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Abstract

Effective management of invasive plants requires a precise determination of their distribution. Remote sensing techniques
constitute a promising alternative to field surveys and hyperspectral sensors (also known as imaging spectrometers, with a
large number of spectral bands and high spectral resolution) are especially suitable when very similar categories are to be
distinguished (e.g. plant species). A main priority in the development of this technology is to lower its cost and simplify its
use, so that its demonstrated aptitude for many environmental applications can be truly realized. With this aim, we have
developed a system for hyperspectral imaging (200 spectral bands in the 380–1000 nm range and circa 3 nm spectral
resolution) operated on board ultralight aircraft (namely a gyrocopter), which allows a drastic reduction of the running costs
and operational complexity of image acquisition, and also increases the spatial resolution of the images (circa 5–8 pixels/m2

at circa 65 km/h and 300 m height). The detection system proved useful for the species tested (Acacia melanoxylon, Oxalis
pes-caprae, and Carpobrotus aff. edulis and acinaciformis), with user’s and producer’s accuracy always exceeding 90%. The
detection accuracy reported corresponds to patches down to 0.125 m2 (50% of pixels 0.560.5 m in size), a very small size for
many plant species, making it very effective for initial stages of invasive plant spread. In addition, its low operating costs,
similar to those of a 4WD ground vehicle, facilitate frequent image acquisition. Acquired images constitute a permanent
record of the status of the study area, with great amount of information that can be analyzed in the future for other
purposes, thus greatly facilitating the monitoring of natural areas at detailed spatial and temporal scales for improved
management.
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Introduction

Biological invasions are a significant component of global

change, being a major cause of biodiversity loss and an important

threat to fundamental ecosystem processes such as fire and

nitrogen cycling [1–4]. Invasive alien species are also an important

cause of economic losses due to costs of control and eradication as

well as to direct and indirect impacts on ecosystem services and

land-based industries, such as agriculture and forestry [5,6].

In this context, an effective management of invasive species

becomes a major challenge for biodiversity conservation. To this

end, a precise determination of the distribution of invasive plant

species and their patterns of spread is essential to determine the

severity of the problem and to guide control and eradication efforts

[7,8]. Detection and mapping of invasive plant species is

commonly based on field surveys, which are time consuming

and labor intensive [9,10], and often provide limited information,

usually confined to small sampling areas [8]. Remote sensing

constitutes a promising alternative to field surveys, as it can

provide rapid and comprehensive assessments of large areas, and

also systematically across areas, becoming especially useful in

remote or not easily accessible locations [11,12].

Optical remote sensing techniques involve the acquisition and

analysis of reflectance spectra of terrain elements (e.g. vegetation,

soil, rocks, etc.), which depend on the relative amount of light that

is absorbed or reflected at different wavelengths by the various

materials. Biochemical and structural properties of these elements

determine their reflectance patterns, which are very similar for all

higher plants [13]. This makes the distinction of plant species

particularly difficult, depending on the capacities of different

methodologies. In this regard, optical remote sensing techniques

differ mainly in spatial and spectral resolution, spectral range, and

the number of spectral bands where reflectance is measured.

Distinguishing between plant species, as required for detection of

invasive plants, often demands a large number of spectral bands

and high spectral resolutions, in order to detect subtle differences

in reflectance patterns. For this reason, the low number of spectral

bands and the low spectral resolution of aerial photographs and

multispectral sensors do not usually suffice for this demanding

application [11]. In contrast, hyperspectral sensors (also known as

imaging spectrometers) measure light reflectance in many narrow,

adjacent spectral bands (often .100 bands) and have been shown

to provide good results when subtle differences in reflectance

patterns are to be detected, offering great potential for the precise

monitoring of invasive species [12] and other environmental
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management applications [14]. Moreover, when used on airborne

platforms instead of satellites, very high spatial resolutions can be

achieved (e.g. less than a meter), which are often necessary in

heterogeneous terrains where the target species appear in small

patches. However, despite its great utility, the use of imaging

spectroscopy in environmental management has not been widely

established, and the main reason for this is its high cost [11].

