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Abstract

Studying non-model organisms is crucial in the context of the current development of genomics and transcriptomics for
both physiological experimentation and environmental characterization. We investigated the transcriptomes of two marine
planktonic ciliates, the mixotrophic oligotrich Strombidium rassoulzadegani and the heterotrophic choreotrich
Strombidinopsis sp., and their respective algal food using Illumina RNAseq. Our aim was to characterize the transcriptomes
of these contrasting ciliates and to identify genes potentially involved in mixotrophy. We detected approximately 10,000
and 7,600 amino acid sequences for S. rassoulzadegani and Strombidinopsis sp., respectively. About half of these transcripts
had significant BLASTP hits (E-value ,1026) against previously-characterized sequences, mostly from the model ciliate
Oxytricha trifallax. Transcriptomes from both the mixotroph and the heterotroph species provided similar annotations for
GO terms and KEGG pathways. Most of the identified genes were related to housekeeping activity and pathways such as the
metabolism of carbohydrates, lipids, amino acids, nucleotides, and vitamins. Although S. rassoulzadegani can keep and use
chloroplasts from its prey, we did not find genes clearly linked to chloroplast maintenance and functioning in the
transcriptome of this ciliate. While chloroplasts are known sources of reactive oxygen species (ROS), we found the same
complement of antioxidant pathways in both ciliates, except for one enzyme possibly linked to ascorbic acid recycling
found exclusively in the mixotroph. Contrary to our expectations, we did not find qualitative differences in genes potentially
related to mixotrophy. However, these transcriptomes will help to establish a basis for the evaluation of differential gene
expression in oligotrichs and choreotrichs and experimental investigation of the costs and benefits of mixotrophy.
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Introduction

The most diverse and abundant ciliates in euphotic marine

waters correspond to two sister subclasses, Oligotrichia and

Choreotrichia (class Spirotrichea) [1]. Oligotrich and choreotrich

ciliates are globally distributed [2] and episodically dominate

microzooplankton [3–5]. They are major consumers of small

algae, thus channeling energy through the microbial loop and

higher levels in the planktonic food web [6]. One of the most

prominent physiological differences between these two ciliate

groups is that many oligotrich species practice mixotrophy, while

this nutrition mode has not been confirmed for any choreotrich

[7–10].

Mixotrophs obtain nutrients and energy by combining hetero-

trophy and autotrophy [11] and play key roles as both primary

and secondary producers [12]. The mechanism for mixotrophy in

oligotrichs is chloroplast sequestration, or kleptoplasty, in which a

primarily herbivorous organism retains functional chloroplasts

from its algal food and uses them for photosynthesis. For example,

the oligotrich Strombidium rassoulzadegani captures chloroplasts from

algal prey and uses them to grow rapidly in the light, although

chloroplasts are not able to divide in the ciliate and eventually

need to be replaced [13–16]. Apart from ciliates, kleptoplasty has

been widely reported to occur within dinoflagellates, foraminifer-

ans, and even in some molluscs [17–19].

It is unclear how a kleptoplastic organism can keep functional

chloroplasts. Most genes needed to regulate these organelles are

nuclear-encoded, but the algal nucleus is usually not retained in

the host cell [10]. An exception is the ciliate Mesodinium rubrum, in

which the nuclei of ingested algae remain transcriptionally active

[20]. The most popular hypothesis on the genetic basis of

kleptoplasty is related to the horizontal transfer of genes involved

in chloroplast functioning and maintenance from algae to the host

nucleus [21,22]. For example, five plastid-targeting proteins that

function in photosystem stabilization and metabolite transport

have been found encoded in the nucleus of the kleptoplastic

dinoflagellate Dinophysis acuminata and have probably been

acquired through horizontal gene transfer from multiple algal

sources [21]. In contrast, no support for horizontal gene transfer

has been found in another kleptoplastic protist, the foraminiferan

Elphidium margaritaceum, and thus other hypotheses related to

chloroplast stability have been suggested [23,24].

