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Abstract

Objective: To demonstrate the application of causal inference methods to observational data in the obstetrics and
gynecology field, particularly causal modeling and semi-parametric estimation.

Background: Human immunodeficiency virus (HIV)-positive women are at increased risk for cervical cancer and its treatable
precursors. Determining whether potential risk factors such as hormonal contraception are true causes is critical for
informing public health strategies as longevity increases among HIV-positive women in developing countries.

Methods: We developed a causal model of the factors related to combined oral contraceptive (COC) use and cervical
intraepithelial neoplasia 2 or greater (CIN2+) and modified the model to fit the observed data, drawn from women in a
cervical cancer screening program at HIV clinics in Kenya. Assumptions required for substantiation of a causal relationship
were assessed. We estimated the population-level association using semi-parametric methods: g-computation, inverse
probability of treatment weighting, and targeted maximum likelihood estimation.

Results: We identified 2 plausible causal paths from COC use to CIN2+: via HPV infection and via increased disease
progression. Study data enabled estimation of the latter only with strong assumptions of no unmeasured confounding. Of
2,519 women under 50 screened per protocol, 219 (8.7%) were diagnosed with CIN2+. Marginal modeling suggested a 2.9%
(95% confidence interval 0.1%, 6.9%) increase in prevalence of CIN2+ if all women under 50 were exposed to COC; the
significance of this association was sensitive to method of estimation and exposure misclassification.

Conclusion: Use of causal modeling enabled clear representation of the causal relationship of interest and the assumptions
required to estimate that relationship from the observed data. Semi-parametric estimation methods provided flexibility and
reduced reliance on correct model form. Although selected results suggest an increased prevalence of CIN2+ associated
with COC, evidence is insufficient to conclude causality. Priority areas for future studies to better satisfy causal criteria are
identified.
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Introduction

Cervical cancer is the third most common cancer among

women worldwide; 85% of the global burden is in developing

countries [1]. An important, unanswered question in the field of

cervical cancer prevention is whether use of combined oral

contraceptives (COC) – pills that contain both estrogen and

progesterone - increases cervical cancer risk [2,3]. While the risk of

many other cancers is lower in COC users than non-users, cervical

cancer rates are generally higher among COC users in observa-

tional studies [4]. Systematic reviews of observational epidemio-

logic studies have found an association between cervical cancer

risk and use of COC, particularly for increasing duration of COC

use and for current and recent use rather than use in the distant

past [2,5]. The International Agency for Research on Cancer has

named COC a carcinogen in part because of the relationship

between COC and cervical cancer [6].

Hypotheses of a biologic basis for this association include a

relationship between COCs and increased vulnerability to human

papillomavirus (HPV) infection, with or without subsequent
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promotion of abnormal cell proliferation. Existing studies do not

show a difference in HPV prevalence between COC users and

non-users [7]. However, animal models and in vitro studies suggest

that estrogen and progestin could affect gene expression of HPV to

stimulate cell proliferation in the human cervix [6]. Evidence is

suggestive but by no means conclusive of a causal relationship: the

observed association may be a result of confounding due to

behavioral factors, particularly reduced use of barrier protection

among women choosing COC. Risk factors for cervical cancer

include poverty, family history, early age at first pregnancy, and

having 3 or more full-term pregnancies [8]; the complex interplay

of biological factors and interconnected behavioral factors such as

contraceptive use and pregnancy outcomes renders the isolation of

a causal link from COC use to cervical cancer especially

challenging.

Identifying an increased risk due to COC is particularly

important in HIV-positive women, who experience higher

incidence of cervical cancer and its precursors [9–11], due in part

to immunosuppression reducing clearance of HPV [12]. HIV is

associated with a younger age of cancer onset and increased

disease progression, including invasive cancer; this association is

increasingly apparent in developing countries as highly active

antiretroviral therapy (HAART) extends survival among HIV

positive individuals [13]. The balance between the known risks of

unintended pregnancy and potential increased risks of contracep-

tive use may differ in settings of high HIV prevalence. The

existence of a causal relationship between hormonal contracep-

tion, especially injectable contraception, and HIV acquisition and

progression is an ongoing debate of great public health importance

[14]. Examining the outcome of cervical cancer may practically

contribute to the scientific debate about the use of COCs in areas

with high HIV prevalence.

