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Abstract

Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their
important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing
(NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates
like MHC in non-model organisms.Previous approaches to genotyping MHC genes using NGS technologies suffer from two
problems:1) a ‘‘gray zone’’ where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a
similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present
a new method for genotyping MHC loci – Stepwise Threshold Clustering (STC) – that addresses these problems by taking
full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping
MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering
algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based
criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that
correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require
duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the
STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus)
samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that
STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a
variety of downstream applications.
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Introduction

The major histocompatibility complex (MHC) is a genomic

region (or set of regions) unique to vertebrates that contains genes

crucial for the proper functioning of the adaptive immune system.

Of particular interest are the MHC class I and class II loci, which

encode cell surface receptors that bind and present antigens (both

self and non-self derived) to immune-effector cells [1,2]. The

resulting interaction between MHC receptors, antigens, and T-

cells leads to both self-tolerance via negative selection on auto-

reactive T cell variants and to activation of cell-mediated immune

responses when antigens are non-self derived peptides. Conse-

quently, MHC loci are of great interest in both the study of

pathogen resistance and in the study of autoimmune disorders.

Both MHC class I and class II loci are noteworthy because of their

diversity within and among individuals [3–6], and MHC loci have

served as a model genetic system for exploring questions about the

selective mechanisms maintaining genetic diversity in natural

populations [7–14]. Understanding the causes and consequences

of MHC variation also has strong implications for biologists

interested in the evolution and epidemiology of infectious disease

[15–17] and the conservation of endangered populations [18,19].

In addition to its immunological importance, variation at MHC

loci has also been shown to influence mate-choice decisions in

many animals, allowing the discrimination of related and

unrelated individuals and of immunologically compatible and

incompatible mates [20,21]. Correctly assessing genetic variation

at MHC loci is likely to remain a key component of future

research, both in basic sciences like immunology, ecology,

evolution, and behavior, as well as in translational research such

as finding the genetic basis of various immune disorders and

wildlife diseases.

Although high-throughput, locus specific methods for genotyp-

ing of human MHC (HLA) loci have recently been made available

[22,23], accurately genotyping MHC loci in non-model organisms

remains a complicated challenge [24]. The biggest barriers to

genotyping MHC genes occur at the PCR stage, because the

MHC genes that encode the antigen binding regions often exist in

multiple paralogous copies within genomes [2,25–27], making

traditional cloning followed by Sanger sequencing problematic.

Ideally, a different pair of forward and reverse PCR primers would

be used to individually amplify each MHC locus before
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sequencing, allowing for the unambiguous characterization of

individuals as hetero- or homozygous at each paralogous copy

[28–30]. In practice, a locus by locus approach is usually not

feasible, for several reasons. First, MHC loci often share allelic

lineages (groups of similar alleles that are highly divergent from

other such groups) which can persist even beyond speciation

events [31–33]. Second, different MHC loci can exhibit substan-

tial sequence similarity due to the high rates of inter-locus

recombination and gene conversion [34–36]. Third, many MHC

gene duplications are of recent origin, making it less likely that

there will be fixed sequence differences between paralogs where

primers might be placed [25,32,37]. Combined, these factors can

make it very difficult to find unique primer pairs that amplify all

alleles at a single MHC locus. In practice, the only option is to use

primer pairs conserved across all the MHC loci of interest (i.e.

class I or class II), meaning that all the MHC alleles present within

a given individuals’ genome are amplified simultaneously [24].

Further challenges to genotyping MHC in non-model organisms

are presented by the possible presence of pseudo-genes, loci that

amplify at lower efficiency, and variation in the number of

paralogs between species, populations, and individuals [16,24,25].

Given these challenges, sequencing MHC loci in non-model

organisms has, until recently, been accomplished by 1) extensive

bacterial cloning and direct sequencing [33] or 2) conformation

based detection methods [24,38–41]. The latter approaches rely

on running PCR-amplified sequences through a charged gel

matrix or capillary sequencer to identify alleles based on

differences in DNA strand mobility. The main advantage of

conformation based approaches (once perfected) is that many

(10 s–100 s) individuals can be genotyped more quickly and

cheaply relative to cloning and sequencing. The disadvantages are

that (1) these methods often take significant time and effort to

begin work in new systems (2) co-amplifying alleles are not always

distinguishable from one another, (3) amplification bias can cause

alleles to be missed, and (4) nucleotide sequences are not obtained

without further sequencing, adding significant time and expense to

fully characterize nucleotide variation [24,42]. Cloning, while not

being subject to the same disadvantages as conformation based

approaches, can require a very large number of clones to be

sequenced for each individual when allelic diversities are high,

making it both cost and labor intensive whenever multiple

individuals need to be genotyped. Cloning can also introduce

additional sequence artifacts due to mismatch repair of heterodu-

plex molecules in the cloning process [43].

Given these limitations, researchers have recently taken

advantage of next generation sequencing (NGS) technologies to

genotype MHC loci [44–53]. NGS technologies allow researchers

to directly sequence individual PCR amplicons, performing the

equivalent of millions of cloning and sequencing reactions in a

single sequencing run. Coupled with multiplexing of many

barcoded samples, next-generation sequencing can allow for the

complete sequencing of hundreds of individuals simultaneously

[45,54,55]. Additionally, recent studies have shown that both

cloning and conformation based approaches can significantly

underestimate MHC diversity when compared to NGS approach-

es [49,53], suggesting that the increased read depth of NGS allows

for the identification of rare or less-efficiently amplified MHC

alleles.

Next-generation sequencing has some drawbacks, however.

Most notable, error rates for NGS are higher than Sanger

sequencing. For example, 454 sequencing is subject to extensive

homopolymer over- and underscoring [56], whereas Illumina

sequencing is prone to substitution errors, with different types of

substitutions (i.e. A to C) being more common than others [57].

Additionally, all next-generation sequencing approaches are still

subject to artifacts generated during PCR. Of those, PCR

chimeras [42,58] are the most problematic for MHC studies

because they can be indistinguishable from naturally occurring

intra and inter-locus recombinants, though they will typically

occur at much lower frequencies [49,53]. Like previous approach-

es, using NGS technologies does not allow one to assign alleles to

specific loci or to determine zygosity across loci. Cost is also a

major issue (although prices for next generation sequencing

technologies decrease every year) and forces researchers to

carefully balance the desire to obtain genotypes for many

individuals within a single sequencing run versus the desire to

increase the read coverage per individual [45,46] and to run

duplicates of every sample to confirm genotypes [53].

Recently developed NGS-based approaches for genotyping

MHC in non-model organisms [44,45,49,53] have all adopted an

approach carried over from cloning and sequencing. These

approaches attempt to classify each unique sequence returned in

an NGS run as either a ‘‘true’’ allelic sequence or as an

‘‘artifactual’’ one (a sequence containing errors). A given

individual’s MHC genotype then consists of all the unique true

allelic sequences among all the sequences obtained for that

individual in a given sequencing run. Although these approaches

differ in the exact details, they all rely on two key assumptions: that

sequences corresponding to alleles will be overrepresented relative

to sequences corresponding to artifacts and that artifactual

sequences will tend to be more similar to true allele sequences

than true allelic sequences will be with each other [53]. Given

these assumptions, recently developed approaches proceed via

some combination of 1) filtering out low quality or obvious

artifacts (i.e. sequences that are too short or long) 2) applying

threshold criteria to sequences based on their frequency of

occurrence (read depth) within an entire library or within a single

sample library 3) applying criteria based on sequence similarity to

differentiate artifacts from alleles, and 4) validating allele

assignments using duplicate PCRs of the same sample.