Kleptoplasty provides the advantage of a photosynthetic energy

subsidy, but it is unclear if this strategy provides other benefits or
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costs to the cell [15]. One hypothetical cost of kleptoplasty is the

necessity for mitigation of reactive oxygen species (ROS) produced

during photosynthesis. ROS are produced during respiration and

normal metabolism both in heterotrophic and autotrophic

organisms, which have multiple mechanisms of detoxification

[25,26]. Additional ROS are produced and detoxified in the

chloroplasts of autotrophs [27–29]. It is unknown how a

kleptoplastic ciliate mitigates the extra ROS produced by the

sequestered chloroplasts. Maintaining a different or more active

detoxification mechanism and the risk of additional oxidative stress

may represent costs of mixotrophy for ciliates. This is also

interesting from the evolutionary point of view, as an enhanced

ability to deal with ROS would partially explain why only some

ciliates can harbor photosynthetic symbionts [30,31]. On the other

hand, some accumulation of ROS may provide defense against

predation [32], thus helping to explain why mixotrophic ciliates

appear to be less vulnerable than heterotrophic ones to copepod

grazing [33].

The Marine Microbial Eukaryote Transcriptome Sequencing

Project (MMETSP; http://marinemicroeukaryotes.org) has pro-

vided an unprecedented amount of genetic information on ciliates

and other non-model marine protists that have been strongly

underrepresented in previous genomics and transcriptomics efforts

[34]. As part of this initiative, we performed RNAseq on two

ciliates, the mixotrophic oligotrich S. rassoulzadegani and the

heterotrophic choreotrich Strombidinopsis sp., and provide here

the first transcriptome analyses for these groups. To eliminate

potential food contamination, and given the lack of whole-genome

information for any algae we could use as food, we also obtained

the transcriptomes of the prey used for ciliate culturing. Our aim

was to characterize the transcriptomes of these contrasting ciliates

and, in particular, to explore the hypothesis that additional genes

involved in kleptoplasty and ROS mitigation are expressed by the

mixotroph compared to the heterotroph. Given the complete

novelty of this kind of data, our study advances the understanding

of the physiology of mixotrophic and heterotrophic ciliates and

lays the molecular groundwork necessary for further experimen-

tation.

Materials and Methods

Ethics statement
Strombidium rassoulzadegani and Strombidinopsis sp. were sampled

from a tide pool and a dock, respectively, at the UConn Avery

Point campus, Connecticut, USA (41.32u N, 72.06u W). No special

permits were needed and field collection did not involve

endangered or protected species.

Cultures and RNA extraction
Both ciliates were isolated and maintained in autoclaved,

filtered seawater supplemented with mineral nutrients (salinity c.

30 Practical Salinity Units and nutrients added as f/2 or f/20 for

the mixotroph and the heterotroph, respectively [35]). S.

rassoulzadegani has been kept in our laboratory for almost 10 years

using the prasinophyte Tetraselmis chuii (strain PLY429), which is

the prey that provides the most efficient growth of this ciliate [15].

Strombidinopsis sp. has been periodically isolated and cultured in our

laboratory using the cryptophyte Rhodomonas lens (strain RHODO)

as food. For RNA isolation, new cultures of S. rassoulzadegani and

Strombidinopsis sp. were started using T. chui PLY429 and R. lens

RHODO, respectively, as prey.

When the ciliate cultures were in the exponential growth stage

and the food algae in the culture were largely consumed, ciliate

cells were harvested. To minimize food contamination in the

ciliate RNA extracts, individual cells were picked with a

micropipette under a stereo microscope and pooled into a 15-ml

tube containing 5 ml of Tri-Reagent (MRC Inc., Cincinnati, OH,

USA). A total of 22,000 cells for S. rassoulzadegani and 10,000 for

Strombidinopsis sp. were isolated. Also, the two food algae (,107

cells) were harvested from axenic cultures by centrifugation at

3,000 x g and the cell pellets were fixed in Tri-Reagent. RNA was

extracted from all four samples following the modified Zymo

column purification method using Direct-zol RNA MiniPrep Kit

(Zymo Research, Irvine, CA, USA) as reported previously [36].

Library preparation and RNAseq
RNA samples were quantified using Qubit Q32855 (Invitrogen,

Carlsbad, CA, USA) and their quality was assessed using the

Agilent 2100 Bioanalyzer. Libraries for each of the four species

were made from 2 mg RNA using the TruSeq RNA Sample

Preparation Kit (Illumina, San Diego, CA, USA). Libraries were

sequenced on the Illumina HiSeq 2000 to obtain paired-end, 50-

bp-long reads. Approximately 2 Gbp of sequence data was

generated per library.