Airborne hyperspectral sensors used during the last decades to

validate the new technology and its numerous applications (e.g.

CASI, AVIRIS, HyMap) are expensive, complex, big and heavy,

requiring stable aircraft capable of housing them, usually twin-

engine fixed-wing aircraft. Thus, in addition to the high costs of

purchase, operation and maintenance of the sensors, high costs are

also associated with the aircraft used. These are planes of

considerable operational complexity, requiring specialized pilots

and commercial airports for takeoff and landing, often based far

away from the areas of interest, all contributing to limit their

availability and to increase the cost. Compulsory flight permits and

detailed in-advance planning of flight routes and dates implies that

in case weather conditions are unsuitable for image acquisition

when the planned dates arrive, high cancellation costs have to be

assumed with no results. In practice, all these requirements and

costs greatly limit the usefulness of the technology, despite its

technological potential.

Thus, a main priority in the development of this technology is to

lower its cost and simplify its use to make it more readily available,

so that its demonstrated aptitude for many applications in

environmental management and other fields (e.g. precision

agriculture) can be truly realized. With this aim, we have

developed a system for hyperspectral imaging operated on board

ultralight aircraft, which allows a drastic reduction of the running

costs and operational complexity of image acquisition, and also

increases the spatial resolution of the images because it allows low-

altitude low-speed flying, not possible with bigger, heavier aircraft

(see Table 1). On the other hand, the use of ultralight platforms

impose rigorous constrains in size, weight and power consumption,

and increases the problems associated with motor-induced

vibrations and flight instability, associated with the low inertia of

ultralight aircraft (Table 1).

In this study, we test the capacities of the ultralight system for

invasive plant detection, by determining its accuracy (both

producer’s and user’s accuracy) in detecting patches of 0.125 m2

in size occupied by invasive species. We used as models a set of

invasive species (namely Acacia melanoxylon, Oxalis pes-caprae, and

Carpobrotus aff. edulis and acinaciformis) with contrasting spectral

features, sizes and growth patterns, with the objective of making

generalizations on the system suitability and its limitations.

Methods

Ethics statement
All necessary permits to work in the protected areas where the

study was carried out were obtained for the study. Permits were

approved by the Atlantic Islands National Park and Ses Salines

Natural Park authorities.

Study area and species
The study was carried out in two different coastal areas in

Spain, in the Atlantic and Mediterranean coasts. In the Atlantic

coast, we chose the Atlantic Islands National Park (42u229N,

8u569W, NW Spain), and nearby areas in the mainland. In the

Mediterranean coast we chose the Ses Salines Natural Park of

Formentera Island and nearby areas (38u439N, 1u269W, Balearic

Islands).

We worked with two images in Formentera taken on July 2010,

focusing on an area 4.8 km long and circa 200 m wide along the

NE coast (from the Northern tip of the island, in Ses Salines

Natural Park, towards Es Pujols) and another in the SE of the

island, in Platja Migjorn, 4.3 km long and circa 200 m wide. In

Cı́es and Ons Islands (Atlantic Islands National Park) we worked

with two images taken on March 2011, focusing on an area 4.5 km

long and 300 m wide along the eastern part of the northern Cı́es

island, and an area 5 km long (N–S) and circa 600 m wide along

the eastern part of Ons island. Also in the Atlantic coast, we

worked with an image taken on May 2010 on the northern

Portuguese coast (near Vila Praia de Ancora), focusing on an area

2.2 km long (N–S along the coast from the northernmost tip of the

Portuguese coast to the south) and circa 400 m wide. These study

areas were chosen for the presence of the target species.