In this instance as in many others, even the best existing data for

distinguishing cause from association are observational. Develop-

ments in the field of causal inference [15]. particularly the

counterfactual framework, use of directed acyclic graphs (DAGs)

for modeling causal structures, and semi-parametric estimation

approaches strengthen our capacity to disentangle the complex

relationship between sexual behavior, concurrent method use, and

other demographic characteristics. In this paper, we demonstrate

the use of the counterfactual framework and DAGs to frame

causal questions, and we apply 3 semi-parametric estimation tools:

g computation, inverse probability of treatment weighting (IPTW),

and targeted maximum likelihood estimation (TMLE). The formal

language of counterfactuals enables definition of the ideal

experiment: observation of the outcome in the same individuals

in an exposed and an unexposed state, with all else held constant.

Framing the question in this way focuses attention on: a) the

primary exposure, such as the timing and duration of COC of

interest, b) the precise levels exposure might take between groups

being compared, including whether women who have never used

COC are an appropriate comparison, and c) the type and

measurement of the outcome, in this case cervical intraepithelial

neoplasia grades 2 and higher (CIN2+) [16]. Posing the question of

interest in the language of counterfactuals sets the framework for

identification of the particular target parameter of interest,

whether that might be incidence or prevalence, risk or rate. A

motivating interest in disease etiology, as in this case on the causes

of CIN2+, suggest a parameter on the additive scale, such as a risk

difference or prevalence difference [17]. DAGs visually represent

causal relationships and enable the identification of confounders

based on established rules; in particular, use of DAGs can reduce

the number of variables required for control of confounding to a

minimally sufficient set. Figure S1 provides an overview of reading

and manipulating DAGs; for a full introduction, see references

[18–20]. By making explicit the hypothesized relationships of

measured and unmeasured covariates to exposure and outcome,

DAGs support the assessment of identifiability: whether the target

parameter of interest can be validly estimated given the measured

confounders. To understand the relationship of COC use and

CIN2+, we assess if sufficient confounders are measured to

interpret the estimated association as a causal effect.

The definition of a clear causal question and identification of a

set of confounders sufficient to isolate the effect of interest (or of

the best possible set of observed confounders and the resulting

assumptions regarding unmeasured confounding) set the frame-

work for estimation, whether with standard regression or more

novel approaches. A range of estimation methods have been

developed that enable calculation of average population-level

effects with control for confounding and robust inference [21–23].

Many such tools incorporate model selection via automated

algorithms that rely on cross-validation to prevent model over-

fitting [24]. Models developed through these procedures reduce

risk of bias due to incorrect model form. For this question, the

association of COC use and CIN2+ among HIV positive women,

appropriate analysis entails correctly modeling a range of

biological and behavioral covariates. Factors such as CD4+ cell

count and age, among others, are likely to relate to the outcome in

a non-linear fashion; including them in a model using the incorrect

form can bias the results while using successive model selection

undermines valid inference. Automated model selection coupled

with theoretically grounded inference provides a rigorous alterna-

tive to accommodating such analytic complexity [25].

Despite the conceptual strength and analytic flexibility of these

tools, the insights and methods from the causal inference literature

are just beginning to appear in routine clinical epidemiologic

practice (e.g. reference [26]). We illustrate the use of the

counterfactual framework, DAGs, and semi-parametric estimation

methods in addressing the question: what is the effect of using

hormonal contraceptives on the development of CIN2+ among

women with HIV? Applying these tools to an observational dataset

demonstrates their utility in providing the least biased estimate

possible from the available data and, should that estimate not

plausibly represent a causal effect due to remaining bias,

illuminating specific gaps to address in future studies.

Methods

Ethics statement
The Kenya Medical Research Institute and the University of

California, San Francisco institutional review boards provided

ethical approval for analysis of this program dataset. Participants

did not provide written consent for inclusion in this specific

analysis; all patient records were anonymized and de-identified.