Assembly
Transcriptome assembly was carried out using the internal

pipeline BPA1.0 (Batch Parallel Assembly version 1.0) of the

National Center for Genome Resources. Sequence reads were

preprocessed using SGA [37] for quality trimming (swinging

average) at Q15. Reads shorter than 25 nucleotides (nt) after

trimming were discarded. Preprocessed sequence reads were

assembled into contigs with ABySS v. 1.3.0 [38], using 20 unique

kmers between k = 26 and k = 50. ABySS was run requiring a

minimum kmer coverage of 5, and bubble popping at .0.9

branch identity with the scaffolding flag enabled to maintain

contiguity for divergent branching. Paired-end scaffolding was

performed on each kmer. Sequence read pairing information was

used in GapCloser v. 1.10 as part of the SOAP de novo package

[39] to walk in on gaps created during scaffolding in each

individual kmer assembly. Contigs from all gap-closed kmer

assemblies were combined. The OLC (overlap layout consensus)

assembler miraEST [40] was used to identify minimum 100 base

pair overlaps between the contigs and assemble larger contigs,

while collapsing redundancies. BWA [41] was used to align

sequence reads back to the contigs. Alignments were processed by

SAMtools mpileup (http://samtools.sourceforge.net) to generate

consensus nucleotide calls at positions where IUPAC bases were

introduced by miraEST [40], and read composition showed a

predominance of a single base. In an attempt to remove

incomplete sequences, the consensus contigs were filtered at a

minimum length of 150 nt to produce the final set of contigs.

Sequences are available in the CAMERA Portal (http://camera.

calit2.net/mmetsp/list.php [42]) under the unique MMETSP

identifiers included in Table 1.

Prediction of coding regions and elimination of food
transcripts

DNA coding sequences (CDS) and the corresponding amino

acid sequences (AAS) were predicted using ESTScan [43,44].

Resulting CDS and AAS numbers were slightly different given the

different length cut-offs used for each dataset (150 nt vs. 30 aa,

respectively). A Bacillariophyta scoring matrix was used based on

availability of well-annotated mRNA entries in NCBI RefSeq.

Illumina sequence reads were aligned back to the nucleotide motifs

of the assembled contigs and predicted CDS using BWA [41] to

assess assembly quality.

Transcriptomes of Mixotrophic and Heterotrophic Ciliates
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Putative algal sequences in the ciliate data were identified with

BLASTN [45] using the food algae transcripts as reference

database and an E-value of 1026 as cut-off. Sequences with a

significant hit were removed from the ciliate datasets using custom

scripts.

Sequence homology
Ciliate AAS datasets were contrasted with OrthoMCL using

default settings [46]. First, all-against-all BLASTP searches (E-

value ,1026) were done to identify reciprocal best hits between

species. Then, homologous AAS were grouped and each group

was putatively classified as orthologous (gene families separated by

speciation) or paralogous (gene duplications subsequent to

speciation).

Annotation
Predicted AAS were annotated using Blast2GO [47]. The

NCBI non-redundant NR database and an E-value cut-off of 1026

were used for BLASTP [45]. Annotated Gene Ontology (GO)

terms were complemented with results from InterProScan and

associated KEGG pathways were retrieved. In addition to

Blast2GO, AAS characterization was done also with the more

sensitive method HMMER3 [48] against the Pfam-A [49],

TIGRFAM [50] and SUPERFAMILY [51] databases. Informa-

tion on proteins of particular interest (e.g. related to photosynthesis

or response to ROS) was retrieved manually from both Blast2GO

and HMMER3 results. This strategy was used also to confirm

absence of certain AAS in Strombidinopsis sp. or algae datasets.

Phylogenetic inferences
For one protein of interest (Nec3, see below), ciliate transcripts

and other amino acid sequences downloaded from NCBI

GenBank were combined and aligned with MUSCLE [52].

Overlapping regions were trimmed resulting in a final alignment

of 225 sites. For phylogenetic inferences, both Neighbor Joining (as

implemented in MEGA [53]) and Maximum Likelihood (RAxML

[54]) analyses were carried on with 1,000 bootstrap replicates. The

evolution model LG with a G model of rate heterogeneity and a

proportion of invariable sites was used as selected by ProtTest

under the Akaike Information Criterion [55].

