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Abstract

We are extending the Cre/loxP site-specific recombination system to pigs, focussing on conditional and tissue-specific
expression of oncogenic mutations to model human cancers. Identifying the location, pattern and extent of Cre
recombination in vivo is an important aspect of this technology. Here we report pigs with a dual fluorochrome cassette
under the control of the strong CAG promoter that switches expression after Cre-recombination, from membrane-targeted
tandem dimer Tomato to membrane-targeted green fluorescent protein. The reporter cassette was placed at the porcine
ROSA26 locus by conventional gene targeting using primary mesenchymal stem cells, and animals generated by nuclear
transfer. Gene targeting efficiency was high, and analysis of foetal organs and primary cells indicated that the reporter is
highly expressed and functional. Cre reporter pigs will provide a multipurpose indicator of Cre recombinase activity, an
important new tool for the rapidly expanding field of porcine genetic modification.
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Introduction

Site-specific recombination systems such as Cre/loxP are

powerful and versatile tools for mouse experimental genetics that

enable precisely controlled conditional gene expression and many

other modifications in whole animals [1]. We are particularly

interested in conditional and tissue-specific expression of onco-

genic mutations to model human cancers [2,3]. In mice, Cre

reporter strains provide a means of monitoring the location,

pattern and extent of Cre recombination in vivo. A very successful

and reliable reporter has been developed using a highly expressed

dual fluorochrome cassette that switches expression after Cre-

recombination, from membrane-targeted tandem dimer Tomato

(mTomato) to membrane-targeted green fluorescent protein

(mGFP), placed at the Rosa26 locus for ubiquitous expression

[4]. This is currently the ‘gold standard’ Cre reporter system,

because it provides sensitive real-time visualisation capable of

identifying even single green Cre-recombined cells within a

background of red non-recombined cells [5] and conversely a

few red non-recombined cells in a background of green Cre-

recombined cells [6].

Here we report pigs with an mTomato, mGFP dual fluorescent

Cre reporter under the control of the CAG promoter placed by

gene targeting at the porcine ROSA26 locus to ensure ubiquitous

expression. These animals provide a multipurpose indicator of Cre

recombinase activity, an important new tool for the rapidly

expanding field of porcine genetic modification.

Materials and Methods

Animal experiments were approved by the Government of

Upper Bavaria (permit number 55.2-1-54-2532-34-09) and

performed according to the German Animal Welfare Act and

European Union Normative for Care and Use of Experimental

Animals.

39RACE (39 rapid amplification of cDNA ends) analysis of
porcine ROSA26
39RACE analysis was carried out using the FirstChoiceH RLM-

RACE kit (Ambion) according to the manufacturer’s protocol.

Primers used were: Ex1F1 (59 CGCCTAGAGAAGAGGCTGTG

39), which hybridises to porcine ROSA26 exon 1; and nest primer

Ex1F2 (59 AGAAGAGGCTGTGCTCTGG 39), which also

hybridises to exon 1. Thermal cycling parameters were: 30 sec,

98uC; then 35 cycles of: 5 sec, 98uC; 5 sec, 63uC; 15 sec, 72uC;
followed by 1 min, 72uC. The size of the amplified product was

800 bp.
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Porcine ROSA26 gene targeting vectors GCROSA and
TGROSA
The DNA sequence on porcine chromosome 13 (NCBI

accession number NW_003611693) was used to generate the

promoter trap gene targeting vector GCROSA and TGROSA.