Causal model
Applying the counterfactual framework, we defined the quantity

of interest to be the difference in prevalence of CIN2+ due to any

exposure to COC compared to no exposure. Alternative questions

of interest could incorporate duration and recency of exposure,

which have been shown to modify the magnitude of risk [27]. In

the absence of scientific consensus on the latent period of CIN2+
in HIV positive women, the step(s) in the oncogenic pathway that

are affected by COC use, and the minimum dose and maximum

time since use of COC that could result in CIN2+, we elected to

use a broad definition of exposure. We developed a DAG by 1)

identifying covariates related to COC (exposure) or CIN2+
(outcome), 2) placing these variables in a plausible temporal
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order, and 3) denoting remaining uncertainty with a node (i.e.

variable) labeled ‘U’ for unknown. For example, educational

attainment may influence COC use; education serves as a proxy

for poverty, which potentially increases CIN2+ risk. Education

predates sexual partnership status in this adult population.

Uncertainty remains in the relationship of COC to CIN2+ after

accounting for education and the other named variables.

We updated the full causal model to reflect the variables

measured in the observed data. We subsequently assessed whether

the causal relationship of interest could be isolated from the effect

of third variables using the measured covariates only by applying

the backdoor criterion to identify potential confounding (see

Figure S1). The backdoor criterion is equivalent to stating that

investigators have identified and measured all common causes of

the exposure and outcome as well as of either 1) confounders and

exposure or 2) confounders and outcome [20]. If the backdoor

criterion holds, controlling for the set of variables that fulfill it

enables estimation of a causal effect: confounding can be

controlled such that the causal effect is identifiable, a term

meaning it is possible to estimate directly from the observed data.

Data
Data were drawn from a cervical cancer screening program

within an HIV care and treatment program in Kisumu, Kenya.

Full program procedures and results have been described

elsewhere [28]. Women were screened using visual inspection

with acetic acid (VIA) alone or in combination with visual

inspection with Lugol’s iodine (VILI). Positive screening (positive

VIA or positive VIA and positive VILI) led to colposcopy and

subsequent biopsy to determine treatment. Because only those

screening positive could be definitively diagnosed and the

adequacy of VIA declines with advancing age [29], only women

under 50 were eligible for inclusion in this analysis. All other study

data, including clinical and demographic covariates, were drawn

from electronic medical records at the HIV clinics and spanned

the duration of the individual’s enrollment in care; average visit

frequency is every 3 months. COC ever-use was defined as

reporting oral contraceptive use at any clinic visit prior to cervical

cancer screening. Additional covariates extracted from patient

data included age, educational attainment, marital status, gravid-

ity, CD4+ cell count nadir, and initiation of highly active

antiretroviral therapy (HAART). Missing covariates were imputed

using chained multiple imputation [30] to create 10 datasets;

estimates were combined across datasets using Rubin’s rule. The

validity of multiple imputation rests on the assumption of

missingness at random (MAR), i.e. that the probability of a

variable being observed is random conditional on covariates

included in the imputation [30]. MAR is plausible in this context:

the primary causes of missing data relate to evolving data quality

assurance practices at each site and over time, both of which were

accounted for in the imputation.

Estimation
We implemented 3 methods to estimate the excess prevalence of

CIN2+ associated with exposure to COC. Simple substitution (g

computation) can be based in parametric regression; it estimates

the counterfactual outcome for each observation conditional on

covariates to enable the calculation of the population-level

difference in prevalence under 2 exposure levels [31]. We fit a

logistic regression of CIN2+ on COC, controlling for the

covariates identified in the final causal model; we report regression

results for comparison to traditional analysis. COC exposure was

subsequently set to 1 for the full sample and individual outcomes

predicted; repeating this with COC set to 0 provided the

population-level prevalence difference. IPTW addresses confound-

ing by modeling the probability of observed exposure status for

each individual and weighting observations by the inverse of this

probability in an effort to mimic the population that would have

been observed if exposure were randomized [21,32]. For example,

a woman whose age, partner status, and pregnancy history make it

unlikely that she would take COC (based on the data) but who

actually was exposed would be up-weighted substantially. We fit a

data adaptive model of COC exposure given covariates, predicted

each individual’s probability of exposure from the model, and

stabilized the estimated weight by the overall probability of being

exposed or unexposed. The difference in prevalence between the

weighted populations provided the target parameter estimate.