Results and Discussion

Transcriptome assemblies, filtering of food transcripts,
and ciliate AAS datasets

We sequenced the transcriptomes of two marine planktonic

ciliates, Strombidium rassoulzadegani and Strombidinopsis sp., as well as

their two respective algal foods. The number of Illumina reads and

assembled contigs obtained in this study ranged from ca. 14 to 43

million and 12 to 33 thousand per species, respectively (Table 1).

Half of the total assembled nucleotides were contained in

sequences of 1,300 nt or larger as indicated by N50 values

(minimum size cut-off = 150 nt). The fact that over 80% of

Illumina reads were realigned to these contigs confirms the

adequate quality of the assemblies. However, there are no

reference genomes for any of the ciliates and algae sequenced

and thus we cannot make any conclusions about the completeness

of the transcriptomes. For ciliates, the closest species with a known

genome is Oxytricha trifallax, which belongs to a different subclass

(Stichotrichia) of the Spirotrichea. The genome of this species,

which is fragmented into thousands of nanochromosomes, is about

50 Mb long and is estimated to encode ca. 18,400 genes [56]. This

gene content is within the range of transcripts assembled for S.

rassoulzadegani and Strombidinopsis sp. (Table 1), although it is

unclear how comparable the O. trifallax genome is to those of

Oligotrichia and Choreotrichia species.

Given that oligotrich and choreotrich ciliates cannot be cultured

independently of their food, we had to include a step to eliminate

putative algal transcripts from the ciliate data. Although ciliate

cells were picked individually to avoid contamination, algal 18S

rRNA was detected in the ciliate samples, possibly due to prey

being digested within the ciliates. A total of 7.7% and 24.0% of the

CDS (equivalent to 5% and 6% of Illumina reads) obtained from

S. rassoulzadegani and Strombidinopsis sp. cultures, respectively, were

removed as food transcripts. Analysis of GC content in CDS

indicated that the filtering procedure was successful (Fig. 1A-B).

The frequency distribution of GC content per CDS was identical

between algal transcripts and transcripts eliminated from ciliate

data. In contrast, the distribution of filtered ciliate transcripts

showed distinctive peaks, with maximum frequency of CDS with

60% and 40–50% GC content in S. rassoulzadegani and Strombidi-

nopsis sp., respectively.

We detected 10,015 AAS for S. rassoulzadegani and 7,608 AAS

for Strombidinopsis sp. (Table 1). Using OrthoMCL, 2,279 out of the

Table 1. Transcriptome statistics.

Species Strombidium rassoulzadegani Tetraselmis chuii Strombidinopsis sp. Rhodomonas lens

Sample identifier MMETSP0449 MMETSP0491 MMETSP0463 MMETSP0484

Illumina pair-end reads 24,756,222 13,857,343 43,171,474 21,891,882

Number of contigs 12,163 26,975 24,981 33,177

Number of characters 12,354,690 33,029,773 29,714,767 36,097,100

Contig maximum length 6,635 16,863 14,021 18,919

Contig N50 1,307 1,770 1,589 1,519

Reads realigned to contigs 90% 83% 89% 87%

Predicted CDS 10,562 22,551 8,619 30,293

Predicted AAS 10,825 23,036 9,674 30,802

Food filtered CDS 9,752 - 6,553 -

Food filtered AAS 10,015 - 7,608 -

CDS = DNA coding sequences; AAS = amino acid sequences.
doi:10.1371/journal.pone.0101418.t001
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total 17,623 AAS were identified as reciprocal best hits between

the two species (Fig. 1C). In addition, 1,310 out of 3,150 total AAS

groups were shared between species (orthologous), while the

remaining groups were identified as paralogs within S. rassoulza-

degani or Strombidinopsis sp. (Fig. 1D). Thus, our transcriptome data

indicated only 13% reciprocal best hits pairs and 42% orthologous

groups between the two ciliates.

Strombidium rassoulzadegani and Strombidinopsis sp.
transcriptome annotation

About half of Strombidium rassoulzadegani and Strombidinopsis sp.

transcripts matched previously known sequences. A total of 44%

and 55% predicted AAS (equivalent to 70% and 85% Illumina

reads) had significant BLASTP hits (NCBI non redundant NR

database, E-value ,1026) for S. rassoulzadegani and Strombidinopsis

sp., respectively (Fig. 2). In both cases, the maximum proportion of

hits corresponded to Oxytricha trifallax. Only eight ciliate genomes

have been sequenced so far [57], thus explaining the proportion of

unknown sequences. However, this proportion is relatively low in

comparison to that found for other non-model protist transcrip-

tomes (e.g. 72% unknown sequences for a marine euglenoid [58]).

