2. Summary of the interaction algorithm parameters.

Parameter Setting

Architecture N-2-1, where N = total number of genes 21

Learning algorithm Backpropagation

Activation function Sigmoid

Epochs 300

Threshold of mean squared error (MSE) 0.01

Window of MSE 100

Momentum 0.5

Learning rate 0.1

Pearson r cutoff 0.7

Cross-validation Monte Carlo cross-validation

Random reshuffle 50 times

Ratio (%) for training: testing: validation 60:20:20

Number of time the whole process repeat
for single variable

10

doi:10.1371/journal.pone.0102483.t002
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the GANN model. These truncated p-values are adjusted using

Benjamini and Hochberg false discovery rate procedure [43].

Genes (i.e. target genes) with most associations include MT1L,

HLA-DPB1, GATA2, OLFM1, FCGRT, TNNT1, and FNDC5.

The repetitive genes in the map were IGF2 in ranks 2, 7, and 75;

and MYO1B in ranks 43 and 50. These repetitive genes show

consistent expression pattern in which all 3 selected IGF2 genes

show high expression values and strong negative interactions in

RMS, and the 2 selected MYO1B genes are in non-sarcoma

group. Low truncated p-value (stringent p-value,0.005) for RMS-

and EWS-regulated genes are observed in Table 1.

RMS and EWS are soft tissue sarcomas that can be found

virtually anywhere in the body and share common clinical

characteristics, more frequently occurring in males than females

and normally found in children. Early-stage RMS patients are

often confused with EWS, consequently inducing lymphatic-

related cancer when the RMS tumor migrates to lymph node.

Although these tumors have similar clinical conditions, EWS is

commonly developed in bones, whereas RMS is more frequently

found in skeletal muscle. In the map, genes which have exhibited

an up-regulation in both RMS and EWS groups include

CTNNA1, GAS1, IFITM3, YAP1, SERPING1, CSDA, FHL3,

NFIC, TRIP6, TAF15, and RXRG.

CSDA is a repressor gene involved in various biological

processes including skeletal muscle tissue development and organ

growth. FHL3 is only expressed in skeletal muscle and could be

involved in tumor suppression and repression of MyoD expression.

IFITM3 is IFN-induced antiviral protein that plays a role in innate

immune response to virus infections. NFIC is a cellular

transcription factor involved in DNA binding transcription factor

activity. Although the function of TRIP6 is not fully understood, it

has been associated with ligand binding of the thyroid receptor in

the presence of thyroid hormone. TAF15 plays specific roles

during transcription initiation in RNA binding and it may be

involved in protein-protein-interaction. RXRG is a retinoic acid

(RA) receptor that regulates gene expression in various biological

processes, including skeletal muscle tissue development, heart

development, and response to hormone stimulus.

Rhabdomyosarcoma (RMS)
RMS is a connective tissue related cancer. The cause of this

sarcoma is unknown, but its development has been associated with

desmin, MyoD1 and myogenin (MYOG) [44]. MyoD1 is a

regulator involved in muscle regeneration and muscle cell

differentiation and MYOG is the muscle-specific transcription

factor that plays a role in the development of functional skeletal

muscle.

TNNT1 (mainly expressed in heart muscle) and FNDC5

(normally induced by the expression of PGC-1 alpha in muscle)

are two highly associated genes in the RMS cancer, which act as

target genes (i.e. interaction hubs) that interconnect genes which

also show high expression values in the RMS cancer. These 2

genes are bridged by FGFR4, which plays a role in the regulation

of cell proliferation, differentiation and migration.

TNNT1 interaction cluster. TNNT1 protein is inhibited by

genes RXRG, MYL1, RND3, FHL3 and FGFR4. Amongst these

genes, RXRG, MYL1 and FHL3 were complementary genes to

the genes reported by Khan et al.

RXRG is a tumor suppressor gene that mediates the anti-

proliferative effect of retinoic acid (RA), an essential metabolite of

vitamin A for the growth, development and cell differentiation of

vertebrate species. This protein suppresses tumor growth by

increasing the anti-proliferative effects of RA in the tumor cells.

MYL1 is the motor protein known for the role in muscle cell

activities including vesicle transportation inside the muscle cell. A

negative interaction on this protein indicates that tumor cells are

constrained in a particular location rather than move randomly.