GCROSA comprised: a 2.166 kb 59 short arm of homology

corresponding to a region of ROSA26 intron 1 from position 31986

to 34149 (NW_003611693); a 159 bp adenoviral splice acceptor; a

7.739 kb floxed b-Geo caste; a 1.681 kb mCherry-poly A cassette;

a 4.675 kb 39 homology long arm. The 7.739 kb floxed b-geo
cassette of targeting vector comprised: a 34 bp loxP site; a

3.707 kb promoterless b-Geo cassette; three polyadenylation

signals derived from SV40, bovine growth hormone and

cytomegalovirus (CMV); a 3.053 kb HPRT stuffer sequence; a

second loxP site. TGROSA comprised: a 2.110 kb 59 short arm of

homology corresponding to a region of ROSA26 intron 1 from

position 32043 to 34152 (NW_003611693); a 159 bp adenoviral

splice acceptor; a 426 bp promoterless blasticidin resistance gene

(bsr) followed by two polyadenylation signals derived from SV40

and the bovine growth hormone gene; a 1.715 kb CAG promoter

(chicken beta-actin promoter with CMV enhancer); a 2.440 kb

membrane-targeted tdTomato (mTomato) gene flanked by two

loxP sites; a 1.099 kb membrane-targeted EGFP (mEGFP) gene;

and a 4.647 kb 39 long arm of homology. The mTomato, mEGFP

cassette was derived from Addgene plasmid 17787.

Generation of gene targeted porcine mesenchymal stem
cell (MSC) clones
MSCs were isolated by standard methods from bone marrow or

subcutaneous fat of a 6-month old male German Landrace pig.

MSCs were cultured in advanced Dulbecco’s modified Eagle

medium (DMEM) (Gibco), 2 mM GlutaMAX, 16 non-essential

amino acids, 10% foetal calf serum (FCS gold, lot no. A15109-

2859), 5 ng/ml FGF-2 (PromoKine) at 37uC, 5% CO2 and

passaged using Accutase (PAA). Samples of 16106 MSCs were

electroporated with 10 mg GCROSA or TGROSA vector DNA

linearised with NotI or MluI, and 500 mg/ml G418 or 8 mg/ml

blasticidin (Invivogen) selection applied 2 days later. Individual

stable transfected cell clones were isolated, samples of each clone

cryopreserved at an early stage and replicate samples cultured

further for DNA and RNA analyses.

PCR and RT-PCR analysis of targeted MSC clones
Targeted cell clones were identified by PCR using primer targF

(59 TCTGCTGCCTCCTTTTCCTA 39), which hybridises to a

point in porcine ROSA26 intron 1 outside the 59 homologous arm

of the targeting vector, and primer targSAR (59 GAAAGACCGC-

GAAGAGTTTG 39), which hybridises to the adenoviral splice

acceptor. PCR was carried out using the 5 PRIME Extender

System (5 PRIME GmbH). Thermal cycling parameters were:

2 min, 94uC; then 38 cycles of: 20 sec, 94uC; 20 sec, 65uC;

Figure 1. Porcine ROSA26 gene targeting using GCROSA construct. (A) Top. Porcine ROSA26 gene. Exon numbers are indicated. Below.
GCROSA gene targeting vector. PCR primers used to identify targeted MSC clones are indicated. (B) 59 junction PCR of five representative GCROSA
targeted MSC. Predicted amplified fragment size is 2630 bp. (C) 39 junction PCR of five representative GCROSA targeted MSC. Predicted amplified
fragment size is 6331 bp. (D) lacZ staining of reporter constructs. a1–a3, black and white channel. b1–b3, non-filtered colour channel. c1–c3, colour
channel with grey filter. Top panels, GCROSA targeted MSCs; middle panels, MSCs transfected with CAG promoter directed b-geo construct; bottom
panels, wild type MSCs.
doi:10.1371/journal.pone.0102455.g001
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2.5 min, 72uC; followed by 5 min, 72uC. The size of the

diagnostic amplified product was 2.630 kb.

Long-range PCR across the 39 junction of the targeted ROSA26

allele was carried out using either forward primer mCF (59

CCTGTCCCCTCAGTTCATGT 39) for mCherry, or mTF (59

ACATGGCCGTCATCAAAGAG 39) for mTomato, in combi-

nation with reverse primer LR (59 CTTGCCCCACGACAA-

GATCA 39), which hybridises to a point in porcine ROSA26 intron

2 outside the 39 homologous arm of either targeting vector. PCR

was carried out using the 5 PRIME Extender System (5 PRIME

GmbH). Thermal cycling parameters were: 3 min, 93uC; then 38

cycles of: 15 sec, 93uC; 30 sec, 62uC; 7 min, 68uC; followed by

5 min, 68uC. The size of the amplified product was 6.331 kb

(GCROSA) or 7.868 kb (TGROSA).