From the low proportion of our AAS that matched to sequences

from groups other than ciliates, most of them corresponded to

lineages such as amoebozoa and opisthokonts. Less than 0.5% of

hits corresponded to the same lineages as the food algae

(prasinophytes or cryptophytes).

From the AAS with significant BLASTP hits, 40% (S.

rassoulzadegani) and 47% (Strombidinopsis sp.) had a confident

assignment of Gene Ontology (GO) terms, which were retrieved

mostly from the UniProt database. Complementation with

InterProScan results increased annotations by 19% (S. rassoulza-

degani) and 22% (Strombidinopsis sp.). GO terms distribution was

similar between species (Fig. 3), with binding and catalytic activity

as the main molecular functions, cellular and metabolic process as

the main biological processes and nuclear-related structures as the

main cellular components represented in both transcriptomes.

For each ciliate dataset, transcripts were included in 92 KEGG

pathways, 81 of which were present in both species (Table S1).

Most of these pathways corresponded to the metabolism of

carbohydrates, lipids, amino acids, nucleotides, glycan, terpenoids,

and vitamins and cofactors. In addition, some sequences were

related to biosynthesis of secondary metabolites such as some

antibiotics (e.g. streptomycin, neomycin) and degradation of

xenobiotics such as some toxic aromatic hydrocarbons (e.g.

xylene, toluene). A few of the results obtained by automatic

annotations with Blast2GO were unexpected for protists. Some

GO terms (e.g. ‘multicellular organismal process’ or ‘immune

system process’; Fig. 3) may actually represent ancient eukaryotic

genes with broader functions [59]. Similar conclusions may apply

for some KEGG pathways linked to both ciliate datasets (e.g.

‘peptidoglycan biosynthesis’; Table S1).

Figure 1. Comparison of Strombidium rassoulzadegani and
Strombidinopsis sp. transcriptomes. A-B Frequency distribution of
GC content in ciliate transcripts, algal food transcripts, and putative
food transcripts filtered from ciliate data. C- Venn diagram of all-
against-all BLASTP hits between ciliates. D- Venn diagram of
orthologous and paralogous amino acid sequence groups in ciliates.
doi:10.1371/journal.pone.0101418.g001

Figure 2. BLASTP hit distribution in ciliate transcripts. A-
Proportion of amino acid sequences. B- Proportion of Illumina reads
realigned to the corresponding coding regions.
doi:10.1371/journal.pone.0101418.g002
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Transcripts potentially related to kleptoplasty in
Strombidium rassoulzadegani

A kleptoplastic organism engulfs photosynthetic prey and digests

all but their chloroplasts, which remain temporarily functional

despite lacking control from the algal nucleus. Some kleptoplastic

organisms express algal genes involved in chloroplast functioning

and photosynthesis, likely integrated in the host nucleus by

horizontal gene transfer [21,22]. We found transcripts linked to

the GO term ‘plastid’ and the KEGG pathway ‘carbon fixation in

photosynthetic organisms’ in the kleptoplastic Strombidium rassoul-

zadegani, but this was detected in the heterotrophic Strombidinopsis

sp. as well (Fig. 3; Table S1). Specific searches of transcripts

assigned to GO terms ‘plastid’ and ‘photosynthesis’ in both ciliates

(Table S2) indicated that most of those transcripts 1) had a

Figure 3. Gene Ontology terms distribution in ciliate transcripts.
doi:10.1371/journal.pone.0101418.g003
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significant BLASTP hit with O. trifallax or other non-photosyn-

thetic organisms and/or 2) are not clearly specific to plastids or

photosynthesis according to their GO terms descriptions and

associated KEGG pathways. Thus, most of these transcripts

probably have more general functions. Apart from not providing

data on chloroplast functioning in S. rassoulzadegani, some of these

sequences may correspond to the ,0.5% potential food transcripts

not filtered from the ciliate data (see above), especially the few of

them that had significant BLASTP hits with the same lineages as

the algal prey (Table S2).