FHL3 expressed only in skeletal muscle has been known by its role

in skeletal myogenesis [45–47], although its actual function is

unknown. This gene has been related to cell spreading and actin

stress fiber disassembly [46] and is involved in tumor suppression/

repression of MyoD expression. RND3 is a member of the Rho

family GTPase protein superfamily that acts as a negative

regulator in cytoskeletal organization. It is known to have a role

in myoblast fusion [48] and to be responsible for down-regulation

in focal adhesions and stress fibers. FGFR4 is a tyrosine kinase

receptor responsible for signal transduction activities in the cell.

Although the activity of this protein is undetectable in normal

tissues, it becomes active when a tumor is formed. High expression

of FGFR4 has been associated with advanced-stage in RMS

cancer and a poor survival rate [49].

Although over-expression of FGFR4 in the map (see Figure 4),

is inhibited by other low/moderately expressed genes, it may

suggest the formation of tumor cell in skeletal muscle. Over-

expression of FGFR4 may stimulate the expression of TNNT1; the

regulator for striated muscle contraction, despite the fact that a

negative interaction between these 2 genes was detected. Low

expression of FHL3, RXRG, MYL1 and RND3 may also

promote the mutation of TNNT1 genes due to a suppression of

the anti-proliferative effects of RA in the RMS cells. The low

activity of these genes might influence normal cell spreading, actin

stress fiber disassembly and, consequently, tumor cells migration.

TNNT1 is the diagnostic marker for nemaline myopathy [50,51].

The high expression value in mutated TNNT1 genes suggests that

RMS tumors may be congenital.

FNDC5 interaction cluster. FNDC5 protein expressed in

muscle is inhibited by RMS-expressed genes including TNNT2,

BIN1, SEPT4, MYL4 and HSPB2. Up-regulation of this gene

suggests that the increased level of irisin hormone [52,53]

promotes the beneficial effects of exercise on metabolic pathways.

TNNT2 and BIN1 are proteins that play important roles in

cardiac muscle development. Over-expression of TNNT2 has

been correlated to myocardial stunning in hemodialysis patients

[54,55], and the disruption of this gene could lead to impaired

cardiac development in the embryo and infant [56–58]. Deficiency

of the BIN1 gene has been correlated with cardiomyopathy.

SEPT4 is the nucleotide binding proteins highly expressed in heart

and brain. It regulates cytoskeletal organization during embryonic

and adult life [59]. MYL4 is the hexameric ATPase cellular motor

proteins that commonly found in embryonic muscle and adult

atria. Over-expression of this gene was normally found in patients

with hypertrophic cardiomyopathy and congenital heart diseases

[60]. HSPB2 is another protein that expressed in the heart and

skeletal muscles. Over-expression of this gene indicates the

efficient recovery of motor neurons following nerve injury [61].

In the map (Figure 4), observation on the over-expression

pattern on TNNT2, BIN1 and MYL4, moderately expression on

HSPB2 and SEPT4 is lowly expressed. This suggests that RMS

patients have low chance to develop cardiomyopathy due to high

expressions of TNNT2, BIN1, SEPT4 and HSPB2 in RMS

pathway could potentially suppress expression level of FNDC5.

Ewing’s sarcoma (EWS)
EWS is a bone malignancy which commonly affects areas

including the pelvis, femur, humerus and the ribs [44]. The cell

origin of this tumor is uncertain. However, this cancer has a

shared cytogenetic abnormality with the primitive neuroectoder-

mal tumor (PNET) which arises from the soft tissue or bone. The

Gene-Gene Interaction Modeling for Childhood Sarcomas

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e102483



shared cytogenetic abnormality involves the EWS/FLI fusion in

t(11;22)(q24;q12), a signature marker for EWS/PNET from other

small round tumors [62].

Two of the highest associated genes observed were FCGRT and

OLFM1 (Figure 4). FCGRT and OLFM1 acted as interaction

hubs, in which FCGRT plays a role in interconnecting genes

associated to the EWS/FLI fusion and OLFM1 integrates variety

biological process performed by other genes.

FCGRT interaction cluster. FCGRT protein is known as

the promoter marker to EWS-FLI fusion, one of the common

cytogenetic abnormalities on the t(11;22) translocation for Ewing

tumors. In the map, highly expressed FCGRT was suppressed by

TLE2, CITED2, CAV1, PTTG1IP and KDSR. Amongst these

associated genes, CITED2 and PTTG1IP were in addition to

those genes reported by Khan et al.

CITED2 is a cardiac transcription factor responsible for

inhibiting transactivation activity of hypoxia-induced genes.

