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Abstract

The phylogenetic relationships within the Stellifer group of weakfishes (Stellifer, Odontoscion, Ophioscion, and Bairdiella)
were evaluated using 2723 base pairs comprising sequences of nuclear (rhodopsin, TMO-4C4, RAG-1) and mitochondrial
(16S rRNA and COI) markers obtained from specimens of nine species. Our results indicate a close relationship between
Bairdiella and Odontoscion, and also that the genus Stellifer is not monophyletic, but rather that it consists of two distinct
lineages, one clade containing S. microps/S. naso/S. brasiliensis and the other, S. rastrifer/S. stellifer/Stellifer sp. B, which is
closer to Ophioscion than the former clade. The O. punctatissimus populations from the northern and southern Brazilian
coast were also highly divergent in both nuclear (0.8% for rhodopsin and 0.9% for RAG-1) and mitochondrial sequences
(2.2% for 16S rRNA and 7.3% for COI), which we conclude is consistent with the presence of two distinct species. The
morphological similarities of the members of the Stellifer group is reinforced by the molecular data from both the present
study and previous analyses, which have questioned the taxonomic status of the Stellifer group. If, on the one hand, the
group is in fact composed of four genera (Stellifer, Ophioscion, Odontoscion, and Bairdiella), one of the two Stellifer clades
should be reclassified as a new genus. However, if the close relationship and the reduced genetic divergence found within
the group is confirmed in a more extensive study, including representatives of additional taxa, this, together with the
morphological evidence, would support downgrading the whole group to a single genus. Obviously, these contradictory
findings reinforce the need for a more systematic taxonomic revision of the Stellifer group as a whole.
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Introduction

The family Sciaenidae includes approximately 70 genera and

270 species of demersal fishes found mainly over muddy or sandy

bottoms of the continental shelf of the Atlantic, Indian, and Pacific

oceans, as well as freshwater genera in the rivers of the Old and

New Worlds [1,2]. In the western South Atlantic, sciaenids are

abundant and highly diverse, encompassing approximately 50

species representing 19 genera [3,4].

Chao [5] evaluated the phylogenetic relationships of the 21

western Atlantic sciaenid genera and two freshwater genera based

on morphological traits, and identified 11 suprageneric groups:

Micropogonias, Nebris, Pogonias, Sciaenops, Larimus, Sciaena, Umbrina,

Menticirrhus, Lonchurus, Cynoscion, and Stellifer. Of these groups,

Stellifer can be distinguished from all the others by the presence of

two (rather than one) pairs of large otoliths and a swim bladder

with two (rather than one) chambers.

The Stellifer group includes four genera – Stellifer, Ophioscion,

Bairdiella, and Odontoscion – represented by 12 species in the

western South Atlantic: Stellifer naso, S. griseus, S. venezuelae, S.

brasiliensis, S. microps, S. rastrifer, S. stellifer, Stellifer. sp. A,

Stellifer. sp. B, Odontoscion dentex, Ophioscion punctatissimus,

and Bairdiella ronchus [5]. These species are characterized by a

very strong second anal spine, two pairs of large otoliths, and a

swim bladder with two chambers, a carrot-shaped posterior

chamber, and the anterior one yoke-shaped with a pair of

diverticula on the posterolateral surface [4,5].

Species of the Stellifer group are widely distributed in the

western Atlantic, where they are abundant in coastal and estuarine

waters with sandy or muddy bottoms [6,7], including the coast of

Brazil [8–15]. This group is especially appropriate for studies of

the genetic connectivity of populations because the species are

widely distributed, and normally inhabit estuarine environments.

Despite this, few studies have focused on the bio-ecological or

phylogenetic characteristics of this group. Regarding the phyloge-

netic relationships, all the available studies [1,5,16,17] have

emphasized the close relationships among Bairdiella, Stellifer,

Ophioscion, and Odontoscion, although intergeneric and interspecific

relationships have yet to be defined conclusively due to the

limitations or inconsistencies found in the data, as described below.
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The first phylogeny based on morphological traits was proposed

by Chao [5], who concluded that Stellifer is most closely related to

Ophioscion, with Bairdiella appearing as a sister group to Odontoscion.

In a subsequent morphological study, Sasaki [1] suggested that

Ophioscion and Stellifer are sister groups which form a clade with

Bairdiella, whereas Odontoscion is related to the sciaenids of the

eastern Pacific, Elattarchus and Corvula.