Alternative explanations for kleptoplasty include that retained

chloroplasts are simply stable and thus remain functional for some

time [23,24] or that they are transcriptionally active and can

regulate themselves inside the host. The methods used in this study

prevent us from discriminating if chloroplast genes from the food

alga are expressed in S. rassoulzadegani. If this is the case, chloroplast

genes expressed within the ciliate may have been removed by poly-

A selection during library preparation and/or by filtering

sequences that matched with algal transcripts in BLASTN

searches. Similar to our results, transcriptome data on a

kleptoplastic foraminiferan were also unable to provide informa-

tion on genes potentially related to chloroplast functioning in the

host [24]. Thus, this approach may be insufficient to explain the

mechanics of kleptoplasty in some organisms.

ROS detoxification in Strombidium rassoulzadegani and
Strombidinopsis sp.

Both under normal physiological conditions and as a response

to oxidative stress, autotrophic and heterotrophic cells have

enzymatic and non-enzymatic mechanisms to control ROS

concentrations [25,26,28]. We found evidence for these pathways

in the transcriptomes of Strombidium rassoulzadegani and Strombidi-

nopsis sp. (Fig. 4, Tables S3 and S4). In this case, transcripts were

clearly linked to known antioxidant enzymes and most of them

had highly significant BLASTP hits against ciliates or other non-

photosynthetic organisms, thus minimizing the possibility that

these genes belong to the food algae (Tables S3 and S4). Although

we show simplified antioxidant pathways, these mechanisms are

usually interrelated by reciprocal control and each of them has a

higher activity in a certain cell compartment or against a certain

oxidant, including ROS, lipid peroxides and reactive nitrogen

species [29].

Superoxide dismutase, catalase and peroxidases, the major

enzymes that directly modulate ROS, were detected in the

transcriptomes of both S. rassoulzadegani and Strombidinopsis sp.

(Fig. 4, Table S3). Superoxide dismutase (SOD) reduces superox-

ide radicals to hydrogen peroxide and it exists in two forms in both

ciliates: Cu/Zn SOD and Fe/Mn SOD (cytosolic and mitochon-

drial forms, respectively, in higher eukaryotes [60]). Catalase and

peroxidases reduce hydrogen peroxide to water, the latter using

non-enzymatic antioxidants as electron donors [25]. Ascorbate

peroxidase (APX), glutathione peroxidase (GPX) and thioredoxin

peroxidase (TPX) oxidize ascorbic acid (AsA), glutathione (GSH)

and thioredoxin (Trx), respectively, in order to reduce hydrogen

peroxide [61,62]. Catalase, APX, GPX and TPX sequences were

found in both ciliates. The multiple sequences detected for each

enzyme may correspond to isoforms with different cell localiza-

tions, as known for example for APX and GPX in algae and plants

[63]. They may also correspond to mRNA precursors, which are

usually difficult to distinguish in RNAseq data [64]. An additional

cause for these multiple sequences may be inability to condense

some similar transcripts during the assembly.

Among non-enzymatic antioxidants, GSH is a tri-peptide that

can be synthetized and recycled in both ciliates, according to the

transcriptome data (Fig. 4, Table S4). Similarly, transcripts for the

protein Trx and its recycling enzyme were found in both species.

In contrast, transcripts related to the synthesis of AsA or other

antioxidants found in plants and algae, such as carotenoids and

tocopherols [65], were not detected in the ciliates.

Interestingly, we found evidence for a group of enzymes that

can recycle AsA (nectarin-3-like enzymes, Nec3) in S. rassoulzade-

gani but not in Strombidinopsis sp. (Fig. 4, Table S4). Nec3 has

monodehydroascorbate reductase (MDAR) activity, i.e. it trans-

forms the oxidized form of AsA back to its reduced form, thus

providing the advantage of keeping constant levels of AsA without

the necessity of a constant supply [66–70]. Although AsA can also

be recycled spontaneously or through a cycle that involves GSH

(the AsA-GSH cycle), it is more rapidly regenerated by MDAR

activity [29]. Therefore, Nec3 may help S. rassoulzadegani to

maintain high pools of AsA, which is important both as anti-

oxidant and as cofactor and regulator during photosynthesis [29].

Phylogenetic inferences showed that Nec3 from S. rassoulzadegani

clustered with sequences from other non-photosynthetic organisms

(the ciliate Oxytricha trifallax, one fungus and two animals) and

formed a group apart from those of plants, although there are no

sequences available for algae (Fig. S1). These preliminary results

suggest that 1) Nec3 belongs to the ciliate and not the food alga,

and 2) there is no evolutionary link between S. rassoulzadegani and

photosynthetic organisms regarding Nec3. In this context,

clarifying the origin and role of Nec3 in S. rassoulzadegani and its

potential role in mixotrophy deserves further experimentation.