The wild type ROSA26 allele was amplified using primer targF

(sequence above) and endoR (59 GTTTGCACAGGAAACC-

CAAG 39) using the 5 PRIME Extender System. Thermal cycling

parameters were: 2 min, 94uC; then 38 cycles of: 20 sec, 94uC;

20 sec, 60uC; 3 min, 72uC; followed by 5 min, 72uC. The

diagnostic amplified product was 3.2 kb.

Expression of bsr mRNA directed by the ROSA26 promoter was

detected by amplification from exon 1 to the bsr cassette by two-

step RT-PCR with M-MuLV transcriptase (New England Biolabs)

according to the manufacturer’s instructions. Primers used were

Ex1F1 (sequence above) and reverse primer bsR (59 AGCAATT-

CACGAATCCCAAC 39), which hybridises to the bsr cassette.

Thermal cycling parameters were: 2 min, 95uC; then 38 cycles of:

30 sec, 95uC; 30 sec, 60uC; 1 min, 72uC; followed by 5 min,

72uC. The diagnostic amplified product was 500 bp.

Expression of mTomato RNA transcribed from the CAG

promoter was detected by two-step RT-PCR using primers mTF

(sequence above) and mTR (59 GTACAGCTCGTC-

CATGCCGTA 39), which hybridises to the mTomato gene.

Thermal cycling parameters were as above. The diagnostic

amplified product was 686 bp.

Figure 2. Porcine ROSA26 gene targeting using TGROSA construct. (A) Porcine ROSA26 gene targeting scheme. Top. Porcine ROSA26 gene.
Exon numbers are indicated. Below. TGROSA gene targeting vector. PCR and RT-PCR primers used to identify targeted cell cones and detect mRNAs
are indicated. SbfI restriction sites and the hybridisation probe used for Southern analysis are also shown. (B) Southern blot analysis of TGROSA
targeted porcine ROSA26. Lanes show SbfI digested genomic DNA from three TGROSA targeted MSC clones 4, 6 and 18, four foetuses derived by
nuclear transfer, newborn piglet 131 and a wild-type piglet as indicated. The 5783 bp diagnostic fragment detected by the bsr probe is shown. (C)
Nuclear transfer derived TGROSA piglet (left) and wild-type piglet (right).
doi:10.1371/journal.pone.0102455.g002

Cre Reporter Pig

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e102455



Expression of wild-type ROSA26 mRNA was detected by two-

step RT-PCR using primers Ex1F1 (sequence above) and Ex2R

(59 TATGCTTAGCAGCTTCCTC 39), which hybridises to

ROSA26 exon 2, and primers Ex1F2 (sequence above) and Ex4R

(59 CTGCTGTGGCTGTGGTGTAG 39) which hybridises to

ROSA26 exon 4, using Phire Hot Start II DNA Polymerase

(Thermo Scientific). Thermal cycling parameters were: 30 sec,

98uC; then 35 cycles of: 5 sec, 98uC; 5 sec, 60uC; 15 sec, 72uC;
followed by 1 min, 72uC. The diagnostic amplified products were

168 bp (exon 1–2) and 621 bp (exon 1–4).

Expression of porcine GAPDH mRNA was detected by RT-

PCR, as above, using primers GAF (59 TCCCACGGCACAGT-

CAA 39) and GAR (59 GCAGGTCAGGTCCACAA 39). Thermal

cycling parameters were: 2 min, 95uC; then 38 cycles of: 30 sec,

95uC; 30 sec, 60uC; 1 min, 72uC; followed by 5 min, 72uC. The
diagnostic amplified product was 575 bp.