In a phylogenetic study based on 16S rRNA sequences, Vinson

et al. [16] confirmed the close relationship between Stellifer and

Bairdiella, although they did not include Ophioscion or Odontoscion in

their analyses, impeding the systematic assessment of the

evolutionary relationships within the group. In a recent study

based on both mitochondrial (COI and 16S rRNA) and nuclear

markers (TMO-4C4), Santos et al. [17] concluded that Stellifer is a

sister group of Ophioscion and that Bairdiella is the basal taxon within

the group, confirming the proposal of Sasaki [1]. However, as in

Vinson et al. [16], the relationships between all of the taxa of the

Stellifer group could not be defined because Odontoscion was not

included in the analyses. Additionally, the relationships among the

Stellifer species remain unclear, given that, in Vinson et al. [16], S.

microps is a sister group to S. naso and S. rastrifer is closely related to

S. stellifer, whereas in Santos et al. [17], S. rastrifer is a sister group to

Stellifer sp., and S. stellifer is more closely related to O. punctatissimus.

In addition to the divergences in the conclusions of the

morphological studies regarding the intergeneric relationships

within Stellifer group, then, there are also disagreements among

molecular phylogenies, especially with regard to the relationships

among the Stellifer species. Given this, the present study evaluates

the phylogenetic relationships within the Stellifer group, including

all of its genera, using nuclear (TMO-4C4, RAG-1, and

rhodopsin) and mitochondrial (16S rRNA and COI) markers, all

of which have been widely used in phylogenetic reconstructions of

fish taxa [17–27].

Materials and Methods

Ethics Statement
The species analyzed in the present study are not endangered or

protected in the regions from which samples were obtained. The

specimens were captured by artisanal fishers and processed

(collection, handling, transportation, and DNA extraction) with

the authorization of the Brazilian Environment Ministry through

permit number 12773–1 emitted in the name of Dr. Iracilda

Sampaio. All work was performed in compliance with and

approved by the Ethics Committee of the Federal University of

Pará.

Sampling
A total of 36 samples representing nine species of the four

genera of the Stellifer group distributed in the western South

Atlantic were collected along the Brazilian coast (Table 1). Most of

the specimens were obtained from the Sciaenidae tissue bank of

the UFPA Genetics and Molecular Biology Laboratory of the

Institute of Coastal Studies in Bragança, Brazil. The species were

identified using the specialized literature [5], and muscle tissue was

extracted from each specimen and conserved in absolute ethanol

and frozen until analysis in the laboratory.

DNA Extraction, PCR, and Genomic Sequencing
Total DNA was extracted by using the Wizard genomic DNA

purification kit (Promega, Madison, Wisconsin, USA) following

the protocol for extraction from muscle tissue as defined by the

manufacturer. To evaluate the quality of the DNA, samples were

electrophoresed in 1% agarose gel stained with GelRed (Biotium

Inc., Hayward, California, USA) and analyzed under a UV

transilluminator.

The mitochondrial (16S rRNA and COI) and nuclear (TMO-

4C4, RAG-1, and rhodopsin) regions were amplified by PCR

using the primers and amplification cycles described in Table 2.

The RAG-1 region was amplified using a nested PCR, in which

the primers 2510F [20] and RAG1R1 [32] were used first,

followed by a second amplification using the primers RAG1F1 and

RAG1R2 [32]. The reactions were conducted in a final volume of

25 ml, containing 4 ml of dNTPs (1.25 mM), 2.5 ml of PCR buffer

(10X), 1 ml of MgCl2 (50 mM), 1 ml of DNA (100 ng/ml), 1 ml of

each primer (50 ng/ml), 0.2 ml of Taq DNA Polymerase (5 U/mL,

Invitrogen, Carlsbad, California, USA), and sterile water to

complete the final volume. The PCR products were run on an

agarose gel (1%) stained with GelRed (Biotium Inc., Hayward,

California, USA) to verify the quality of the amplification products

under ultraviolet light.

The positive PCR products were purified with ExoSAP-IT

(Affymetrix, Cleveland, Ohio, USA) following the manufacturer’s

instructions, and sequenced by the di-deoxyterminal method with

reagents from the BigDye Terminator v3.1 Cycle Sequencing kit

(Applied Biosystems, Foster City, California, USA). Electrophore-

sis was conducted in an ABI 3500XL automatic sequencer

(Applied Biosystems).

Phylogenetic and Nucleotide Divergence Analyses
The sequences obtained were manually edited, and aligned

using the CLUSTAL W algorithm [33] implemented in the

BioEdit 7.2.5 program [34]. Some of the 16S rRNA and TMO-

4C4 sequences included in the analysis were obtained from

GenBank (see Table 1). Nucleotide saturation of each set of data

was evaluated by plotting transitions and transversions against

genetic distances in DAMBE 4.0.65 [35].