ROS detoxification occurs in several parts of the eukaryotic cell.

In both heterotrophic and autotrophic cells these mechanisms act

in the cytosol, in mitochondria and, in many eukaryotes, also in

peroxisomes. Peroxisome presence has a patchy distribution

among ciliates and other protist taxa [71] and they have not

been observed in oligotrichs or choreotrichs to our knowledge, but

we detected sequences related to this organelle in our data (Fig. 3).

In autotrophs, enzymes such as SOD, APX and GPX scavenge

ROS also in the chloroplast and they are key in order to keep this

organelle active [29,63,72]. However, these enzymes are nuclear

encoded [60,73] and, even if they initially exist in kleptochlor-

oplasts of S. rassoulzadegani, their activity is very likely lost after

some time (Fig. 4). Inactivation of chloroplast antioxidant enzymes

is known to limit photosynthetic efficiency [74]. Thus, oxidative

damage may contribute to the lack of kleptochloroplast function-

ality and the fact that a continuous supply of fresh chloroplasts is

needed for the growth of S. rassoulzadegani [15].

Conclusions

We used RNAseq to characterize the transcriptomes of two

non-model microbial eukaryotes. This approach provided infor-

mation about genes with known functions as well as multiple

potentially novel genes. We experienced the typical challenges of

studying non-model organisms and using automatic annotation

tools that do not detect the whole spectrum of protist physiological

features. Limitations such as unknown levels of genome coverage,

high proportion of sequences not similar to those available in

databases, and annotations not compatible with protist biology

have been common in this kind of study so far. Additional effort

was required for sequencing and filtering food transcripts, given

that the ciliates under study cannot be cultured independent of

their prey.

The transcriptomes of Strombidium rassoulzadegani and Strombidi-

nopsis sp. provide baselines for analyzing ciliate metabolism,

ecological roles in the planktonic food web and relationships with

the environment. Our observations are noteworthy in two ways.
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First, we analyzed the first transcriptomes from oligotrichs and

choreotrichs, which are the most diverse and abundant ciliates

in marine plankton. Second, the species we chose practice two

contrasting nutritional modes, heterotrophy and mixotrophy,

and hence have somewhat different ecological roles. Although

the transcriptomes differed in general features such as GC

content distribution and had a homology lower than 50%, they

provided similar annotations for GO terms and KEGG

pathways, which were related mostly to housekeeping activity.

As more ciliate reference genomes become available, we expect

that more pathways, including novel ones, will be revealed in

the data.

Transcriptome information alone provided limited insights on

genes related to mixotrophy. We did not find transcripts clearly

related to the maintenance and functioning of retained chloro-

plasts in S. rassoulzadegani and we identified very similar antioxidant

mechanisms in both mixotrophic and heterotrophic ciliates. The

relevance of one enzyme potentially related to ascorbate recycling

in the mixotroph as well as the potential differences in regulation

and expression levels of all the identified genes require future

experimentation in order to understand the implications of

antioxidant pathways for physiology and evolution of mixotrophs.
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Figure 4. Hypothetical pathways for reactive oxygen species (ROS) detoxification. Pathways evidenced in both ciliates (white background)
or only in Strombidium rassoulzadegani (yellow background) are shown. In red, ROS (O2

- = superoxide radical; H2O2 = hydrogen peroxide); in dark
blue, antioxidant enzymes (SOD = superoxide dismutase; Cat = catalase; APX = ascorbate peroxidase; GPX = glutathione peroxidase; TPX =
thioredoxin peroxidase); in light blue, enzymes involved in metabolism of non-enzymatic antioxidants (Nec3 = bifunctional monodehydroascorbate
reductase/carbonic anhydrase nectarin-3-like; TRed = thioredoxin reductase; GRed = glutathione reductase; GSyn = GSH synthetase; GCLig =
Glutamate-cysteine ligase); in green, non-enzymatic antioxidants (AsA = ascorbic acid; GSH = glutathione; Trx = thioredoxin). MDAs =
monodehydroascorbate; GSSG = glutathione disulfide; TrxS2 = thioredoxin disulfide; NAD(P)+ = nicotinamide adenine dinucleotide (phosphate).
Based on literature [61,63,75].
doi:10.1371/journal.pone.0101418.g004
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