Mutation of this gene decreases its ability to mediate the

expressions of VEGF and PITX2C genes, suggesting that it may

play a role in the development of congenital heart disease [63].

Table 3. Summary of the assessment results.

No. of hidden nodes No. of features Person’s coefficient % of correctly assigned signs Ave. true positive rate (%)

2 32 0.805 89.16 93.16

100 0.865 91.26 70.33

5 32 0.653 80.31 89.00

100 0.871 90.89 68.50

10 32 0.607 79.32 92.66

100 0.866 88.55 81.16

doi:10.1371/journal.pone.0102483.t003

Figure 3. A complete interactome network map.
doi:10.1371/journal.pone.0102483.g003
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Over-expressed CITED2 induces resistance to cisplatin [64], a

commonly used chemotherapeutic drug for sarcomas and other

solid malignancies. CAV1 is another promoter marker associates

to EWS-FLI fusion. Over-expression of this gene promotes

metastasis on Ewing tumor [65,66]. PTTG1IP is the promoter

gene that has been correlated with the Runx2 gene expression in

osteoblastic differentiation and skeletal morphogenesis [67].

Runx2 is the master regulator of osteoblast differentiation and

study reviewed that blockade of this gene by EWS-FLI induce

osteoblast specification of a mesenchymal progenitor cell and thus,

disrupting interactions between Runx2 and EWS-FLI may

promote differentiation of the tumor cell [68]. TLE2 proteinTLE2

is the member of TLE family and its actual function is not well

known. It is believed that the expression of TLE family members is

required for EWS oncogenic transformation [62] and acts as

repressor protein in histone modification when recruited by

NKX2–2 gene [62,69]. NKX2–2 is the known immunohisto-

chemical marker for Ewing sarcoma [70]. KDSR is the murine

gene and has been known by its role in the development of spinal

muscular atrophy (SMA) disease in cattle [71]. Although its actual

function in human SMA is unknown, a study has claimed that the

mutation of this gene does not contribute significantly to the cause

of human SMA [72], rather that it associated with chromosomal

rearrangement in chronic lymphatic leukemia [73,74].

In Figure 4, over-expression of CAV1, KDSR and CITED2

inhibited up-regulated FCGRT suggests these EWS patients are

EWS-FLI affected sarcoma and have deficiency of cisplatin

controlled repression of EWS-FLI fusion. Low expression values

of TLE2 and PTTC1IP further indicate the promotion of tumor

cell differentiation and histone modification due to inhibition on

Runx2 and NKX2–2 genes.

OLFM1 interaction cluster. OLFM1 protein which has

abundant expression in brain has been associated to the biological

process in nerve tissue, is inhibited by GYG2, APLP1, CHD3,

TNFAIP6, and ARSB genes. This cluster shows the interaction

between wide ranges of glycoproteins, histone deacetylase and

Wnt signaling pathway. GYG2 and APLP1 are glycoproteins

expressed in liver and membrane, respectively. GYG2 is a self-

glucosylating protein found in chromosome X and involved in the

initiation reactions of glycogen biosynthesis and blood glucose

homeostasis. Over-expression of this gene resulted in excess

glycogen storage levels in liver and may lead to glycogenosis due to

the deficiency of liver phosphorylase. APLP1 is a membrane-

associated glycoprotein that is cleaved by secretases and up-

regulation of this protein reduced endocytosis of amyloid precursor

protein (APP), and makes more APP available for alpha-secretase

cleavage [75].

ARSB is a sulfatase protein responsible for protein fragmenta-

tion and mediating intracellular oxygen signaling. Deficiency of

this gene due to hypoxia leads to an accumulation of GAGs

protein in lysosomes, resulting to mucopolysaccharidosis [76].

CHD3 is part of a histone deacetylase complex participating in

chromatin remodeling. Histone deacetylase removes acetyl group

on a histone so that the DNA can be tightly wrapped by histones.

TNFAIP6 is a multifunctional protein that exhibited in many

pathological and physiological contexts. It plays important roles in

inflammation and tissue/bone remodeling. It acts as a protector by

suppressing tumor necrosis factor (TNFSF11)-induced bone

erosion caused by inflammatory processes in arthritis diseases,

and exhibits a homeostatic function by interacting with bone

morphogenetic protein 2 (BMP2) and TNFSF11 to balance

mineralization by osteoblasts and bone resorption by osteoclasts

[77]. The binding of TNFSF11 with GAGs and other proteins

ligands enhances its activity in various biological processes,

including leucocyte adhesion and anti-plasmin activity [78].