Phylogenetic relationships were reconstructed based on both the

individual data sets (per gene) and the concatenated data, using

maximum parsimony, maximum likelihood, and normal and

hierarchical Bayesian inference approaches. Two species of the

family Lutjanidae, Ocyurus chrysurus and Lutjanus purpureus, the

probable sister group of the Sciaenidae, were used as the

outgroups for all analyses (Table 1). The evolutionary models

used in the phylogenetic reconstructions were obtained in

jModeltest 0.1.1 [36]. The maximum parsimony analysis was

run using a heuristic search with 1,000 random step-wise

additions, using the subtree pruning-regrafting (SPR) algorithm

with branch-swapping in PAUP* 4.0b10 [37]. The maximum

likelihood tree was constructed in PhyML v3.0 [38] using a

heuristic search to find the most probable topologies based on the

substitution models TIM2ef+I+G (for 16S rRNA), TIM2+I+G

(COI), K80+I (TMO-4C4), TIM1+G (rhodopsin), and TrNef+I+
G (RAG-1), and, TPM1uf+I+G for the concatenated data set.

Statistical support for the maximum parsimony and likelihood

analyses was determined using 1,000 bootstrap pseudoreplicates

[39].

Bayesian inference analyses were run in MrBayes 3.1.2 [40]

using the evolutionary models TPM2+G (for 16S rRNA), TrN+I+
G (COI), K80+I (TMO-4C4), TPM1+G (rhodopsin), and K80+I+
G (RAG-1). Metropolis-coupled Markov chain Monte Carlo

(MCMCMC) sampling was conducted with two independent runs

of 3,000,000 generations to estimate the posterior probabilities of

the observed clades, using the parameters defined by the models as

starting values. The Bayesian posterior probabilities for the clades

were determined using the 50% consensus rule for trees sampled

every 20 generations after removing the trees produced before the

chains became stationary. The burn-in was empirically defined by
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evaluating the likelihood values. Convergence of the data was

evaluated by verifying the parameters throughout the generations

in Tracer 1.5 [41].

A species tree was constructed according to the hierarchical

Bayesian inference principle in the BEAST 1.7.4 software package

[42]. In this analysis, one tree was defined a priori, and each species

of the group was considered to be a valid taxon. Markov chain

Monte Carlo (MCMC) sampling was performed for 450 million

generations with parameters sampled every 1,000 generations, and

an initial burn-in of 10%. Convergence of the parameters was

evaluated in Tracer 1.5 [41]. All of the trees obtained were viewed

and edited in FigTree 1.4.0 [43].

Nucleotide divergence within and among the lineages for each

set of data were assessed using uncorrected p distances in the

MEGA 5.2.2 program [44].

Results

A total of 2723 base pairs, including 432 bps for rhodopsin,

401 bps for TMO-4C4, and 752 bps for RAG-1, as well as

508 bps for the mitochondrial 16S rRNA and 630 bps for the

COI were obtained from 26 of the 36 specimens analyzed. None

of the markers was saturated (data not shown). The complete

database of both nuclear and mitochondrial sequences includes

549 sites that are informative for parsimony analysis, with an

overall transition/transversion ratio of 3.6.

As the maximum parsimony, maximum likelihood, and

Bayesian inference trees all presented similar topologies, only the

maximum likelihood tree is shown here (Figure 1). The principal

difference among the trees was in the position of S. stellifer, which

grouped with Stellifer sp. B in the Bayesian species tree (Figure 2),

but is the sister group of S. rastrifer in the other trees (Figure 1). In

both cases, however, the statistical support is weak. All the results

suggest the monophyly of the Stellifer group, with significant

bootstrap and posterior probability values (Figures 1 and 2).

However, it was not possible to determine which of the group’s

lineages is basal because all three approaches produced a

polytomous arrangement (Figures 1 and 2).

The close relationship between Bairdiella and Odontoscion was well

supported in all of the analyses (Figures 1 and 2). Our results also

suggest that the genus Stellifer is not monophyletic because the

species S. rastrifer, S. stellifer, and Stellifer sp. B form a clade closely

related to Ophioscion, with significant statistical support (Figures 1

and 2), whereas S. microps, S. naso, and S. brasiliensis form a distinct

clade, which is also strongly supported by bootstrap and posterior

probability values (Figures 1 and 2).

Regarding the interspecific relationships within genus Stellifer, S.

naso is a sister group to S. microps, composing a clade along with S.

brasiliensis (Figures 1 and 2). In the second clade containing the

other species of Stellifer, the low bootstrap and posterior probability

values did not allow a reliable definition of the evolutionary

relationships among Stellifer sp. B, S. rastrifer and S. stellifer (Figures 1

and 2).