Somatic cell nuclear transfer and embryo transfer
SCNT was performed using in vitro matured oocytes as

previously described [7]. Cumulus-oocyte complexes (COCs) were

Figure 3. Fluorescence microscopy of tissue cryosections. Panels a-i, organs from a nuclear transfer derived foetus as indicated. Panels j-r,
organs from a wild-type foetus. Each section is visualised through black and white, red (excitation = 554 nm, emission= 581 nm) and green
(excitation= 489 nm, emission= 509 nm) channels as indicated.
doi:10.1371/journal.pone.0102455.g003
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aspirated from abattoir ovaries. COCs displaying .3 layers of

compacted cumulus cells were selected and cultured in NCSU23

medium supplemented with 0.6 mM cysteine, 10 ng/ml epider-

mal growth factor, 10% (v/v) porcine follicular fluid, 75 mg/ml

potassium penicillin G, 50 mg/ml streptomycin sulphate, 10 IU/

ml equine chorionic gonadotropin (eCG; Intervet,) and 10 IU/ml

human chorionic gonadotropin (hCG; Intervet). For the first 22 h,

COCs were cultured in maturation medium with eCG and hCG,

followed by 20 h culture without these hormones in a humidified

atmosphere of 5% CO2 and 95% air at 38.5uC. Matured oocytes

were enucleated by a chemically-assisted method [8]. Oocytes

were cultured in NCSU23 medium supplemented with 0.1 mg/ml

demecolcine, 0.05 M sucrose, and 4 mg/ml BSA for 0.5–1 h and

then enucleated by aspirating the first polar body and adjacent

cytoplasm using a bevelled pipette in HEPES-TL-PVP containing

0.1 mg/ml demecolcine, 5 mg/ml cytochalasin B, and 10% foetal

calf serum. A single donor cell was inserted into the perivitelline

space of an enucleated oocyte. Fusion was performed in 280 mM

mannitol solution (pH 7.2) containing 0.15 mM MgSO4, 0.01%

(w/v) PVA, and 0.5 mM HEPES, by applying a single direct

current (DC) pulse (200 V/mm, 20 ms) and a prepulse and

postpulse alternating current field of 5 V, 1 MHz for 5 s,

respectively (LF101; NEPA Gene, Chiba, Japan). After 0.5–1 h

culture in NCSU23, reconstructed embryos were placed in an

activation solution consisting of 0.3 M mannitol, 50 mM CaCl2,

100 mM MgSO4, and 0.01% PVA (300 mosmol) and activated by

a single DC pulse of 150 V/mm for 100 ms. Activated oocytes

were treated with 5 mg/ml CB for 3 h, then cultured in porcine

zygote medium until embryo transfer. Embryo transfer was carried

out using the method described by Besenfelder et al. [9]. In brief,

6- to 7-mo-old recipient gilts were oestrus synchronised by oral

administration of 4 ml altrenogest (Regumate; Janssen Animal

Health, Neuss, Germany) for 15 d, followed by injection of 750 U

pregnant mare serum gonadotropin (PMSG; Intergonan; Intervet)

24 h later and 750 U hCG (Ovogest; Intervet) 80 h after PMSG

administration. Embryo transfer was conducted 1 d later. Recip-

ients were anaesthetised by intravenous injection of 1.2 ml

ketamine hydrochloride (Ursotamin; Serumwerk Bernburg, Ger-

many) per 10 kg body weight (bw) and 0.5 ml xylazine (Xylazin;

Serumwerk Bernburg) per 10 kg bw. After fixation of the

recipients in dorsal recumbence, SCNT embryos, which were

loaded into a flexible intravenous catheter (diameter 1.4 mm,

length 45 cm; B. Braun Melsungen AG, Melsungen, Germany),

were transferred laparoscopically into the right oviduct. Pregnancy

was monitored by ultrasound scanning at regular intervals. Cloned

piglets were born naturally by spontaneous parturition.