The model species chosen (Acacia melanoxylon, Oxalis pes-caprae,

and Carpobrotus aff. edulis and acinaciformis) are all listed as invasive

species in Spain and other areas [15,16]. Acacia melanoxylon is a tree

10–15 m (up to 45 m) high native from Australia which has spread

in Africa, Asia, Europe, South America, the United States and

islands in the Indian and the Pacific Ocean. In the study area it

usually forms compact thickets, although isolated individuals are

also frequent, sometimes of small sizes. Oxalis pes-caprae and

Carpobrotus spp. are herbs native from South Africa. Oxalis pes-caprae

is a small perennial herb that has spread widely across many parts

of the world, including Southern Europe, North Africa, the Middle

East, Asia (India, Pakistan, China, Japan), Australia, the United

States (mostly California) and western South America. It usually

appears in pastures, cultivated fields and along roadsides. It

propagates profusely through its underground bulbs forming

clonal patches of varied sizes. Carpobrotus spp. are succulent and

evergreen and have spread in Europe, Northern Africa, the

Middle East, the United States (California and Florida) and South

America, South Pacific islands, Australia and New Zealand. They

appear mainly in coastal dunes, beaches and rock cliffs and have

very active vegetative propagation, forming dense clonal patches.

Images were acquired on clear and sunny days, at midday and

during the months of highest sun elevation (May-July), when

illumination conditions are optimal. For O. pes-caprae, however,

images were taken in March, when it is at its maximum vegetative

development, since this species has a very early phenology. Only

for this species images were taken during the flowering season,

since it flowers very early (it peaks in December-March) and before

flowering (October-November), conditions for image acquisition

are poor, due to bad weather and low height of the sun. For the

rest of species, images were taken during non-flowering season.

The hyperspectral sensor and aircraft
We used a custom airborne pushbroom hyperspectral sensor

integrated in our lab, using custom and off-the-shelf components,

with 200 spectral bands in the 380–1000 nm range (visible and

near-infrared) with spectral resolution of circa 3 nm. Its small size

and weight (30 cm615 cm615 cm and 4.5 kg) allow us to mount

it on ultralight aircraft, namely a gyrocopter (see Table 1). The

spatial resolution of the acquired images depends on the forelens of

the sensor but also, and very importantly, on the flight height and

speed. In pushbroom imagers (Fig. 1 and 2), spatial resolution is

defined in two dimensions: along-track (parallel to the flight

direction), and across-track (orthogonal to the flight direction). For

fixed forelens and focal plane array, flight height determines the

across-track pixel resolution while aircraft ground speed together

with the sensor integration time determine the along-track pixel

resolution [17]. For a given integration time (the time it takes to

acquire an image line with all its spectral bands), the along-track
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resolution decreases with increasing ground speeds. Alternatively,

the sensor’s integration time can be shortened, but then fewer

photons reach the sensor and signal level decreases [18]. In

addition, at a fixed along-track resolution, the amount of

information per unit time to be transmitted to the storage

subsystem increases with aircraft speed, so that bandwidth, always

limited and especially in portable devices, becomes a problem.

Ultralight aircraft have the advantage over heavier fixed-wing

aircraft of much lower stall speeds, meaning that they can fly at

lower speeds without falling. Among ultralight aircraft, gyrocop-

ters (also called autogyros) are well-known for safe flying and

maneuverability at low speeds [19]. In addition to an engine-

powered propeller to provide forward thrust, similar to that of

fixed-wing aircraft, gyrocopters have an unpowered rotor on top

that develops lift through autorotation (similar in appearance to a

helicopter rotor, but with no engine, so that it is the air flowing

through the rotor disc that causes rotation) [19]. This makes

gyrocopters especially suitable for our application, since images

can be acquired at low speeds (about 60 km/h), compared to

conventional hyperspectral sensors such as AVIRIS, CASI or

HyMap requiring heavy aircraft that usually loses lift below

120 km/h. Flying our sensor on a gyrocopter, we obtain spatial

resolutions of circa 5–8 pixels/m2 at circa 65 km/h and 300 m

height (the swath of the image at this height is 220 m).