All the analyses supported the separation of the northern (Pará)

and southern (São Paulo) lineages of O. punctatissimus, based on

high bootstrap and posterior probability values (Figures 1 and 2).

Discussion

This is the first molecular phylogeny that includes species

representative of all four genera of the Stellifer group, as proposed

by Chao [5]. The results of all of the analyses suggest the

monophyly of the group (Figures 1 and 2), and are consistent with

those of morphological analyses [5] and a molecular study of 17

sciaenid genera, including those of the Stellifer group [17].

However, as the Sciaenidae is a large family that includes some 70

Table 2. Primers and amplification protocols for the mitochondrial and nuclear markers.

Marker Primer Reference Amplification protocol

16S rRNA L1987: 59 GCCTCGCCTGTTTACCAAAAAC 39 Modified from
Palumbi [28]

Initial denaturation at 94uC for 39; 30 cycles at 94uC for
200(denaturation), 50uC for 300(annealing), and 72uC for 300; and
final extension at 72uC for 39

H2609: 59 CCGGTCTGAACTCAGATCACGT 39

COI FishF1: 59 TCAACCAACCACAAAGACATTGGCAC 30 [29] Initial denaturation at 94uC for 39; 30 cycles at 94uC for
400(denaturation), 59uC for 300(annealing), and 72uC for 300; and
final extension at 72uC for 79

FishR1: 59 TAGACTTCTGGGTGGCCAAAGAATCA 39

TMO-4C4 F2: 59 CGGCCTTCCTAAAACCTCTCATTAAG 39 [30] Initial denaturation at 95uC for 29; followed by 35 cycles at 95uC for
300 (denaturation), 60uC for 300(annealing), and 72uC for 19; and
final extension at 72uC for 79

R2: 59 GTGCTCCTGGGTGACAAAGTCTACAG 39

Rhodopsin Rod-F2 W: 59 AGCAACTTCCGCTTCGGTGAGAA 39 [31] Initial denaturation at 95uC for 79; 40 cycles at 94uC for
300(denaturation), 59uC for 300(annealing), and 72uC for 300; and
final extension at 72uC for 79

Rod-4R: 59 CTGCTTGTTCATGCAGATGTAGAT 39

RAG-1 2510 L: 59 TGGCCATCCGGGTMAACAC 39 [20], [32] Initial denaturation at 94uC for 39; followed by 40 cycles at 94uC for
300(denaturation), 58uC for 450(annealing), and 72uC for 450; and
final extension at 72uC for 109

RAG1R1: 59 CTGAGTCCTTGTGAGCTTCCATRAAYTT 39

RAG-1 RAG1F1: 59 CTGAGCTGCAGTCAGTACCATAAGATGT 39 [32] Initial denaturation at 94uC for 39; followed by 40 cycles at 94uC for
300 (denaturation), 58uC for 450 (annealing), and 72uC for 450; and
final extension at 72uC for 109

RAG1R2: 59 TGAGCCTCCATGAACTTCTGAAGRTAYTT 39

doi:10.1371/journal.pone.0102250.t002
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genera, further analyses including the Stellifer group and other

closely-related sciaenids, will be necessary for a more conclusive

evaluation of the group’s monophyletic status.

Bairdiella is a sister group to Odontoscion in all the topologies

generated in the present study (Figures 1 and 2), which

corroborate Chao’s [5] arrangement, based on morphological

traits. By contrast, the findings of Sasaki [1] indicate that Stellifer/

Ophioscion/Bairdiella share a common ancestor, whereas Odontoscion

would be more closely related to the eastern Pacific Ellatarchus and

Corvulla. These results contrast with those obtained in the present

study and the phylogenies determined by Chao [5] and Santos et

al. [17]. However, Ellatarchus and Corvulla were not included in

either the present study or the previous ones [5,17], which means

that further phylogenetic analyses will be necessary to resolve these

contradictions.

The results of the present study confirm that Stellifer is not

monophyletic. The Stellifer sp. B/S. rastrifer/S. stellifer clade shares a

common ancestry with O. punctatissimus, whereas S. microps, S. naso,

and S. brasiliensis form a distinct clade, in both cases supported by

significant bootstrap and posterior probability values (Figures 1

and 2). These results refute the morphology-based hypotheses

[1,5] and are consistent with the arrangement proposed by Santos

et al. [17], who concluded that Stellifer comprises two distinct

lineages, and that Stellifer sp. B/S. stellifer/S. rastrifer would be closer

to O. punctatissimus than the second clade. Given these findings, we

suggest that either that one of the two Stellifer clades should be

assigned to a new genus or that the entire group should be

subsumed into a single genus. Either way, additional morpholog-

ical and molecular studies, including more species from the

Stellifer group, will be necessary to reach a more conclusive

evaluation of the phylogenetic relationship of this group.