Existing methods suffer from some inadequacies resulting from

violations of the two assumptions listed above. The assumption

that true allelic sequences will be more frequent than artifactual

sequences will not always hold. Some true allelic sequences will be

represented by relatively few reads in the sequencing run, either

from stochastic sampling from the sample library (i.e from the

larger pool of PCR amplicons subsequently selected for sequenc-

ing) or because some alleles amplify at low-efficiency relative to

other alleles [53]. Additionally, some artifacts can be represented

by a relatively large number of reads for a number of reasons. The

occurrence of errors at early stages of PCR (and propagated by

subsequent PCR cycles), the tendency of particular platforms to

produce errors at certain points along a sequence (i.e. over and

under-calling of homopolymer sequences), and the stochastic over-

sampling of amplicons containing errors before sequencing can all

produce a relatively large number of reads representing a single

artifactual sequence. Consequently, there is a gray zone of

moderately common sequences including both low-frequency true

alleles and high-frequency artifacts [46]. Within this gray zone,

applying a conservative frequency cut-off will increase the

occurrence false-negatives (alleles being classified as artefacts)

while more lenient thresholds will increase the number of false

positives (artefacts being classified as alleles).

The second assumption – that artifacts will be more similar to

alleles than alleles are to each other – will obviously be violated

whenever two alleles are relatively similar (i.e. ,2 base pairs

different). The first methods to apply next-generation sequencing

to MHC genotyping either ignored sequence similarity altogether
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[45], or assumed that less frequent sequences that were nearly

identical (,3 bp difference) to more frequent sequences were

artifacts [44]. These shortcuts will necessarily lead to some

instances where true alleles are classified as artifacts merely

because they are similar to other true alleles, resulting in an

increase in false negatives.

Recently, Sommer et al. [53] proposed to address both the gray

zone problem and the similar sequence problem by requiring that

every sample be run in duplicate (i.e. two separate PCRs). This

strategy works because, while a given artifact may be relatively

common (i.e. fall in the gray zone) in one duplicate, it would be

unlikely to be common in both duplicates. Similarly, a true allelic

sequence that appears at relatively low frequency in one duplicate

is unlikely to do so in another (unless the low frequency is due low

amplification efficiency and not stochastic sampling of PCR

amplicons). For much the same reason, two similar sequences are

likely to appear at high frequencies in both duplicates if both are

alleles, whereas if one is an artifact it should appear at much lower

frequency in at least one if not both duplicates. Although effective,

there is one main drawback to running every sample in duplicate.

Sample duplication reduces by half the number of samples that

can be genotyped in a given sequencing run or for a given amount

of sequencing money. This cost-benefit trade off may not make

fiscal sense for many researchers, for example those interested in

characterizing MHC diversity across many populations or who

wish to have increased statistical power (by genotyping more

samples) to detect the fitness effects of individual alleles within

populations.

To address the problems described above we present a new

method for genotyping MHC using next-generation sequencing

technologies that we call Stepwise Threshold Clustering (STC).

STC takes a fundamentally different approach to genotyping

MHC loci than have previously published methods [44,45,53].

Rather than applying frequency or similarity criteria to determine

the allelic classification (true or artifact) of individual sequences,

STC uses a clustering algorithm to group sequences into clusters

based on sequence similarity. Crucially, unlike previous approach-

es, the identity of true alleles is determined on a cluster by cluster

basis rather than on a sequence by sequence basis. STC is

designed specifically for situations where multiple loci are co-

amplified and where multiple copies of the same allelic sequence

may be amplified in a single sample. STC also does not assume

equal amplification efficiencies for all alleles. The method is

designed to be applicable to sequence data from any NGS

sequencing platform, and can be applied to any number of

samples for which MHC data have been recorded. Importantly, it

does not rely on including duplicate PCRs for each sample,

making it comparatively cost effective.

In this paper, we first outline the STC method in detail, showing

how it works by applying it to reads generated from a single

sample. We then applied STC to genotype MHC class IIb loci in

295 stickleback fish (Gasterosteus aculeatus) collected from two sets

of paired population inhabiting different freshwater habitats (one

lake and one stream population per pair). Using the sequencing

results obtained by STC, we are able to show that neighboring

lake and stream populations differ significantly in their multi-locus

MHC genotypes, and, using the increased power afforded by

sampling so many individuals, we show that many alleles are

significantly more frequent in one habitat versus another when

comparing paired populations. We verify the STC method by

including results from six duplicate samples and by cloning and

sequencing a small subset of individual samples. Lastly, we discuss

the a number issues arising from the analysis including variation in

amplification efficiency, minimal sample library sizes necessary for

genotyping, and the applicability to non-pyrosequencing plat-

forms.

Overview of Stepwise Threshold Clustering (STC)

Although STC relies on the same two assumptions about the

frequency and similarity of allelic and artifactual sequences that

previous methods do, it does not attempt to ascertain allelic status

on a sequence by sequence basis. Rather, STC is based on the

proposition that, for a single individual with N alleles, the

sequences generated for that individual can be grouped into

approximately N clusters of similar sequence reads. This is

because, with the exception of PCR chimeras, artifactual

sequences will tend to be minor deviations from the sequences

of true alleles. The approach taken by STC is to identify those N

clusters for each individual sample, and to determine the identities

of the true alleles from those N clusters.

At the heart of the STC method is an algorithm that processes

reads from each sample through successive rounds of clustering

using increasingly stringent levels of sequence similarity. After each

round, the resulting clusters are tested against two criteria to

determine whether they correspond to one, and only one, of the

original N alleles for that sample. First, a cluster must must contain

enough reads relative to the sample library size (i.e. be large

enough), which ensures rare but highly divergent sequences (e.g.

PCR chimeras) are not counted as true alleles. Second, because

the majority of reads in a given run are expected to be error free

(estimated at 82% of total reads for 454 pyrosequencing; Huse et

al. 2007), a cluster representing a single true allele should contain a

single ‘‘dominant’’ allelic sequence consisting of the majority of

reads in the cluster and a much smaller frequency of derived

sequences that represent artifacts. A cluster containing more than

one dominant sequence likely contains reads derived from more

than one true allele, in which case the reads in that cluster are re-

entered into the algorithm for further partitioning. Once the

clustering rounds are complete, the final result of STC is a set of N

clusters representing the N true allelic sequences for each sample.

The clustering algorithm does two things that help to solve the

gray-zone and similar allele problems. First, clustering similar

sequences together means that the more frequent artifacts are

clustered together with the actual alleles from which they are

derived, and thus artifacts will not necessarily be mistaken for

alleles just because they are relatively common. Similarly, less

frequent allelic sequences will end up forming their own distinct

clusters with related artifactual sequences, even if the sizes of those

clusters are relatively small. Second, by applying criteria to

establish whether there is more than one dominant allele in a given

cluster, true alleles with similar sequences can be differentiated

from one another by refining the clustering until two legitimate

clusters are formed. Clustering also has one additional advantage

in that clusters that do not meet initial size criteria can be kept for

cross-checking with known true alleles after clustering is complete.

Such ‘‘small’’ clusters might represent artifacts – e.g. chimeras or

divergent sequencing artifacts that appear early enough during

PCR to generate many reads – or true alleles whose amplification

efficiency is much lower than other alleles present in the original

sample. If a given small cluster from one sample appears as a large

cluster in multiple other samples, it can be assumed that the small

cluster represents a true allele whose small cluster size was likely

due to stochastic sampling effects. In essence, a strict size criteria

can be applied during clustering to reduce the accumulation of

false positives (small clusters that do not represent alleles), while

cross-checking the resulting small clusters against the all samples
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can substantially reduce the number of false-negatives (true alleles

not recognized as such).