In addition, gyrocopters are cheaper and simpler to operate

than the fixed-wing planes commonly used for hyperspectral

image acquisition. No airports are required, just a flat dirt track

less than 100 m long. Flight permits with detailed in-advance

planning are not needed in most countries, which gives great

flexibility, allowing last-minute changes in dates and target areas

depending on weather conditions or in situ observations. This

avoids the costs of cancelled missions or with useless results (due to

low quality images with poor illumination), and greatly increases

the availability and therefore the amount of data. Moreover,

maintenance costs, fuel consumption and CO2 emissions are

similar to those of a 4WD, and licenses needed to fly a gyrocopter

are less stringent than those needed to fly fixed-wing planes in

most countries. On the side of the disadvantages, the small size

and low payload of ultralight aircraft impose rigorous constrains in

the design of the system regarding size, weight, and power

consumption. The effect of motor-induced vibrations has to be

neutralized with proper mechanical design and stabilization. In

addition, the low weight of this aircraft results in higher flight

instability than heavier planes with higher inertia. Gyropters are

more stable than other ultralight aircraft but instability is still an

issue, especially given the high spatial resolution required. Flight

instability results in deformations of the image track that need

proper correction for accurate mapping.

Image pre-processing
Geocorrection. Pushbroom image scanners build images by

moving along a target track a linear image sensor perpendicular to

the flight direction (Fig. 1 and 2). The forward movement of the

sensor is usually that of the platform carrying the scanner (plus

stabilization artifacts), a gyrocopter in our case. Image lines are

acquired and stored, thus progressively building a 2D image. All

pushbroom sensors are subjected to flight dynamics, whereby flight

trajectories are never ideal, even in the heavier and more stable

aircraft. Ultralight aircraft, due to their lower inertia, experience

more movements in the three angles of rotation (roll, pitch, yaw)

caused by winds or by differences in air density. This results in

more deformations of the images, which impose higher demands

on the robustness of geocorrection methods [20]. We use specific

high-precision and computationally efficient algorithms for

Table 1. Pros and cons of ultralight versus non-ultralight aircraft.

Ultralight Non-Ultralight

Flight speeds Flight speed for image acquisition can go down to 65 km/h
with safety, which translates in higher spatial resolution (holding
constant all the rest). Cruising speed: 145 km/h.
Maximum speed 185 km/h.

Stall speeds of 100–150 km/h translates in higher flight speeds
for safety and lower spatial resolution. Cruising speed:
280–450 km/h. Maximum speed 350–450 km/h.

Flight autonomy Lower (3.4 h at cruising speed). Higher (7 h at cruising speed).

Maximum Payload 280 kg (subjet to local regulations). 2450 kg.

Fuel consumption Lower (about 13.5 L/100 km at 145 km/h cruise speed, 95
octane unleaded gasoline).

Higher (about 100 L/100 km, kerosene Jet A1).

Purchase costs Lower (about 60,000 euros). Higher (about 1.5 million euros).

Logistics Small hangar (maximum aircraft length: 8.5 m, including the
removable rotor, 1.8 m wide, 2.7 m max. height),
270 kg empty weight.

Larger hangar (max. aircraft length: 15.8 m, 19.8 m wide, 5,9 m
max. height), 1800–3200 kg empty weight.

Shorter runway required (70 m for take-off and 0–30 m for landing,
an unpaved track suffices). It can be transported to the flight
area by road in a trailer towed by a
conventional car.

Longer runway required (usually 1,000 m long and 15 m
wide, properly paved for the weight and power
of the aircraft).

Regulations: aircraft
certifications, pilot
licenses and flight
planning.

Lower requirements (check local rules). Higher requirements (check local rules).

Flight stability Lower weight translates into lower inertia and stability,
although stability is higher for gyropters than fixed-wing
ultralight aircraft.

Higher weight translates into higher
inertia and stability.

Main advantages and disadvantages of using ultralight and non-ultralight aircraft for hyperspectral image acquisition are shown. The characteristics of ultralight aircrafts
are based on gyropters, such as MagniGyro M16, and those of non-ultralight aircraft are based on non-ultralight fixed-wing aircraft, such as the DeHavilland DHC-6 Twin
Otter 400 or Cessna 340, models frequently used for imagery acquisition.
doi:10.1371/journal.pone.0102381.t001
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geocorrection both to flat earth and to digital terrain models

(DTM; obtained with airborne LiDAR) [21].