TMLE is a more complex method that regresses the outcome on

exposure and covariates and then updates this initial estimate

using the probability of exposure given covariates to reduce bias

for the target parameter [25,33]. We fit data-adaptive models for

both outcome and exposure within TMLE. All analyses were

performed in R 3.0 using the TMLE and SuperLearner [24,34]

packages as well as code available from the authors on request.

We implemented each approach for the full dataset and

sensitivity analyses restricted to individuals with at least 6 months

of observed data and reported COC use at greater than 20% of

patient visits. Variance estimates were obtained through bootstrap

sampling (200 iterations for each imputed dataset) for g

computation and IPTW and from the variance of the influence

curve for TMLE. Finally, we assessed potential violations of the

positivity assumption (i.e. that there is a non-zero probability of

each exposure level for all covariate combinations) by inspecting

the distribution of exposure within covariate categories and the

symmetry of bootstrap estimates.

Results

Causal model
Figure 1 shows the hypothesized full causal model, showing 2

time points (0, 1), although the relationships shown would iterate

over time. The figure includes a translation of the visual DAG

presentation into a structural causal model [35] (SCM) using

equations; SCMs can be particularly valuable in presenting

complex models such as this one. The U node represents unknown

causes of all other nodes on the DAG; this can include random

chance as well as causal factors. Each connection (path) on the

graph represents a potential causal link; any excluded path is a

strong assumption of no causal relationship. Representing nodes at

multiple time points enables clear depiction of variables that

repeatedly affect each other, such as COC use and gravidity.

Separating time points in this way ensures that all paths in the

model are unidirectional, thus removing potential concerns of

reverse causation. We present 2 causal pathways between COC

and CIN2+. One, via HPV, represents increased vulnerability to

HPV infection. The second, chronologically after HPV infection

and oncogenic transformation, depicts enhanced growth of

abnormal cells in the presence of COC. Given the complexity of

the model, excluded paths can be more clearly read from the SCM

equations than the DAG. Briefly, the basis for each exclusion

restriction is as follows. We exclude HPV as a cause of subsequent

immune status and HAART use due to lack of biological evidence

that HPV affects serum CD4+ cell count and hence HIV

treatment decisions. We further exclude HPV as a cause of

subsequent sexual partnership, COC use, condom use, and

gravidity, as undiagnosed HPV infection would be unlikely to

affect behavior, and HPV infection prior to development of CIN

has not been shown to affect fertility [36]. We assert that COC use

Application of Causal Modeling to Cervical Cancer Risk
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and condom use do not cause HAART use as in this setting

prescription of HAART is based on CD4+ cell count and presence

of opportunistic infections, neither of which is likely to be affected

by COC or condom use. Finally, we remove paths from education,

sexual partnerships, COC use at time 0, condom use, HIV, and

HAART to CIN2+. Many of these variables are indirect causes of

CIN2+ through intermediate variables such as HPV or immune

status; we suggest there is no direct connection outside of the

mediating variables. For example, condom use can cause CIN2+
only via HPV in this model. Aside from these exclusions, all other

time-ordered connections are considered plausible and are

included in the full causal model.

Laying out the causal structure clarifies a key decision point: can

both paths from COC to CIN2+ be estimated? Limitations in the

data prevented us from assessing exposure and covariates prior to

disease initiation; therefore we focused on the pathway from COC

use during HIV care to disease progression and simplified the

model to depict the causal process leading to prevalence of CIN2+
at a single point in time.