Southern blot analysis
Samples of SbfI (NEB) digested genomic DNA from targeted

MSC clones, kidney tissue from foetuses or piglet ear tip samples

were electrophoresed, bound to membrane, hybridised, and probe

detected with anti-digoxigenin antibody Fab fragments conjugated

with alkaline phosphatase (Roche) by standard methods. The

402 bp bsr hybridisation probe was generated by PCR using

primers Probe F (59 ATGGCCAAGCCTTTGTCTC 39) and

Figure 4. Cre-induced loss of Tomato and activation of GFP fluorescence in TGROSA targeted MSC cell clones and kidney
fibroblasts from a nuclear transfer derived foetus. Fluorescence before, and eight days after Cre transduction as indicated. Wild-type MSCs
and foetal kidney fibroblasts are shown.
doi:10.1371/journal.pone.0102455.g004
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Probe R (59 GATTTAGCCCTCCCACACAT 39) incorporating

alkali labile digoxigenin-11-dUTP (Roche). Thermal cycling

parameters were: 2 min, 95uC; then 35 cycles of: 30 sec, 95uC;
30 sec, 56uC; 1 min, 72uC; followed by 5 min, 72uC.

Cre transduction
Cre protein was produced in vitro with the vector pTriEx-

HTNC (Addgene plasmid 13763) according to the method

described by Peitz et al. [10] and Münst et al. [11]. 46104 cells

were seeded in a 24 well dish and cultured with 5 mM purified Cre

recombinase in culture medium containing 0.5% serum for 16

hours. The medium was then replaced with standard medium and

culture continued.

Cryosections
To collect foetal tissue samples, the sow was first sedated by

intramuscular administration of ketamine/azaperone (Intervet),

then killed by intravenous injection of T61 (Intervet). Tissue

samples from bladder, brain, colon, heart, liver, lung, skin,

pancreas and spleen were embedded in OCT embedding

compound, frozen on dry ice and stored at 280uC. 5 mm sections

were cut using a cryotome (Thermo Fisher Scientific) and

fluorescence detected by fluorescence microscopy (Zeiss).

Whole animal Tomato fluorescence
Tomato fluorescence was revealed in foetuses and piglets using

a hand held flashlight with excitation light source UFP-MDS-G2/

B/HB, photographs were taken using camera filter FS/CEF-4R2

(Biological Laboratory Equipment Maintenance And Service Ltd.,

Hungary).

Results

Characterisation of the porcine ROSA26 locus
The mouse Rosa26 locus is widely used as a permissive site for

targeted placement of transgenes [12,13], with no detectable effect

on animal viability or fertility. ROSA26 homologues have also been

identified in rat [14] and human [15]. We identified and cloned a

highly conserved genomic region on porcine chromosome 13

(NW_003611693:29648-30716) that shares homology with the

promoter and exon 1 regions of mouse (85%), rat (86%) and

human (91%) ROSA26 (Fig. S1A). We then used 39RACE (rapid

amplification of cDNA ends) to identify exons 2 to 4 of porcine

ROSA26 (GenBank Acc.No KF768776). Alignment of the porcine

ROSA26 cDNA sequence with the porcine genomic sequence

(NW_003611693) indicated that exon 2 has a size of 112 bp, exon

3 is 118 bp and exon 4 is 480 bp (Fig. S1B). As in mouse and

human, porcine ROSA26 shares a bidirectional promoter with a

neighbouring gene SETD5. The 39 ROSA26 cDNA sequence also

overlaps the 39 region of an adjacent gene THUMPD3. Thus the

porcine ROSA26 lies between the THUMPD3 and SETD5 genes,

as in mouse and human. RT-PCR analysis, using primers located

in porcine ROSA26 exon 1 and 2, and also exon 1 and 4, showed

similar levels of expression in all porcine tissues examined (Fig.

S1C). All data are thus consistent with identification of porcine

ROSA26.