Methods and Materials

Ethics Statement
This study was carried out in accordance with the protocol

approved by the University of Texas Institutional Animal Care

and Use Committee (permit # 07100201). Fish were collected

using permit # SPR-0305-038 issued by the British Columbia

Ministry of Environment.

Data and Script Availability
Raw and processed data files and all scripts necessary for

running the STC algorithm have been made available at the

Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.

4fn4g). Users can use the provided scripts and data to generate

the genotyping results described below, as well as applying them to

their own data. Instructions for using the scripts are provided in

the README file included in the repository.

Sample Collection
We collected 364 threespine stickleback (Gasterosteus aculeatus)

from four different populations on northern Vancouver Island

(Table 1). Upon capture all fish were euthanized with a lethal dose

of MS-222. Caudal fin clips were taken from each fish and stored

in 90% ethanol for later DNA extraction. DNA was extracted

from whole fin clips using Wizard Genomic DNA Purification Kits

(Promega #A1120), following the protocols indicated by the

manufacturer for animal tissue extraction. Initial DNA concen-

trations were obtained using Quant-iT PicoGreen kits (Invitrogen

P11496) following manufacturer protocol.

PCR and Sequencing
It has been previously estimated that stickleback could have as

many as six [59] and as few as two to four [36,60] different MHC

class IIb loci. The publicly available reference genome assembly

for stickleback [61] contains 5 annotated and 1 unannotated

MHC class IIb loci with associated ESTs [60]. The highly

variable, polymorphic binding region in stickleback is located in

exon 2 [59]. We designed forward and reverse primers that were

conserved across these six MHC class IIb loci, meaning these loci

should amplify simultaneously [42,62]. Our forward primer

sequence (5’-TGTCTTTAACTCCACGGAGC-3’) sits 32 base-

pairs downstream from the start of exon 2, while our reverse

primer sequence (5’-CTCTGACTCACCGGACTTAG-3’) spans

the boundary between exon 2 and intron 2. The amplicon

generated by these primers is 213 base pairs long (253 base pairs

including primers) and constitutes 70 (81 including primers) of the

92 amino acids of exon 2. Note that these primer sequences are

very similar to those developed independently by Lenz et al. [42]

for amplifying stickleback MHC class IIb exon 2 sequences

intended for reference strand-mediated conformation analyses

(RSCA).

Each forward and reverse primer also contained a 15 bp

barcode at the 5’ end (Table S1). Each sample in our

pyrosequencing run was initially amplified using a unique

combination of forward and reverse barcodes so that reads

associated with individual samples could be identified after

sequencing. By using 20 (or more) barcodes on the forward and

on the reverse primers we are able to multiplex up to 400 (or more)

uniquely barcoded individuals into a single sequencing library.

Our barcodes consisted of 10 base pair MID tags supplied by

Roche for amplicon pyrosequencing, with an additional 5 base

pairs from the beginning of another MID tag added on to the 3’

end.

PCR reactions were performed in 50 ul total volume containing

25 ng of extracted DNA, 10 uL of 10X (-MgCl2) PCR buffer

(Invitrogen), 300 mmol of MgCl2 10 mmol dNTPs, 20 mmol each

of forward and reverse primers, and 1 unit of Platinum Taq DNA

Polymerase (Invitrogen). The PCR program used for all samples

was: initialize at 94uC for 120 seconds, 25 cycles of denature at

94uC (30 seconds), anneal at 57uC (30 seconds), and extension at

72uC (60 seconds), and a final elongation at 72uC for 240 seconds.

Lenz and Becker [63] were able to substantially reduce the

number of PCR chimeras when sequencing stickleback MHC class

II using 25 PCR cycles and a 60 second extension, both of which

we applied here. After PCR, samples were cleaned using

Agencourt AMPure XP PCR purification (Beckman Coulter)

according to the manufacturer’s instructions, re-quantified using

the Quant-iT PicoGreen kits used previously, and finally pooled

into a single library at equimolar concentrations for sequencing.

Samples were sequenced at the University of Texas Genome

Sequencing and Analysis Facility on a Roche/454 FLX sequencer

using titanium chemistry and standard amplicon pipeline proce-

dures. The entire library was run on one-quarter of a picotiter

plate.

Stepwise Threshold Clustering
STC can be broken down into four phases: 1) sequence

preparation, 2) sequence combination, 3) stepwise clustering, and

4) post-clustering processing (Fig. 1). Phase 1 consists of filtering

reads and partitioning sequences among samples based on barcode

sequences and can be performed using custom scripts or publicly

available software [47]. Note that two phases of STC (2 and 3) are

applied in succession to all individual sample libraries before

moving on to phase 4. Commonly used terms and their description

are provided in Table 2.

STC Phase 1: Sequence Preparation
The STC process starts with the raw read data in the form of a

multiFASTA (.fna) file derived from the sff file generated by a

Table 1. Population sampled and numbers of samples collected.

Pair UTM coordinates Samples amplified Samples genotyped

Farewell Lake 314926E, 5564416N 114 90

Farewell Stream 314004E, 5564614N 50 44

Roberts Lake 318053E, 5566856N 133 105

Roberts Stream 316975E, 5567731N 67 56

UTM coordinates are zone 10U.
doi:10.1371/journal.pone.0100587.t001
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single 454 sequencing run. We used a custom Perl script to parse

this file (available at the Data Dryad Repository: http://dx.doi.

org/10.5061/dryad.4fn4g). Each read corresponds to the se-

quence generated within a single well of pyrosequencing. This

script identified the forward and reverse barcodes, and the

amplicon sequence (hereafter, just sequence) for every individual

read. Any read not containing a uniquely identifiable forward and

reverse barcode was discarded. In addition, we applied a minimal

read length filter, keeping all reads with intra-primer sequence of

at least 200 base pairs (,94% of the amplicon length). This was

done to ensure that short reads derived from different sequences

were not classified as the same sequence due to missing base pairs.

Stricter criteria could be applied, such that only sequences within

three base pairs of the expected amplicon length could be

included. However, the efficiency of cluster classification is

improved by including more reads. Once reads have been

minimally filtered by length and organized by sample, and

forward and reverse primer and barcode sequences removed, the

reads are ready for phase 2.

STC Phase 2: Sequence Combination
Previous approaches to genotyping typically flag sequences

containing indels as artifactual and remove them from the analysis

[44,45,53]. In STC we take a different approach. In phase 2, pairs

of sequences are ‘‘combined’’ when one member of the pair has

the correct number of basepairs (i.e. no open reading frames or

stop codons) while the other member has an incorrect length but is

otherwise identical or nearly identical to the first member. By

Figure 1. Outline of steps in STC genotyping. Programs and software used to implement each step are given in italics. The initial sff file was
parsed using proprietary Roche software at the University of Texas Genome Sequencing and Analysis Facility. Filtering of reads and parsing samples
by barcodes was accomplished using a custom perl script. Phases 2–4 were implemented in a custom R script. All scripts necessary for running STC
have been uploaded to the Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.4fn4g)
doi:10.1371/journal.pone.0100587.g001
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combine, we mean that the reads associated with the second,

artifactual member are converted to reads of the first, correct-

length sequence.