Within Stellifer, our results corroborate the close phylogenetic

relationship between S. microps and S. naso proposed by Vinson et

al. [16], as well as the conclusions of Santos et al. [17] on the S.

naso/S. microps/S. brasiliensis clade. However, our findings contrast

with those of the latter study [17] with regard to the relationship

Figure 1. Maximum likelihood tree for the Stellifer group, based on mitochondrial (COI and 16S rRNA) and nuclear DNA sequences
(rhodopsin, TMO-4C4, and RAG-1). The numbers above the branches represent the bootstrap values for maximum likelihood and maximum
parsimony, and posterior Bayesian probabilities, respectively.
doi:10.1371/journal.pone.0102250.g001
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between S. rastrifer, S. stellifer, and Stellifer sp. B. In the earlier study,

S. stellifer was identified as a sister group of O. punctatissimus,

whereas in the present one, this species is closer to its congeners

than Ophioscion (Figures 1 and 2).

One surprising result of this study was the formation of two

distinct and statistically well-supported clades of O. punctatissimus

from northern (Pará) and southern (São Paulo) coasts of Brazil

(Figure 1). In fact, genetic divergence in both mitochondrial and

nuclear genes (2.2% for rRNA 16S, 7.3% for COI, 0.8% for

TMO-4C4, 0.2% for Rhod, and 0.9% for RAG-1) is similar to or

greater than that found between valid sciaenid species [16] and

those of other fish families [23,45,46], which leads us to suggest

that speciation occurred in the taxa. Ophioscion punctatissimus is the

only species of this genus found in Brazil, which eliminates possible

errors of identification of the specimens. The northern and

southern populations are separated by more than 5000 km of

coastline, and inhabitat areas with distinct geomorphological and

oceanographic characteristics [47,48], all of which may have

contributed to a reduction in the gene flow between the two

populations, and the differentiation observed in the present study.

A number of studies have nevertheless pointed out other factors,

such as life-history traits, the ecological requirements of the species

[49–53], or historic events, such as glaciations, as the primary

determinants of genetic differentiation and speciation in fish

[45,54–57]. Population differentiation and speciation have been

recorded in western Atlantic sciaenids, such as Macrodon [58,59],

which has two highly divergent lineages distributed in the western

South Atlantic that were recently differentiated as M. ancylodon and

M. atricauda by Carvalho-Filho et al. [60]. Mitochondrial and

nuclear DNA sequences also indicate that the two distinct lineages

of Larimus breviceps from the western South Atlantic may also

represent distinct species [17,61]. Given these findings, there is a

clear need for more comprehensive data on the populations of O.

punctatissimus, including additional molecular markers and speci-

mens from a wider geographical area, in order to determine the

exact levels of genetic differentiation and the range of each lineage.

In summary, the morphological similarities of the members of

the Stellifer group [5] is reinforced by the molecular data from

both the present study and previous analyses [16,17], which have

questioned the taxonomic status of the Stellifer group. If, on the

one hand, the group is in fact composed of four genera (Stellifer,

Ophioscion, Odontoscion, and Bairdiella), one of the two Stellifer clades

should be reclassified as a new genus. However, if the close

relationship and the reduced genetic diversity (data not shown)

found within the group is confirmed in a more extensive study,

including representatives of additional taxa, this, together with the

morphological evidence, would support downgrading the whole

group to a single genus. Obviously, these contradictory findings

reinforce the need for a more systematic taxonomic revision of the

Stellifer group as a whole.

Conclusions

This study presents the most comprehensive molecular phylog-

eny yet produced for the genera of the Stellifer weakfish group.

The analyses found close relationships among the taxa of the

group, as well as two distinct lineages of Stellifer. In addition,

marked genetic differentiation was found between the O.

punctatissimus populations from northern and southern Brazil,

suggesting that speciation occurred in the taxa. All these findings

reinforce the need for more comprehensive analyses using both

molecular markers and morphological traits for the definition of

the phylogenetic relationships within the group.

Figure 2. Species tree of the Stellifer group constructed from sequences of mitochondrial (COI and 16S rRNA) and nuclear DNA
(rhodopsin, TMO-4C4, and RAG-1). The numbers above the branches indicate the posterior probabilities for the respective clade.
doi:10.1371/journal.pone.0102250.g002
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