Figure 4. A simplified interactome network map for the 96 selected genes by ANN network inference algorithm. The red node is the
genes with high expression values in either of the sarcoma cancers. The gray node is the gene with high expression values in more than one cancer
groups in which one of these groups is sarcoma cancer. Yellow node is the genes with low expression values in both sarcoma cancers.
doi:10.1371/journal.pone.0102483.g004
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OLFM1 protein has been associated with Wnt signaling

pathway in which the activation of Wnt signaling pathway in

receptive endometrium suppresses the OLFM1 gene and leads to

ectopic pregnancy in humans [79]. Wnt signaling pathway plays a

critical role in the normal development of multiple neuroectoder-

mal tissues, cell degradation and cell death. This pathway has been

associated with neuroectodermal Ewing sarcoma [80], osteosar-

coma [81] and possibly embryogenesis [82].

In the map (Figure 4), up-regulation of the OLFM1 gene

suppresses the activities of extracellular inhibitors in Wnt signaling

pathway. This may promote tumor cell proliferation, learning

impairment, suffocation of normal cells (i.e. hypoxia) in ARSB and

a deficiency of APP for alpha secretase cleavage in EWS patients.

Alpha secretases have been implicated in the regulation of learning

and memory formation. Furthermore, over-expression of CHD3

in tumor cells accelerates the interactions between DNA and

nuclear proteins, and contributes to tumor cell differentiation,

proliferation and migration. Although the moderately expressed

genes GYG2 and TNFAIP6 suppress the activity of tumor

proliferation, intervention from over-expressed CHD3 and

down-regulated APLP1 and ARSB promote diversification of

Ewing tumors.

A triangular affair between Wnt signaling pathways, Fas/Rho

signaling pathways and intracellular oxygen signaling is observed

in the map. Down-regulated ARSB (mediates oxygen in intracel-

lular process) due to intervention of moderately expressed Fas

receptor PTPN13 (a large intracellular protein mediates pro-

grammed cell death and regulates Rho signaling pathway) fails to

activate inhibitors in Wnt signaling pathways (over-expression of

OLFM1). Both the Fas receptor and Wnt signaling pathways

mediate programmed cell death and the Rho signaling pathway

responsible for cell proliferation, apoptosis and gene expression.

The over-expression of PTPN13 was suppressed by OLFM1.

Conclusions

We have previously shown that assessing the statistical

significance of genes, based on classification accuracy alone, may

not be useful for cancer diagnosis, as classification results are

subject to the proposed computational methods and a lack of

biological association to those genes to provide a global view on

the development of the tumor of interest. Thus, this paper

discussed the feasibility of using ANNI to model the potential

interactions between the correlated genes in childhood sarcoma

cancers. This interaction information could be useful for other

researchers who are assessing the practicality of using these genes

as new target markers for sarcoma cancers in the clinical setting.

Due to the high dimensional and complexity of the interactions

between genes, this paper showed only the strongest association for

each of the genes, rather than the complete potential 9,120

interactions existing among them. Even so, this approach

highlighted that certain genes were highly influential on sarcoma

cancers.

Based on the interaction map, several observations on sarcoma

cancers in SRBCTs dataset were noted. The RMS patients in this

dataset are likely to be congenital (due to up-regulation of mutated

TNNT1 stimulated by FGFR4 and suppression of anti-prolifer-

ative effects of RA in FHL3, RXRG, MYL1 and RND3) and these

patients have a lower risk of developing cardiomyopathy (due to

over-expression in TNNT2, BIN1, SEPT4 and HSPB2 potentially

suppress the expression level of FNDC5). The EWS patients are

likely to be affected by EWS-FLI fusion (due to deficiency of

cisplatin controlled repression, up-regulation of CAV1, KDSR

and CITED2, and suppression of TLE2 and PTTC1IP) and

involves various signaling pathway complications including Wnt,

Fas/Rho and intracellular oxygen pathways (due to over-

expression in OLFM1 and CHD3, and low expression in APLP1

and ARSB).

Additional information: The proposed algorithm will be

available by contacting the corresponding author. Individuals

from all disciplines are invited to access the software on a

collaborative basis. Information on the development and back-

ground to the algorithm are publicly available in Lemetre’s PhD

thesis, which is referenced in the manuscript.
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