The rationale behind this phase is straightforward: artifactual

sequences contain important information about which sequences

represent true alleles. This is especially true for reads obtained

using 454 pyrosequencing, as the most common sequence errors

generated during pyrosequencing are homopolymer insertion/

deletion errors [56], which occur when the number of successive,

identical base pairs in a sequence are over or under-called relative

to the true sequence. By combining artifacts with very similar

sequences from which they are clearly derived, we increase the

weight of evidence that the more frequent sequence is a true allelic

sequence. This tends to reduce ambiguity in the subsequent

clustering phase, because true allelic sequences will be more

dominant relative to other sequences in their cluster after being

combined with clearly artifactual sequences.

To combine sequences we first divide all possible pairs of

sequences in a sample library into five pair types: (I) pairs that

differ by only an indel (II) pairs that differ by one insertion and one

deletion (III) pairs differing by only one indel and one substitution

(IV) pairs that differ by one indel and two substitutions (V) all other

pairs, which are not combined. In types I, III and IV, the first

member of the pair is always the sequence of the correct length. In

type II, where the lengths are the same, the first member is always

the more common sequence. We then apply three criteria to each

pair to determine whether they should be combined. First, the first

member of the pair must have the correct number of base pairs for

the sequence of interest (e.g. 213 bp for our sequences). Second,

the first member of the pair must be more common than the

second member. Third, pairs can only be combined if the second,

derived member is unique to that pair within that type. If, for

example, one type III pairs contains sequences X and Z, and

another type III pair contains Y and Z, then it is ambiguous

whether Z is derived from Y or X and neither pair is combined.

Finally, we note that, because every possible pair of sequences is

evaluated before combining pairs, the length of the time for phase

2 increases with the square of the number of unique sequences

present in the sample library.

STC Phase 3: Clustering
The STC algorithm uses a variation on a formal Dirichlet

process known colloquially as a Chinese restaurant table process.

In the restaurant analogy, imagine 100 customers wish to enter a

restaurant that can contain an infinite number of tables. The first

customer enters the restaurant and sits at a table. The second

customer enters and can choose to start a new table or to sit at the

existing table. Every subsequent customer enters the restaurant

and makes the same choice—sit at a new or existing table.

Whether or not each new customer chooses to sit an existing table

is directly proportional to how many customers are already at the

table when the new customer enters. In a formal, discrete time

restaurant table process objects (customers) start a new group

(table) at some constant probability, or join an existing group

(table) with a probability proportional to the size of each group (i.e.

number of customers already seated at each table). The end result

once all objects have been grouped is a set of groups that vary in

the number of objects they contain.

Our clustering process uses a similar mechanism to form clusters

by sequentially taking each read (customer) in a sample library and

either using it to start a new cluster (table) or allowing it to join an

existing cluster (table). The process is quasi-Dirichlet because the

reads (customers) are not clustered using probability rules based on

cluster size. Rather, reads are added to clusters based on sequence

similarity criteria. Specifically, at the point at which a given focal

read is introduced, each existing cluster is assigned the sequence of

the most frequent read contained within said cluster. For example,

if cluster A contains two reads corresponding to sequence X and

one corresponding to sequence Y, the cluster takes on the identity

of sequence X (i.e. cluster A is assigned the sequence of X). The

given focal read then either added to the most similar existing

cluster, assuming the similarity between the focal read and the

cluster is above predefined similarity threshold (c, see Table 3 for

list of parameters set by the user) or it starts a new cluster. Note

that once a read has been placed in a cluster, any reads sharing the

same sequence will automatically be placed in that cluster when

they are introduced into the process, meaning reads with the same

sequence will never end up in different clusters. We note that this

process is very similar to a process independently developed by

Prosperi et al. [64] to delineate HIV and Hepatitis-C viral

sequences into different subtypes.

Table 2. Commonly used terms and definitions.

Term Definition

sample one individual to be sequenced (human, fish, mouse, bird, etc.)

sample library all reads produced in a given sequence run for a single sample

run library all reads produced by a single sequencing run (includes all samples)

read individual, non-unique sequence produced during sequencing corresponding to the sequence of a single PCR amplicon

sequence unique read produced during a sequencing run (many reads can correspond to the same sequence), and indicated by an # (e.g. #130)

true allele sequence inferred to match an allelic sequence in the genome of a given sample

artifact sequence inferred to not match an allelic sequence in the genome of a given sample

cluster group of similar reads (or a single read) produced during phase 3 of STC

dominant sequence sequence with most reads in a given cluster

subdominant sequence sequence with second most reads in a given cluster

dropped allele an allele originating from a small cluster in phase 3 that was made a true allele during phase 4

missing allele an allele present in the genome of the sample does not appear as a true allele after STC is complete

doi:10.1371/journal.pone.0100587.t002
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STC is designed to identify clusters representing alleles that are

very dissimilar from other alleles before gradually breaking apart

clusters representing very similar alleles. To accomplish this goal,

the sequence similarity threshold (c) for joining existing clusters is

gradually increased over successive rounds of clustering. At the

beginning of phase 3, c takes the similarity between the most

dissimilar reads for a given sample and increases by a set amount

(e.g. 1%) during each successive round of clustering. This means

that each successive read is more likely to form a new cluster in

later rounds than in earlier ones. Clustering can, in theory,

continue to c= 100%. In practice it is much better to end slightly

below this level (c= 97%) in order to avoid separating artifactual

sequences with minor errors from the clusters to which they

belong.

Note that whether a focal read joins an existing cluster or starts

a new cluster is entirely deterministic and depends only on the

predefined sequence similarity threshold (which differentiates STC

from a formal Dirichlet processes). However, during each round,

each focal read is chosen at random from the remaining pool of

reads until all reads are clustered, introducing a small amount of

stochasticity into the final cluster configuration (sometimes two or

three different configurations can occur depending on the order of

clustering and value of c). To account for variation introduced by

random ordering of reads, we repeat the clustering 100 times

during each round, starting with a randomly chosen sequence

each time. The most common cluster assignment (the mode) for

each read among the 100 replicates is used to determine to which

cluster each read is assigned in each round.

At the end of each round, every cluster assumes the sequence

identity of its most frequent read and is assigned to one of three

categories – good, small, or ambiguous – based on the two criteria.

The first, which we refer to as the size criterion, states that a cluster

must contain a certain proportion, h, of the sequence reads from

the focal sample library. The second, the dominance criterion,

states that the frequency of the most common (dominant) read in a

cluster divided by the frequency of second most common read

(subdominant) must be greater than the threshold ratio d. Both h
and d are set before clustering begins and do not change between

rounds of clustering. Clusters that meet both criteria after each

round are classified as good clusters and all reads contained

therein are exempt from further rounds of clustering. Clusters that

meet the dominance criterion but not the size criteria are

considered small clusters and are also considered exempt. Clusters

that do not meet the dominance criterion (e.g., contain two or

more abundant sequences), potentially contain more than one true

allele. These clusters are classified as ambiguous and are retained

for the next round of clustering at a more stringent threshold

whether or not they meet the size criteria.

Although the thresholds associated with the two criteria must be

set heuristically by the user, they can be adjusted to better trade-off

false positives and false negatives. Setting h too low means some

small clusters that actually derive from artifactual sequences may

be categorized as good (an increase in false positives). Alterna-

tively, setting h too high will result in an increase in false negatives,

although this increase can be mostly be offset during phase 4,

meaning its better to set h somewhat conservatively. For example,

given no stochastic or amplification bias effects, the lowest

proportional size of each cluster will simply be one divided by

the maximum expected number of alleles (Nmax, assuming no

homozygotes). Because there will inevitably be some clusters

smaller than that the 1/Nmax ratio due to amplification bias or

stochastic sampling of reads from the library, an appropriate

starting value for h would be to divide 1/Nmax again by some

constant C to reduce the minimum size a bit further. For example,

with 6 different MHC loci, Nmax = 12. An appropriate starting

value for h would be 1 divided by 12 divided by again 2 or 1/24.