In addition, the conceptual model has implications for covariate

selection in estimation. Lifetime pregnancy experience is a time-

dependent confounder; lacking longitudinal data, we chose to

control for gravidity at enrollment in HIV care (gravidity at

time = 1) as a proxy of past gravidity. In contrast, we did not

control for recent condom use as it is not itself a confounder and is

likely to have substantially more variability as a proxy for past

condom use than baseline gravidity does for prior pregnancy

experience. HIV treatment is a confounder; however it does not

have to be part of a sufficient set of confounders if immune status is

controlled for as a confounder. These decisions enabled us to

considerably simplify the model, condensing all remaining

confounders (age, educational attainment, marital status, gravidity,

and immunosuppression) into a single node W and collapsing all

unmeasured variability into the U node (Figure 2).

Identifiability
The identifiability assumptions for the result to be a consistent

estimate of the true causal relationship imply that all common

causes of COC and CIN2+ must be measured; this is clearly

violated given unmeasured covariates such as past COC use. Of

the other 2 assumptions, unmeasured common causes of COC use

and confounders are likely to exist, such as pregnancy intention for

COC and gravidity. It is more plausible to assume that common

Figure 1. Full causal model in directed acyclic graph and structural causal model forms. Proposed causal model in equivalent graph and
formula forms of the relationship between contraception use and cervical pre-cancer over 2 time points. DAG: directed acyclic graph; SCM: structural
causal model; SP: sexual partnership; COC: combined oral contraception; HAART: highly active antiretroviral therapy; CIN2+: cervical intraepithelial
neoplasia grades II and above; HIV: human immunodeficiency virus; HPV: human papilloma virus; U: unknown.
doi:10.1371/journal.pone.0101090.g001

Application of Causal Modeling to Cervical Cancer Risk

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e101090



causes of the confounders and CIN2+ are all measured, although

data on duration of HIV for instance would strengthen this

assumption. Nonetheless, this assumption alone is insufficient to

infer causality. In sum, the identifiability assumptions are not met

in these observed data, meaning that the estimate from these data

will be confounded relative to the causal effect.

Estimation
Of the 2519 women screened and eligible for inclusion, 219

were diagnosed with CIN2+; 89 of these cases were among 890

COC ever-users (10.00% prevalence) vs. 130 cases among 1629

non-users (7.98% prevalence). Regression analysis indicates the

odds of CIN2+ are 1.35 times greater among ever-users of COC

(95% CI 0.99, 1.85) than non-users after controlling for covariates.

The g computation results suggest an adjusted prevalence

difference of 2.5% (95% CI 20.2, 5.1) associated with ever using

COC; estimates from IPTW and TMLE are slightly higher at

2.9%, and the confidence intervals around these estimates exclude

0 (Table 1). The consistency of the estimates suggests minimal

model mis-specification from the use of a parametric model in the

g computation estimate.

Table 1 and Figure 3 also show the sensitivity analysis results,

which are less consistent; each estimate is smaller than the main

analysis and none is statistically significant. Although there is no

reason to believe exposure is a theoretical impossibility within any

combination of covariate values, review of the data show practical

positivity violations, such as that there are no women with greater

than a secondary education who are unmarried, nulliparous, and

use COC. However, the mean and quantile-based variance of the

bootstrap samples in Table 1 show that these samples are

reasonably symmetric and centered around the original estimate,

indicating that the impact of near positivity violations is likely to be

minimal. To draw valid inference despite missing data, we would

need to restrict the target population to those represented in the

sample or assume the observed association can be extrapolated to

the unobserved groups [38].

Discussion

The application of DAGs and semi-parametric estimation to the

question of whether COC use increases the risk of cervical cancer

among women with HIV demonstrates the conceptual and

analytic benefits of a causal inference approach to observational

data. Broader use of such tools can strengthen the quality of

evidence considered for pressing public health questions by

clarifying the question of interest, identifying critical variables

required to estimate a causal quantity, and ensuring that

estimation returns the quantity of interest without undue reliance

on parametric model assumptions. In this example, over 35% of

women in HIV care reported use of COC, a critical element of

women’s control of their reproduction that may be a carcinogen.