The process of registering the image lines to a map involves

geocorrection (reallocating image pixels to their correct geographic

positions) and geocoding (assigning to each pixel an estimation of

its correct geographic coordinates). The final result is a georefer-

enced image or orthoimage.

The parametric approach to geocorrection uses ancillary sensor

data, estimating the location and attitude of the camera at the time

of acquisition of each line. This is achieved by means of inertial

measurement units (IMU) and GPS positioning. These are

combined in our system by means of Kalman filtering into a

single attitude and heading reference system (AHRS), such as in

aircraft autopilot devices, where the information from the GPS

and the IMU are combined to cancel out errors from each source.

Thus, attitude and position information is available for each image

line, such that it is possible to estimate the location of each image

pixel on a model of the terrain from the instantaneous position and

line of view of the camera at the time of acquisition, within the

measurement precision of the AHRS. Residual errors of attitude,

position and calibration of the sensor, which cannot be ruled out

completely, can be subsequently corrected by means of nonpara-

metric approaches, using salient features of the image and the

map, called ground control points (GCPs) [21].

Ground truthing
In the field, right after the aerial acquisition, with the corrected

orthoimages in a rugged sunviewable touch-screen laptop and

using a graphic user interface tool, we labeled the different

elements of the terrain in areas where the invasive target species

was abundant (with patches of different sizes and characteristics)

and other representative elements of the terrain were also present

(other species, bare ground, buildings, etc.). We used on average a

100 m6100 m area per every 1–2 km long image (200–300 m

wide). Patches of different species and other elements of the terrain

were easily identified in the images thanks to their high spatial

resolution and the presence of distinctive features, avoiding

positional errors inherent to GPS positioning, which we used only

in uniform areas. We selected training pixels within these labeled

areas to train the classifier.

Classification
Classification of remotely sensed imagery is the process of

assigning pixels to discrete categories of terrain elements, i.e. one

of the target invasive plant study species or other categories.

We used Support Vector Machines (SVM; [22,23]) which allow

working with high dimensional input spaces [24], thus no band

reduction preprocessing of data was required [25]: All 200 bands

were used as input vectors. A SVM is a supervised machine

learning method that classifies data by a separating hyperplane

that provides the best separation between classes in a very high

dimensional feature space [26]. The optimal hyperplane is the one

that maximizes the distance in feature space between the

hyperplane and the nearest positive and negative training

example, called the margin. SVMs have high generalization

performance and the training can be performed very efficiently,

Figure 1. Acquiring images. Image acquisition from a gyropter using a pushbroom sensor.
doi:10.1371/journal.pone.0102381.g001

Figure 2. Image projection. Projection of an image taken in the Cı́es
Islands (Atlantic Islands National Park) on a digital terrain model (DTM).
doi:10.1371/journal.pone.0102381.g002
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because, in contrast to other machine learning methods, such as

neural networks, it is not random and the optimization problem is

convex with a global optimum [27].

Validation
To assess the accuracy of image classifications we compared the

classified image with ground validation data and created an error

matrix. For each image, we selected circa 100–150 random sample

pixels classified as with presence of the target invasive species and

circa 250–300 pixels of the rest of categories (other species or

terrain elements). Validation sample points were selected from the

whole image, excluding training points. We determined the rates

of omissional errors (or false negatives, when pixels with presence

of a target invasive plant were not properly classified) and

commissional errors (or false positives, when pixels were classified

as with presence of a target invasive plant that is nevertheless

absent in the ground) which define the producer’s and user’s

accuracy, respectively. We also estimated a kappa coefficient,

which provides a measure of the difference in agreement between

the classified map and ground validated data against an agreement

occurring by chance [28].

There is always a detection threshold related to the spatial

resolution of the system and, for all species, there will always be

individuals, e.g. seedlings or small plantings, that cannot be

detected. Therefore, prior to the validation test, we have to

determine the smallest area covered by the target species that will

be considered as presence of the species. We established this

threshold at 50% of pixel size, i.e. 0.125 m2 (35635 cm) for images

of 0.25 m2 (50650 cm) spatial resolution.