In this instance, the size criterion states that a cluster must contain

at least 1/24 of the total reads for that sample. An appropriate

starting point for d is to consider that experiments have shown that

about 18% of reads in a given run represent artifacts [56]. This

means that the ratio of the dominant sequence to the subdominant

in a cluster will likely be on average no more than 0.82/

0.18 = 4.55, and usually much greater, so d= 4.55 makes a good

starting value.

Finally, after clustering is complete, it is possible that some

clusters will remain classified as ambiguous. Either these clusters

represent two very similar alleles, one allele with an additional

frequent artefact, or zero true alleles. These clusters are dealt with

as follows. Each ambiguous cluster is divided into two sub-clusters

whose size (number of reads) is proportional to the relative

frequencies of the two most frequent reads (dominant and

subdominant) in the cluster. These two sub-clusters are then

checked against the size criterion. If a sub-cluster passes the size

criteria, then it is considered a good cluster. Otherwise the sub-

cluster is classified as a small cluster. Additionally, it is sometimes

the case that one of the top two sequences in a cluster will not be

the correct length, in which case the third most frequent sequence

Table 3. User-defined parameters for STC.

Parameter Name Definition Recommended starting value Value used

c similarity threshold minimum similarity required between focal
read and cluster for read to join cluster,
increases in successive clustering rounds

start at minimum similarity between
two reads in the given sample library
(e.g. 60%)

Varies between samples

h size threshold minimum ratio of reads in a cluster to reads
in a sample library necessary for the cluster to
be classified as ‘‘good’’

1/maximum expected number of
alleles/2

1/22

d dominance
threshold

minimum ratio of dominant to subdominant reads
necessary for the cluster to not be classified as
‘‘ambiguous’’

4:1 4.55:1

e common allele an allele must be present in at least this many
samples to be considered common for the
purposes of cross-checking in phase 4

3 3

Recommended starting values are offered because the optimal values will vary both by data set and the degree to which the user wishes to balance false positives and
false negatives. Values used for the data set presented here are given in ‘‘value used’’ column.
doi:10.1371/journal.pone.0100587.t003
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is treated as the subdominant sequence and the same rules are

applied.

STC Step 4: Post-clustering processing
Phase 4 consists of two stages: cross-checking all small clusters

against good clusters and checking allele sequences for possible

chimeras. As noted by Sommer et al. [53], some alleles may tend

to not be genotyped due to low amplification efficiencies, or alleles

may be missing from sample libraries simply due to chance (we

refer to such cases as ‘‘missing’’ alleles). In other cases alleles

present in the genome of the sample will be present in the sample

library but won’t produce enough reads to pass the size criterion

(we refer to such cases as ‘‘dropped’’ alleles). To check for dropped

alleles, small clusters are cross-checked against commonly occur-

ring good clusters across all samples. Good clusters are classified as

common if they occur in at least e samples after phase 3 (e.g. at

least three other samples). If the identity of a given small cluster

matches a common good cluster, then it is assumed that the cluster

‘‘dropped out’’ due to stochastic effects and can be included in the

list of good clusters for that particular sample.

Cross-checking small clusters in this way also has an added

benefit, because the frequency at which a cluster drops out during

phase 3 provides information as to whether the allele likely

amplifies with low efficiency. Because such alleles will tend to drop

out more frequently than other alleles for a given value of h, cross-

checking clusters also allows the user flexibility in adjusting the

value of h to control the rate of false positives and false negatives.

Users can be relatively conservative with assigning the value of h,

knowing that dropped clusters (i.e. potential false-negatives) can be

cross-checked and included in the final good cluster at the end.

Once small clusters have been cross-checked against common

good clusters, all good and dropped clusters for each sample are

officially assigned true allele status, whereby the dominant

sequence in each cluster is inferred to represent a true allelic

sequence.

Lastly, true alleles are checked to see if they are likely to be PCR

chimeras. Chimeric sequences can occur during the initial PCR

stage when incompletely extended primer sequences subsequently

anneal to a different template in a later cycle, or by template

switching during extension. In either case, the chimeric daughter

strand will resemble one parent sequence over one portion of its

length, and a different parent sequence over the other portion. If

the number of PCR cycles has been kept to a minimum during

read generation [63], chimeras are unlikely to be present in large

numbers because heteroduplexes are more likely to form during

the later stages of PCR [65]. Nonetheless, it is recommended that

any alleles obtained for a given sample library be checked for

possible chimeras. A number of common methods for detecting

chimeric sequences have been published [66–68], although these

were designed for large 16S rRNA data sets where the number of

potential parent templates and sequences are large and unknown.

In the context of MHC genotyping, alleles can be checked for

chimeras using visual inspection of alignments [45], or with

custom scripts that check alleles against all sequences present in a

given sample library [53]. In STC, each true allele is scanned to

see if it looks like a close recombinant (daughter sequence) of two

other true alleles (parents) in the same sample. For each possible

recombinant allele, all the samples containing that allele are

scanned for the possible parent alleles. In cases where the

recombinant alleles occurred with possible parent alleles in all

cases, we classified the recombinant as a chimera and removed it

from the final data set. Recombinant alleles that do not co-occur

with possible parent sequences in all samples are assumed to have

resulted from natural recombination/gene conversion events

between loci and are not classified as chimeras.

Amplification Efficiency
To check whether variation in the rate at which alleles were

dropped during phase 3 was potentially related to amplification

efficiency, we estimated the correlation between average relative

cluster size (proportion of sample library reads in a cluster) and the

rate of dropping (fraction of total occurrences where an allele was

initially dropped in phase 3). For each allele, we estimated the

relative cluster size both overall and only in samples where an

allele was not dropped. Alleles that are amplified at lower

efficiencies should have both smaller relative cluster sizes within

sample libraries (even in cases where those alleles are not dropped)

and elevated probabilities of dropping compared to other alleles.

We therefore expected a negative correlation between cluster size

and rate of dropping if low amplification efficiency was causing

some alleles to drop out more than would be expected by due to

stochastic effects alone.

Repeatability of STC genotyping
Duplicate PCR reactions were run for 21 total samples. When

both duplicates achieved the minimum sample library size, we

compared the STC output for each duplicate to test the

consistency of STC across different libraries for the same samples.

We also cloned and sequenced four samples for verification of our

genotyping method. We used the same PCR conditions used to

amplify samples for pyrosequencing. The PCR products were

purified using QIAquick PCR Purification Kits (Qiagen 28014)

and cloned into a vectors using a pCR 2.1-TOPO TA kit provided

by Life Technologies (K450001). After overnight growth, individ-

ual clones were amplified using M13 forward and reverse primers.

Amplified clone sequences were purified using the same QIAquick

kits and sequenced directly on an Applied Biosystems AB 3730

sequencer at the University of Texas ICMB DNA core facility. We

originally targeted 100 clones per sample, but found that only 50–

60 clones were needed to verify the most diverse sample.