Valid evidence of harm is required to implement sound public

health policies for this vulnerable population. The causal model

proposed for this research question codified the beliefs and

hypotheses framing the analysis in a legible form that can be

challenged and modified by other investigators. Further, the

decisions made in developing that model have direct implications

for the analysis: we did not control for covariates such as HAART

status and condom use despite the fact that on first inspection they

could be considered as confounders. DAGs provide more specific

guidance for confounder inclusion than conceptual definitions of

confounders alone and render visible the thought process behind

inclusion and exclusion of covariates [18,39]. In other examples,

the full causal model may reveal multiple sufficient sets of

confounders, enabling investigators to select based on pragmatic

considerations of data collection and analysis.

DAGs elucidate the assumptions required for a causal effect to

be estimable in observational data. Such guidance is particularly

relevant for questions such as this that relate to complex and time-

dependent interrelationships between behavior and biology. In this

case, although 2 of the estimation methods employed suggest a

statistically significant increase in prevalence of CIN2+ associated

with ever using COC among HIV-positive women under 50 in

Kenya, the identifying assumptions required to interpret this result

as indicative of a causal relationship are untenable. They include:

no reverse causation between exposure and covariates selected for

control; no remaining common causes of recent COC use and

CIN2+ following control for age, education, marital status,

gravidity, and CD4+ cell count nadir; and no remaining causes

of either COC and the confounders or CIN2+ and the

Figure 2. Reduced directed acyclic graph. Causal model reflecting
observed data structure and assumptions required. COC: combined oral
contraception; CIN2+: cervical intraepithelial neoplasia grades II and
above.
doi:10.1371/journal.pone.0101090.g002

Table 1. Adjusted prevalence difference in CIN2+ between COC users and non-users.

G computation
Inverse probability of
treatment weighting

Targeted maximum likelihood
estimation

Main analysis

Estimate (95% CI) 0.025 (20.002, 0.051) 0.029 (0.003, 0.056) 0.029 (0.001, 0.058)

Bootstrap mean (quantile-based 95% CI) 0.026 (0.001, 0.052) 0.030 (0.005, 0.055) 0.037 (0.008, 0.066)

Sensitivity analysis

Estimate (95% CI) 0.003 (20.032, 0.038) 0.019 (20.018, 0.056) 0.022 (20.028, 0.072)

Bootstrap mean (quantile-based 95% CI) 0.003 (20.030, 0.036) 0.011 (20.022, 0.045) 0.021 (20.024, 0.076)

doi:10.1371/journal.pone.0101090.t001
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confounders. Specific unmeasured covariates such as past sexual

behavior render key assumptions implausible. It is possible to

postulate the direction of bias due to individual confounders: for

example, multiple sexual partnerships would positively confound

the relationship between COC and CIN2+ due to its positive

association with each. However, the number of unmeasured or

unknown covariates makes estimating their joint impact difficult

and beyond the scope of this analysis (see reference [37] for

discussion of multivariate bias analysis).

Consideration of identifiability also guides prioritization of

future data collection: it may be easier to satisfy the assumption

that all common causes of the outcome and covariates are

measured, making it unnecessary to also measure all common

causes of exposure and covariates. The granularity of causal

assumption checking provides guidance for future research studies.

In this application, collection of longitudinal or retrospective data

on COC use is critical to isolating causal pathways of interest.

More refined data on COC use would also address bias due to

exposure misclassification in this analysis, which appears likely

based on the change in results seen in the sensitivity analysis using

a stricter classification of exposure. In addition, collecting data on

covariates such as duration of HIV may be more useful than

quantifying challenging constructs such as pregnancy intentions

over time in terms of satisfying the assumptions to infer causality

from observed data.