Field spectra collection
Field spectra, used to illustrate the high variability within

categories and the similarity between categories in Fig. 6, were

recorded using a double-channel spectrometer (Ocean Optics

USB2000) mounted in a 2 m height post, in order to measure the

reflectance spectra of 0.25 m2 patches in the field. Both upwelling,

ground-reflected radiation, and downwelling, the incidental

radiation measured using a cosine corrector, were recorded

simultaneously, in order to correct the upwelling with the

downwelling for each patch.

Results

Acacia melanoxylon (Fig. 3) was detected with 100% accuracy

when occupying patches bigger than 1 m2. For the established

threshold of 0.125 m2 (50% of pixel size with 0.5 m resolution), we

obtained an overall accuracy of 94% (Table 2). We obtained

similar results for another species of the same genus, A. longifolia,

with 97% overall accuracy. In both cases, this accuracy was

achieved with non-flowering trees.

Oxalis pes-caprae (Fig. 4) overall detection accuracy was 99% for

patches circa 0.125 m2 or bigger (Table 2). There were no false

positives (100% user’s accuracy), despite the abundance and

simultaneous flowering of gorse (Ulex europaeus) in the study area,

which also bears yellow flowers.

Carpobrotus aff. edulis (Fig. 5) constituted a good model for testing

the capacities of the detection system, since there was great

variability among patches and similarity with other species in the

same habitat (Fig. 6). To the human eye, patches varied

conspicuously, from vigorous green patches, in shady areas or

areas with higher water availability, to red patches, in areas with

high insulation and water stress, with varying intermediate

tonalities of greenish and oranges (Fig. 7). In addition, due to

their growing patterns, the plant can form compact patches that

occupy whole pixels rather uniformly, or appear in linear

structures that occupy only a small -portion of one or several

pixels (Fig. 7). We reached accuracies of 97% (at the established

threshold of 0.125 m2; Table 2).

Producer’s and user’s accuracies were in general very similar for

target species, with differences lower than 3% for A. melanoxylon, A.

longifolia, and O. pes-caprae (differences of 0.98%, 1.82% and 2.91%,

respectively, with user’s accuracy being higher than producer’s

accuracy in all cases; Table 2). For C. aff. edulis, this difference

reached 4.54% and user’s accuracy was lower than producer’s

accuracy (92.7% vs. 97.2%). This was mostly due to pixels in

patches of Crithmum maritimum, a succulent that sometimes shows a

reddish color, that were classified as C. aff. edulis. These were

isolated pixels in all cases, so that errors occurred only with small

patches occupying only part of the pixel and being mixed with

other categories, but not for patches of 0.25 m2 or bigger.

Discussion

The detection system proved useful for the species tested (A.

melanoxylon, A. longifolia, O. pes-caprae and Carpobrotus aff. edulis), with

user’s and producer’s accuracy always exceeding 90%. Our results

are substantially better than previous studies with the same or

similar species [29–31], although comparisons are difficult since no

reference to the size of patches detected is given in these studies.

For instance, Underwood et al. (2003) report user’s and producer’s

accuracy of 80% for C. edulis (averaging results of scrub and

chaparral) when using the highest spectral and spatial resolutions

(174 bands, after removing 50 noisy bands, and 4 m; AVIRIS

images), and similar results using 30 m spatial resolution, but only

circa 40% with spectrally degraded images of 6 bands. They

concluded that spatial resolution is less important than spectral

resolution for detection of invasive species, and attributed their

results to the large spatial extent of C. edulis infestations in their

study area. However, spatial resolution becomes very important

with sparse distributions, such as in our study (Figs. 2 to 4). These

sparse distributions are typical of early stages of expansion, when

control would be most effective and accurate detection more useful

[32].