Relationship between read number and allele number
Samples that yield fewer sequence reads than typical are prone

to having alleles with zero corresponding sequence reads in their

sample library (i.e. missing alleles) due to stochastic under-

sampling of reads during sequencing. Moreover, the probability

of such missing alleles will be magnified when those alleles also

amplify will low efficiency. As a result, allelic diversities may be

underestimated for some samples with small library sizes. To test

for this possible bias, we estimated the correlation between library

size (read number) and allele number within each of the four

populations of stickleback. In any populations where the

correlation was significant, we re-estimated the correlation using

increasingly larger minimal samples sizes (up to 800 reads), to ask

at what point the correlation was negligible or became statistically

insignificant (keeping in mind that the power to detect a significant

correlation will decrease as more samples are removed from the

analysis due to an increased minimal sample size).

Visualization of allele and cluster similarity
In order to help visualize the clustering process for our

individual example sample library, we created a two dimensional

plot of all the sequences present in that sample library using

multidimensional scaling (MDS). Briefly, MDS attempts to project

the N-dimensional distances between objects (i.e. sequences) into a

two dimensional space. Sequences placed closer together in the
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space are more similar to each other than sequences placed further

away. One advantage of using MDS to view sequence relation-

ships is that it can be based on the same similarity matrix used by

STC to cluster sequences, and thus provides a visual representa-

tion (though not complete replication) of the STC process. We

used the pcoa function in the R package ape [69] to generate

principal coordinate axes of genetic similarity based on the

percentage of shared base pairs. The first two MDS axes can be

used to create a plot of genetic similarity. In addition to the MDS

plot, we also created a neighbor-joining tree of the most common

sequences across all samples to visual sequence similarity among

alleles. We used the bionj function in the ape package, which

implements the method of Gascuel [70] for producing neighbor

joining trees, and the plot.phylo function for visualizing the tree.

All visualizations were done using the R statistical programming

language, version 2.15.1 [71].

Statistical comparison between populations
We used the results produced by the STC algorithm to make

three different comparisons between our four populations. First,

we used an ANOVA to determine whether our populations

differed in the mean number of alleles per fish. Habitat (lake or

stream), population pair (Roberts or Farewell), and their interac-

tion were used as factors in the ANOVA. Second, it has been

hypothesized that divergent selection among habitats (due to

contrasting parasite communities) could lead to the divergence in

MHC genotypes. We therefore tested whether our lake and stream

populations differed significantly in overall MHC allele composi-

tion using the GLM-based approach advocated by Warton et al.

[72] and implemented in the R package mvabund [73]. This

approach first uses separate GLMs to estimate the effects of

predictor variables (i.e. habitat and pair) on the probability of

having each MHC allele. Individual test statistics (e.g. likelihood

ratios or wald statistics) from each GLM are then added together

to create an overall test statistic for each predictor, and

permutations of the original data are followed by recalculation

of the overall test statistics to produce p-values. This approach has

an additional advantage of controlling for correlations in the

response variables among individuals, as might occur due to

linkage disequilibrium among loci. Warton et al. [72] have shown

their approach to be both more powerful statistically and much

less prone to confounding dispersion and location effects than are

similar approaches such as ANOSIM [74] or PERMANOVA

[75]. Our p-values were calculated using 1000 permutations.

Lastly, we used log-likelihood ratio tests (G-tests) to test whether

the presence or absence of each allele was significantly associated

with habitat within pairs. We restricted this analyses to testing

differences between lakes and streams within pairs. P-values were

corrected for multiple comparisons by applying a false discovery

rate of 5% [76]. All statistical analyses were implemented using the

R statistical programming language, version 2.15.1 [71].

The most recently proposed method for using NGS to genotype

MHC loci requires every sample to be run in duplicate [53], thus

decreasing by half the number of samples that can be genotyped in

a given run. We wished to determine the degree to which

genotyping half as many samples per population would effect the

probability of finding significant differences between habitats in

individual allele frequencies using the analysis described above.

We randomly sub-sampled half the samples from each population

1000 times without replacement and recalculated p-values for each

subsample. We then calculated the percentage of the 1000

subsamples in which each allele was found to be statistically

significantly different between habitats (after accounting for

multiple comparisons within each subsample). We would expect

that, with our increased sample size, we would be much more

likely to identify alleles that differ significantly in frequency

between habitats than if we had genotyped only half as many

samples.

Results

Illustration of STC using one sample
Phase 1. A single stickleback sample (hereafter, sample X)

from the Roberts Lake population (sample ID 490 in Table S2)

was chosen to illustrate the STC process in detail. Sample X had,

after initial quality and length filtering, 330 reads in its sample

library. These reads corresponded to 101 unique sequences,

including 72 sequences that only appear once in the sample library

(Table S3 contains a summary of all 101 unique sequences

associated with sample X). This sample was chosen partly because

its 6 true alleles and 330 reads fell near the median of both

distributions. More importantly, this sample illustrates clearly

three of the processes unique to STC: 1) the gradual separation of

clusters representing alleles as the similarity threshold c is

increased, 2) the cross-checking of small clusters against common

alleles to reduce false negatives, and 3) the delineation of two true

alleles that differ by fewer than 3 base pairs.

Phase 2. In this section, unique sequences will be referred to

by the including a # at the beginning of the numerical sequence

ID (i.e. #1234). Clusters of sequences (good, small, or ambiguous)

are designated by an X at the beginning of a numerical sequence

ID (i.e. X1234), where the ID refers to the dominant sequence in

the cluster.

Of the 101 unique sequences in the sample library, 59 were of

the correct length (213 base pairs). Thirty-three sequences were off

by a single base pair (212 or 214 base pairs), 7 by two base pairs,

and 2 by three or more base pairs (Table S4). After aligning and

checking all 3160 unique pairs of sequences for indel and

substitution differences, we found 21 type I pairs (i.e. sequences

differing by a single indel). One sequence (#26826) differed from

two sequences by one indel and was combined with the more

common of the two. Combining these remaining 20 type I pairs of

sequences left 81 unique sequences in the sample library. We

found 4 type II and 27 type III pairs which also met our criteria for

combining pairs. This resulted in a further decrease to 67 unique

sequences, while the total number of sequence reads remained at

330. A summary of all pairs combined during phase 2 for sample

X is contained in table S4.

Phase 3. We set the size threshold for accepting clusters as

good clusters at h= 1/22 = 0.045 and the dominant to subdom-

inant ratio threshold at d= 4/1. Note that these thresholds are

only slightly different than the baseline thresholds suggested in the

methods and were determined heuristically by re-running STC on

a subset of samples to minimize false positives. The minimum

sequence similarity among all pairs of sequences in the sample

library was 60%, so we began clustering at c= 60%. Table 4

contains a summary of clusters generated during each round of

clustering for sample X (described below). Figure 2 visualizes the

clusters in two-dimensional similarity space.

As expected, clustering all 330 reads at c= 60% resulted in a

single giant cluster. The dominant and subdominant sequences,

#3111 and #103, were represented by 73 and 42 reads

respectively. This single cluster clearly does not meet the

dominance criterion (73/42 = 1.74, which is smaller than d= 4).

The same result was achieved when clustering their reads through

c= 69%. At c= 70% sequence similarity, two clusters were

formed. One cluster (dominant sequence #1238) consisted of a

single sequence of 4 reads, which classified it as a small cluster (4/
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330 = 0.012, which is less than h= 0.045). The other 326 reads

were placed in a single large cluster whose dominant and

subdominant sequences were again #311 and #103. This single

ambiguous cluster was produced at similarity thresholds through

c= 81%.