Targeting the porcine ROSA26 locus
We placed a b-Geo, mCherry construct into ROSA26 intron 1 at

a site equivalent to that frequently used in mouse Rosa26, under

the control of the endogenous porcine ROSA26 promoter (Fig. 1A).

Gene targeting using primary bone marrow mesenchymal stem

cells (MSC) from a German landrace male pig, resulted in 24 of 50

(48%) cell clones identified as correctly targeted by 59 and 39

junction PCR and sequence analysis (Figs. 1B,C). The porcine

ROSA26 locus thus supported conventional gene targeting with

very high efficiency. Expression of lacZ directed by the endoge-

nous ROSA26 promoter was however weak (Fig. 1D), consistent

with findings with the mouse Rosa26 promoter [16].

Generation of dual fluorescent reporter pigs
We constructed a second promoter trap vector, TGROSA, to

place an mTomato, mGFP dual reporter cassette driven by the

constitutive CAG promoter [4] into the same site in intron 1

(Fig. 2A). Gene targeted cell clones were generated using primary

adipose MSCs from a German landrace male pig and identified by

59 and 39 junction PCR and sequence analysis (Fig. S2A,B).

Figure 2B shows detection of a diagnostic fragment by Southern

blot analysis. The endogenous ROSA26 locus was also amplified to

determine whether targeting had occurred at one or both alleles

(Fig. S2C). Again the targeting efficiency was high, with 16 of 38

(42%) cell clones identified as correctly targeted, all at one allele.

Three targeted cell clones (4, 6 and 18, Figure 2B) were pooled

and used for nuclear transfer and pregnancies established. One

pregnant sow was sacrificed and four foetuses explanted for

analysis, all showed bright Tomato fluorescence (Fig. S2D). Other

pregnancies were allowed to continue to birth. Two normal

healthy piglets were identified by mTomato fluorescence (e.g.

Figure 2C) and confirmed by PCR amplification across the 59 and

39 junction regions (Fig. S2E). When mature these will be mated

and used to found a reporter pig line. One other normal healthy

piglet (131) was unfortunately killed by the sow. PCR and

Southern analysis of foetuses and piglets confirmed ROSA26

targeting identical to the cell clones (Figure 2B, Fig. S2A,B,C). The

pattern of reporter gene expression was analysed in the dead piglet

131. RNA samples from spleen, lung, pancreas, kidney, muscle,

liver, heart and skin were tested by RT-PCR for the presence of

RNA transcribed from the ROSA26 promoter extending from exon

1 spliced to the blasticidin gene, and also for mTomato RNA

transcribed from the CAG promoter. Both RNA species were

detected in all samples (Fig. S3A,B,C). Cryosections were prepared

from major organs including bladder, brain, colon, heart, liver,

lung, skin, pancreas and spleen from foetus 4. Tomato fluores-

cence was evident in all organs examined (Fig. 3).

Functional analysis of dual reporter
To investigate the response of the dual reporter to Cre activity,

TGROSA targeted MSC cell clone 6 and kidney fibroblasts

prepared from an explanted foetus were transduced with Cre

protein. Prior to Cre transduction GFP fluorescence was not

detected in either cell type (Fig. 4), while strong Tomato

fluorescence was evident in both (Fig. 4). After Cre transduction,

GFP fluorescence became evident and Tomato fluorescence

steadily declined over a period of 8 days until it was absent from

almost all cells. This time course was consistent with the relatively

long half-life of mTomato protein and was similar to that observed

in mice [4].

Discussion

We have generated pigs using the most successful dual reporter

system currently available. Pigs with Cre-inducible single reporter

genes have been reported previously [17,18], but it is widely

recognised that dual reporters are more useful and reliable

indicators of Cre recombination, because one reporter gene is

always active in any individual cell providing an internal control.

We provide a full and comprehensive characterisation of the

porcine ROSA26 locus. Our results accord with the partial
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description published recently [18], although we identified four

rather than two exons. This suggests that porcine ROSA26

expresses multiple transcript variants, as found in other species

[19].