We obtained a good discrimination between classes (even for

those with very similar reflectance patterns) in uniform areas

where one particular class occupied entire pixels. This is probably

due to the large number of bands and high spectral resolution of

the images, as highlighted by [29]. Detection errors occurred for

small patches of the target or background species, smaller than

Figure 3. Acacia melanoxylon detection. Classified image showing
detection of A. melanoxylon highlighted in yellow (Cı́es Islands, Atlantic
Islands National Park, 42u1295099N, 8u54994099W). True colour view of a
hyperspectral image by the authors.
doi:10.1371/journal.pone.0102381.g003
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pixel size, when the target or background species were mixed with

other categories in the same pixel, thus generating mixed

reflectance spectrums that made discrimination more difficult.

Nevertheless, detection accuracy was still high for patches down to

50% of pixel size (0.125 m2 for 0.25 m2 pixel resolution), which

was facilitated by the inclusion of mixed pixels in the training set.
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Figure 4. Oxalis pes-caprae detection. Classified image showing
detection of O. pes-caprae highlighted in yellow (Ons Island, Atlantic
Islands National Park, 42u2290499N, 8u5690699W). True colour view of a
hyperspectral image by the authors.
doi:10.1371/journal.pone.0102381.g004
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Considering the small size of a newly emerged seedling, there

are always individuals that will pass undetected regardless the

spatial resolution of the detection technique used. Thus, for every

technique there is always a size threshold for detection, and

accuracy measures reported in studies always refer, implicitly, to

detection of patches that exceed a certain size. However, this size

threshold is not explicitly reported in remote sensing studies, which

is unfortunate, as it constitutes a necessary reference for

comparison between methods, and it is important to judge the

utility of a technique for specific purposes. The detection accuracy

we report corresponds to patches down to 0.125 m2 (50% of pixels

0.560.5 m in size), a very small size for many plant species,

making it very effective for initial stages of invasive plant spread.

This resolution threshold would allow effective control of plants

that are not reproductively mature (i.e. do not produce seeds or

other reproductive structures) at such small sizes (e.g. most trees

and shrubs, and many perennial herbs; [33]). Periodic image

acquisition combined with eradication campaigns would ensure

that patches that pass undetected due to their small size can be

detected in subsequent campaigns, once they exceed the size

threshold for detection, but before they are able to reproduce and

become a source of invasion. The suitable time intervals between

campaigns to assure effective eradication would depend on plant

growth rates and size required for reproduction. The detection

system would be also effective for species with short-distance

dispersal, even if they can reproduce at individual sizes smaller

than the detection threshold. In these species, colonization occurs

around established foci that are easily detected due to bigger sizes,

facilitating the detection of small patches in the field during

eradication campaigns. However, the spread of invasive species

often occurs through stratified dispersal, with both local spread

around established foci and long-distance jumps [34], sometimes

facilitated by alternative or non-standard dispersal mechanisms

[35,36]. With long-distance dispersal (e.g. by wind or vertebrate

animals), small new patches can be located far away from their

parents, making their detection difficult in the field during

eradication works, and remote sensing techniques become more

necessary for effective control. However, species that can

reproduce at sizes smaller than the size threshold for detection

(,0.125 m2 in our system, e.g. Arctotheca calendula) and have

effective long-distance dispersal mechanisms are especially prob-

lematic for management, since they are hardly detectable by any

remote sensing technique and also in field surveys, making

population control especially challenging [37].

When resorting to supervised classification methods, ground-

truthing is always a critical issue requiring considerable resources,

and with a high potential impact on the end result. Based upon our

own experience, we advocate ground truthing directly on the

geocorrected images themselves, instead of systematically resorting

to GPS as a delayed intermediate, much of the time unnecessary,

between the terrain and the image. The usual procedure,

whereupon GPS coordinates of labeled patches on the terrain

are taken in the field and then afterwards labels are assigned to

image pixels in the lab by means of the GPS coordinates, involves

two sources of error that can be avoided, if not in all, in many

cases: the GPS error of the field device and the geocoding error of

the image. Instead, we propose going to the field right after the

aerial campaign, and to perform the labeling of pixels directly on

the images by visual inspection of both, the terrain and the image.