At c= 82%, two clusters were produced. The #3111/#103

cluster remained ambiguous as before. A second cluster with

dominant and subdominant sequences #298 and #113 was also

formed. However, this additional cluster did not meet the

dominance threshold (30/27,4/1), and was also classified as

ambiguous. At c= 85% the cluster dominated by #3111 split into

two clusters, with dominant/subdominant sequences of #3111/

#5 and #103/#195 respectively. However, none of the three

clusters passed the dominance criterion. At c= 88%, an additional

cluster consisting of 3 reads of a single sequence (#28260) was

formed and classified as a small cluster (3/330,0.045).

At c= 90%, four total clusters were formed. The aforemen-

tioned two clusters #3111/#5 and #103/#195 remained

ambiguous. One of the other clusters, the cluster with the

dominant sequence #298 met the size (41/330.0.045) and

dominance (30/3.4) criteria and was classified as a good cluster.

The cluster dominated by sequence #113 also met both criteria

(31/330.0.045 and 27/1.4) and was also classified as a good

cluster. At the final round of c= 97%, one of the previous

ambiguous clusters (#103/#195) split into two distinct clusters,

both of which passed the criteria and were considered good

clusters. At this point there were 4 good clusters corresponding to

sequences #298, #113, #103 and #195, two small clusters

corresponding to sequences #1238 and #26820, and one

remaining ambiguous cluster with dominant and subdominant

sequences #3111 and #5 that differed by only two base pairs

(Fig. 2).

To determine whether our remaining ambiguous cluster should

be considered two separate clusters, we divided the total number

of reads in the cluster (140) between the two dominant sequences

in proportion to the number of reads for each sequence. The top

two sequences accounted for 111 reads, of which sequence #3111

accounted for 73 reads (65.8%) and sequence #5 accounted for 38

reads (34.2%). Thus, the two hypothetical sub-clusters were

assigned 65.8% and 34.2% of the total cluster reads, giving them

92 and 48 reads respectively. In this case, both sub-clusters had

greater than 4.5% of the total reads in the sample library (335) and

were classified as good clusters. Thus at the end of the phase 3 we

were left with 6 good clusters representing sequences (X298,

X113, X103, X195, X311, and X5), and two small clusters

consisting of one rare sequence each (X1238 and X28260).

Phase 4. To cross-check our small clusters against common

good clusters, we set e= 3, which means that a sequence would

have to be the dominant sequence of a good cluster in at least

three other samples to be considered common. Of the two small

Figure 2. MDS plot of sequences in sample library X. Small black dots indicate the 101unique sequences present in the sample library.
Sequences have been plotted on the first two MDS axes generated using the same similarity matrix used during clustering, such that more similar
sequences are closer together. The color of the larger circles indicates the final status of each sequence, whereas the size of each circle is proportional
to the number of reads in the sample library that match that sequence (see Table S3 for list of sequences and their respective read numbers).
Sequences indicated in red were combined with other more frequent sequences during phase 2. Sequences indicated in blue were deemed to be
artifactual sequences. Allele #1238 (yellow) was not considered a good cluster in phase 3 (too small) but was considered a true allele after cross-
checking in phase 4. The green circles indicate sequences corresponding to the other 6 true alleles. The dotted lines indicate the seven clusters (4
good, 1 ambiguous, 2 small) after the 97% similarity threshold had been reached in phase 3.
doi:10.1371/journal.pone.0100587.g002
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clusters carried over from phase 3 in our example, good clusters

containing #1238 were present in 3 other genotyped samples,

whereas #28260 was not classified as a good cluster in any other

sample. Therefore, we added the cluster representing sequence

#1238 to the list of good clusters for sample X. The cluster

containing #28260 was considered an artifact. At this point, we

inferred that the dominant sequences in our seven good clusters

represented true alleles originally present in sample X. None of the

seven true alleles was classified as a chimera (table 5).

Applying STC to genotype stickleback from four
populations

We obtained 206,453 sequence reads from one quarter of a

complete pyrosequencing run. The raw sff file has been deposited

at the NCBI sequence read archive (accession number

SRR1177032). After removing reads that had intra-primer

sequences of less than 200 base pairs, we were left with 156,841

reads (76% of total reads). Of those, 136,861 (66% of total reads)

could be assigned to a specific sample based on barcode sequences.

Of the initial 385 individual PCR reactions (364 samples plus 21

duplicates), 359 had at least one read associated with them after

initial filtering (Table S2). We set an initial cutoff of 80 reads per

sample for subsequent genotyping using STC, leaving us with 301

total samples (295 samples plus 6 duplicates) to be genotyped. The

mean number of reads per genotyped sample was 442 (median:

318, range: 81–4687). Of the 301 samples to be genotyped, 20 had

more than 1000 reads associated with them. We elected to

randomly subsample without replacement 1000 reads from each of

these 20 sample libraries for genotyping. This substantially

reduced the total run time of the STC algorithm (which scales

exponentially rather than linearly with read number). After

applying the minimum cutoff of 80 reads and sub-sampling to

1000 reads, the mean number of reads per sample was 380.

After STC was complete, we had identified 244 unique true

alleles, of which 101 were present in only one sample (‘‘single-

tons’’, Table S5). We expected relatively few chimeras to be

recognized as alleles because of the precautions taken during PCR

and because chimeric sequences would tend to generate small

clusters in samples where they occurred. We identified 18 potential

chimeric (or naturally recombinant) alleles (Table 5). Seven of

these alleles (six singletons) were present with potential parent

sequences in 100% of the samples where they were identified as

alleles. We removed these seven probable chimeric alleles from the

final data set. Potential parent sequences were found in 50% or

less of the samples in which the other 11 recombinant alleles were

identified, suggesting these 11 alleles are likely naturally segregat-

ing recombinants. Removing chimeric alleles left us with 237 true

alleles overall, including 96 singletons.

Of the remaining true alleles, 218 were the correct length of 213

base pairs (Table S5). The remaining 19 true alleles were only 212

basepairs long (15 singletons). Many of these 19 may be true false

positives, while others could be naturally segregating variants,

including one allele that appeared in eight different samples (allele

#388, Table S5). Note that all of these 212 bp alleles had average

cluster sizes greater than 0.065 – we used a cutoff of h= 0.045 –

indicating that a more stringent size criterion for clusters would

still include many of these true alleles with incorrect lengths.

However, we conservatively removed all of these 19 true alleles

from our final data set before performing our statistical analysis,

leaving 218 true alleles including 81 singleton alleles. All true allele

sequences present in at least 5 samples and at least 213 base pairs

long have been deposited in the NCBI GenBank (accession

numbers KJ782461 – KJ782548).
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The overall average number of alleles per sample was 6.62

(mode: 6), although population averages ranged from 5.9 to 7.1

(Fig. 3). This is about 1–2 more alleles on average than have been

found in previous studies of stickleback MHC using conformation

based methods [62,77,78]. However, significantly higher diversi-

ties have previously been found using NGS compared to

conformation based approaches in Scarlet Rosefinches (Carpoda-
cus erythrinus) [49]. Our results, like theirs, are likely due to the

increased sensitivity of NGS, which is more likely to detect alleles

that amplify at lower efficiencies [53,63].