Our results also demonstrate that the porcine ROSA26 locus can

be readily targeted in primary somatic cells with very high

efficiency using traditional targeting vectors, and that it supports

ubiquitous expression of an inserted transgene, consistent with

results from mouse, rat, and human. In other work we also

obtained efficient targeting (28% of cell clones analysed) when

placing an atherosclerosis marker gene under the control of a

tissue-specific promoter at the same site. These findings contrast

with those recently described by Li et al., who reported poor

targeting efficiency into porcine ROSA26 using a conventional

vector [18], which could be due to the different location they used

within ROSA26 intron 1. Efficient gene targeting is an important

factor if, as in mice, porcine ROSA26 is to be used a ‘general

purpose’ permissive locus for transgene placement. Reliable

ubiquitous or tightly controlled transgene expression, free of

position effect variation or silencing, is a basic requirement for

many new biomedical applications where genetically modified pigs

are playing an increasingly important role [20].

We have already established conditional gene targeting in pigs

[2] and are currently generating Cre-driver lines. The dual Cre

reporter animals described here will be used to establish a reporter

line to characterise and monitor Cre-driver pigs designed to

express Cre recombinase in specific cell types, at defined time

points, or in response to drug induction, as widely used in mice

[21]. The Cre reporter pig line can also be used to directly assess

the pattern of Cre expression administered locally, for example by

in vivo viral transduction, DNA transfection, or protein transduc-

tion [22,23]. We are confident that it will be an important and

useful resource that will enable sophisticated techniques of genetic

modification and precise control of gene expression in pigs.

Supporting Information

Figure S1 Identification and expression of the porcine
ROSA26 locus. (A) DNA sequence alignment of the promoter

region and exon1 of ROSA26 in mouse, rat, pig and human. The

porcine sequence shown is located on chromosome 13 (NCBI Sus

Scrofa 10.2 porcine genome NW_003611693:29648–30716). The

black line indicates porcine ROSA26 exon1. The mouse, rat and

human ROSA26 sequences shown are located on chromosome 6

(AC_000028), chromosome 4 (NC_005103) and chromosome 3

(NC_000003) respectively. (B) Porcine ROSA26 cDNA with the

four exons indicated by different colours. (C) Expression of porcine

ROSA26 in different adult tissues detected by RT-PCR. The

primers anneal in exon 1 and exon 2 and amplify a correctly

spliced product of 168 bp (upper). The primers anneal in exon 1

and exon 4 and amplify a correctly spliced product of 621 bp

(middle). GAPDH expression was used as a control for RNA quality

(lower).

(PDF)

Figure S2 PCR screening of TGROSA targeted MSC
clones 4, 6 and 18, four nuclear transfer derived
foetuses, newborn TGROSA piglet 131 and two normal
healthy piglets. (A) PCR detection of TGROSA targeted 59

terminal region. Amplified fragment size: 2630 bp. (B) PCR

detection of TGROSA targeted 39 terminal region. Amplified

fragment size: 7868 bp. (C) PCR detection of wild type ROSA26

allele. Amplified fragment size: 3206 bp. (D) TGROSA foetuses

and wild type foetus (mTomato fluorescence above and bright

light below). (E) 59 junction PCR (left) and 39 junction PCR (right)

for two normal healthy piglets. Amplified fragment sizes are

2630 bp and 7868 bp respectively.

(PDF)

Figure S3 RT-PCR screening of newborn TGROSA
piglet 131. (A) RT-PCR detection of targeted ROSA26 RNA

from exon1 spliced to the blasticidin selectable gene (bsr) in

different tissues derived from TGROSA piglet 131. Amplified

fragment size: 500 bp. (B) RT-PCR detection of mTomato RNA

in different tissues. Amplified fragment size: 686 bp. (C) RT-PCR

for housekeeping gene GAPDH in different tissues derived from

TGROSA piglet 131. Amplified fragment size: 575 bp. In each

case a wild-type piglet and H2O controls are indicated.

(PDF)
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