Considering high spatial resolution imagery, the terrain is usually

heterogeneous with a great variety of salient points that can be

used to locate within pixel precision all the necessary features in

the image. Only in homogeneous areas this accurate matching of

pixels and terrain features can be difficult, but precisely this

homogeneity makes less critical the positional accuracy, because in

truly homogeneous areas all pixels belong to the same class. Note

Figure 5. Carpobrotus aff. edulis detection. Classified image
showing detection of C. aff. edulis highlighted in yellow (Formentera,
Balearic Islands, 38u4395299N, 1u2695099E). True colour view of a
hyperspectral image by the authors.
doi:10.1371/journal.pone.0102381.g005

Figure 6. Similarity between Carpobrotus aff. edulis and
accompanying species. Reflectance spectra of C. aff. edulis; solid
black thick line, with healthier and greener patches in the upper lines,
going below to patches more affected by water stress) and other
species in the same habitat: Pistacia lentiscus (dash dotted black line),
Juniperus phoenicea (solid dark grey line, the upper line corresponds to
a tree and the one below to litter, Pinus halepensis (solid thin black line,
the upper line corresponds with a healthy patch and the one below
with a patch of withered needles) and Crithmum maritimum (solid light
grey line). Notice the variability within categories (e.g. for C. aff. edulis, P.
halepensis, and J. phoenicea), and the similarity between categories. All
spectra were taken at the same dates in an area not bigger than one
hectare in Formentera (Balearic Islands).
doi:10.1371/journal.pone.0102381.g006
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that we are not advocating labeling only salient features of the

image. The procedure for choosing the ground truth plots must be

the same as usual: random, ensuring variability, representativity

and significance. It is the way of locating, and therefore labeling,

the pixels in the image that we propose to change, increasing the

accuracy of the labeling and decreasing the labour. This is now

possible due to the evolution of portable devices with enhanced

graphic and storage capabilities, in connection with adequate,

purposedly-designed labeling software.

The use of a gyrocopter as sensor platform allows image

acquisition at high spatial resolutions, which enhances the

detection ability of the system. In addition, its low operating costs,

similar to those of a 4WD ground vehicle, facilitate frequent image

acquisition, which adds in monitoring of invasion patterns,

allowing a detailed account of temporal and spatial patterns of

colonization and establishment. It also facilitates eradication

efforts for species with no reproductive capacity at sizes smaller

than the detection threshold, as previously commented. Moreover,

although images are acquired with a specific goal (e.g. the

mapping of invasive species), they constitute a permanent record

of the status of the study area, with great amount of information

that can be analyzed in the future for other purposes. Periodic

acquisition of hyperspectral images can thus greatly facilitate the

monitoring of natural areas at detailed spatial and temporal scales

for improved management. However, this can only be realistically

considered with methods providing good quality images at low

costs, such as the system here described. We are currently working

in further miniaturization of the system for its operation from

small unmanned aerial vehicles (UAV) [38]. However, even if

payload has greatly improved in the last few years, making possible

the installation of between 3 and 5 kg of imaging and navigation

equipment on devices circa 1 m of wingspan, flight time of small

UAVs, mostly depending on the energy density capability of

batteries, is still too low as to consider small UAVs practical for

repeated mapping of moderately large areas. This is expected to

change in the near future with further developments in battery

technology driven by mainstream consumer goods such as

portable electronic devices and electric cars. In the meantime,

ultralight aircraft, and especially gyrocopters, seem to be the most

practical tool for the task.
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Figure 7. Variability of Carpobrotus aff. edulis patches. Patches of
C. aff. edulis (Formentera, Balearic Islands) showing the great variability
in colour and spatial arrangement: (a) a dense vigorous patch, with high
water content, (b) a patch affected by water stress, with dead areas, and
(c) linear structures formed by the growth of lateral shoots, which cover
small portions of pixels and make detection difficult. Notice the
difference between dense and vigorous patches (photo on the upper

left), patches with red colour and low water content (upper middle),
patches with intermediate colour (bottom left), or lineal structures of
different colours that cover small portions of the pixels (upper right,
and bottom right and middle).
doi:10.1371/journal.pone.0102381.g007
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