The 3 semi-parametric estimation approaches presented are a

natural extension of the conceptual approach. In comparison to a

traditional regression, which provides a prevalence odds ratio

conditional on covariates, the tools applied enable estimation of a

quantity of key public health interest: how much the prevalence of

CIN2+ would change if COC use were halted or if family planning

programs and contraceptive use achieved a wider coverage among

HIV-infected women. These approaches provide the single

quantity of interest defined in the causal model. In contrast,

multivariate regression returns coefficients for the exposure of

interest and for confounders; the latter can be misinterpreted as

representing causal relationships [40]. Further, although g

computation, IPTW, and TMLE can be fit using parametric

regression models, an additional benefit is the potential to combine

them with model fitting procedures to reduce bias. G computation

is vulnerable to bias if the model for the outcome is incorrect,

while IPTW requires the treatment mechanism be correct. TMLE

is consistent if either the treatment mechanism or outcome

expectation is correctly estimated and provides theoretically valid

variance estimates even when employing automated model fitting.

It can be implemented using standard software to reduce the

dependence of estimates on model form. The availability of

multiple estimation options permits selection of the tool that may

be best supported by the observed data, such as IPTW if

estimation of the process leading to exposure is considered more

reliable than estimation of the outcome or TMLE in the case

where either exposure or outcome estimation is thought to be

consistent. Although not applied here, extensions of these methods

enable estimation of more flexible and realistic parameters, such as

the effect on CIN2+ prevalence if 50% of women used COC or

only those women with high CD4+ count used COC [41].

Taking a structured approach to developing a causal question is

a core practice of public health researchers; the particular

approach demonstrated here provides a systematic and transpar-

ent method for framing the question, depicting assumptions

transparently, estimating the parameter, and drawing inference.

Application of causal inference methods such as these can enrich

Figure 3. Difference in CIN2+ prevalence associated with COC. Predicted percent difference in prevalence of CIN2+ if all women were
exposed to COC using 3 semi-parametric estimation methods. G comp: G computation; IPTW: Inverse probability of treatment weighting; TMLE:
targeted maximum likelihood estimation; COC: combined oral contraception; CIN2+: cervical intraepithelial neoplasia grades II and above.
doi:10.1371/journal.pone.0101090.g003
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observational epidemiologic studies by improving the clarity of

communication around causal hypotheses, providing theory-

driven guidance on confounder selection, and matching the

estimation method to the question of interest without undue

reliance on correct model specification. Determining whether

COC use may increase cervical cancer risk is critically important,

particularly given that the approximately 17 million women

currently living with HIV [42,43] may face an elevated baseline

risk of cervical cancer. Utilizing a causal framework and analytic

methods can provide clear guidance on the remaining research

gaps that must be addressed to answer this question, and many

others.

Supporting Information

Figure S1 Reading directed acyclic graphs. An estimate will

reflect a true causal relationship (be unconfounded) if a set of

measured variables fulfills the backdoor criterion: the set contains

no variable caused by X, and, after conditioning on all variables in

the set, all paths connecting X to Y that include an arrow into X

are blocked by either a conditioning variable or a variable where 2

arrows collide. The backdoor criterion can be read off of DAGs

following the rules demonstrated here. Panel A. - X may cause Y;

W may cause X and Y; there are unknown causes of X (UX), Y

(UY), and W (UW). - UX does not cause W. In other words,

although there are unknown causes of both X and W, there are no

shared causes of these variables. UX and UW are independent. - X

and Y will be associated in observed data under the null hypothesis

of no effect of X on Y. The biasing pathway X – W – Y is called a

backdoor path because it starts with an arrow pointing to X.

Controlling for W renders X and Y unassociated except for any

direct effect between them. - Sufficient set of confounders: {W}.

Panel B. - X and Y will be unassociated in observed data under

the null hypothesis of no effect of X on Y. The path X-W-Y is

closed due to the paths from X and Y colliding at W; no

association travels along this path. If this is the complete causal

structure, controlling for W creates an association between X and

Y that will bias any true causal effect. Conditioning on colliders

opens the path the collider is on and should be avoided whenever

possible. - Sufficient set of confounders: {}. Panel C. - X – W3 –

Y is an open backdoor path that will bias the X-Y association. -

Controlling for W3 opens the path X – W1 – W2 – Y, introducing

a new bias. - Either W1 or W2 blocks the new path. - Sufficient set

of confounders: {W1, W3}, {W2, W3}.

(TIF)
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