Dropped alleles and amplification efficiency
After phase 3 we had identified 9561 total small clusters among

all of our samples, most of which were inferred to be sequencing

artifacts. However, of those 9561 small clusters, 229 were classified

as true (i.e. dropped) alleles after cross-checking against common

good clusters during phase 4. The average number of such

dropped alleles was 0.76 per sample (range: 0–4). Of the 301

genotyped samples, 164 (54%) had at least one dropped allele. Not

all alleles were equally likely to be dropped. Of the 218 true alleles,

170 were never dropped (Table S5). Of the remaining 48 alleles,

the average percentage of samples where a given allele was

dropped was 18%. The least frequently dropped allele was

dropped in only 2.6% of the samples in which it occurred, whereas

the most frequently dropped allele (#670) was dropped in 73% of

the samples where it occurred. A number of other alleles were also

dropped at relatively high frequencies (.40%, Table S5),

suggesting that they may be amplifying at relatively low efficiencies

with our primer pair. None the less, given the diversity of MHC

alleles overall, it is probably inevitable that some alleles will be

amplified with relatively lower efficiency. More importantly, this

result highlights the value of STC in diagnosing which alleles may

be subject to amplification bias when genotyping MHC loci.

Considering only the 48 alleles that were dropped at least once,

we found a significant negative correlation between the percentage

of samples in which the allele was dropped and the average cluster

size for alleles (r = 20.64, P = 161027, Fig. 4). This correlation

remained strong and significant if we calculated the average cluster

size using only good clusters (r = 20.44, P = 0.001, Fig. S1).

However, the correlation seemed due in large part to a small

group of samples that had both small cluster sizes and a greater

propensity to be dropped than other samples (filled circles in

Table 5. Alleles with recombinant sequences.

allele
total occurrences
among all samples

occurrences with possible parent
sequences

% of occurrences
with parents

Classified as
chimera?

#1176 1 1 100 yes

#1487 1 1 100 yes

#1692 1 1 100 yes

#2720 1 1 100 yes

#3584 1 1 100 yes

#5875 1 1 100 yes

#375 2 1 50 no

#1337 4 4 100 yes

#562 4 2 50 no

#512 14 4 29 no

#1238 14 1 7 no

#182 15 7 47 no

#175 17 2 12 no

#262 24 1 4 no

#1 34 28 82 no

#195 38 15 39 no

#717 47 1 2 no

#103 75 2 3 no

doi:10.1371/journal.pone.0100587.t005

Figure 3. Number of alleles genotyped per sample. The red
dashed lines indicate the mean number of alleles per sample for each
population.
doi:10.1371/journal.pone.0100587.g003
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Fig. 4). We were curious about whether such potential low-

efficiency alleles shared any sequence similarity. Of the eight true

alleles dropped in at least 40% of samples where they occurred,

seven were placed together in a clade of sequences that were

distinctly divergent from other alleles (Fig. S2). The average

pairwise similarity between members of this group to all other

alleles was 65%. By comparison, alleles within this divergent group

shared on average 99% sequence identity (,2 basepairs differ-

ence), whereas alleles not in the divergent group were on average

87% similar. One possibility is that this group of alleles (which

includes the above mentioned seven alleles plus two more) derive

exclusively from a single MHC locus with slightly different primer

sequences than the ones used here. Interestingly, 250 of 302

genotyped samples had at least one of the nine divergent alleles,

and no sample had more than two, lending some support to the

hypothesis that the alleles originate from a single locus that

amplifies with low PCR amplification efficiency.

Cloning
We sequenced bacterial clones from a total of four different

samples (cloning results are summarized in Table 6). We initially

targeted 100 clones per sample. In the case of two samples, we

matched sequences to all alleles identified during STC after 5 and

34 clones respectively, although we continued sequencing up to 53

and 57 clones to catch any additional rare alleles potentially

missed by STC. We found perfect congruence between the

sequences identified by cloning and by STC in these two samples.

We managed to isolate and sequence only 5 and 9 clones for the

latter two samples due to bacterial contamination. For both of the

partially cloned samples, all the clones exactly matched alleles

found by STC, except in one case where a clone was clearly a

chimeric recombinant of two other sequences present in the

sample. However, due to the limited number of clones sequenced,

we were only able to match 4 of 6 and 5 of 11 alleles identified by

STC in those two samples. Our cloning was able to identify a

Figure 4. Negative correlation between average cluster size
and frequency of dropping. Each point indicates a single allele. Only
alleles that were dropped in at least one sample are plotted (n = 43).
Cluster size is calculated as the average of the proportion of reads
represented by the allele among all samples containing the allele. The
solid line indicates the best-fit linear regression. The 95% confidence
band for the regression is indicated in gray. Alleles associated with the
‘‘divergent’’ allele cluster (see Figure S2) are filled in black.
doi:10.1371/journal.pone.0100587.g004
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singleton allele present in only one sample in our run (allele #7059

in sample ID 1368), suggesting that, in principal, singleton alleles

identified by STC are not necessarily artifacts of the sequencing

process. Overall, none of the cloning results contradict any of the

results from STC genotyping, albeit in a limited number of

samples.

Duplicated Samples
We originally amplified 21 different samples in different PCR

reactions in order to compare the repeatability of the STC

algorithm on the same samples (hereafter duplicates are referred to

as ‘‘B’’ samples, Table S2). The results from our duplicated

samples are summarized in table 7. Of those 21 samples, only 6

generated enough reads (.79) in both the A and B samples to be

genotyped in duplicate. STC produced identical genotypes in the

A and B samples in 2 of the 6 duplicate pairs. In 3 of the remaining

4 pairs, the B sample was missing allele #83 or #655, two of the

most frequently dropped (and divergent) alleles mentioned

previously. In one case (sample ID 403), the B sample had one

read representing the missing allele #83, but the cluster was not

large enough to be good or to be added during phase 4 (i.e. at least

3 reads in total). In the last duplicated sample (sample ID388), all

three dropped alleles in the A sample (#83, #162, and #103)

were not present in the B sample, suggesting that low efficiency

accounts for their disappearance from the B sample as well.

Overall, STC consistently identified the same true alleles in

duplicate samples, with the exception of alleles that were identified

(by STC) as alleles that tend to be dropped at high frequency.

Additionally, it was not always the duplicate with more reads in

which more alleles were identified, although alleles were generally

not missing from duplicates that had at least 200 reads (Table 7).

This implies (not surprisingly) that increasing the read number

helps to reduce the likelihood of missing alleles that amplify at low

efficiency. In fact, our duplicate results suggest that the frequently

dropped alleles may, in fact, be missing (i.e. not be genotyped

despite being present in the genome) at fairly high rates in samples

with a small number of reads.

Relationship between library size and allele number
The correlation between sample library size (number of reads)

and allele number ranged from r = 0.12 to r = 0.29 in the four

populations (Fig. 5). The correlations were significantly different

from zero in two of our four sampled populations, and marginally

so in another (Fig. 5), indicating that the estimated number of true

alleles generally increased with sample library size. Specifically, the

expected number of true alleles at 80 reads and at 1000 reads

increased by 0.8 alleles at the lowest (Farewell Stream) and by 2.1

alleles at the highest (Roberts Stream). Recalculating the

correlations after removing dropped alleles from the analysis

resulted in non-significant correlations that are closer to zero for

all four populations (Fig. S3). Overall, these results suggest there

may have been some bias introduced by variation in read number

with samples tending to miss alleles up to a certain minimum

library size.

To determine whether increasing the minimum sample library

size could eliminate the correlations between library size and allele

number we repeated the above correlation estimations for all four

populations using a range of minimum samples sizes (80 to 600

reads). In all populations, the correlation coefficient decreased as

the minimum sample size increased, although the extent and rate

of decrease varied among populations (Fig. 6). For both Roberts

Stream and Farewell Lake, the correlations remained above

r = 0.25 and were significant up to ,200 read minimum, at which

point the correlations began to drop and become statistically
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indistinguishable from zero. In the other two populations

correlations were lower than 0.25 and remained statistically

insignificant no matter the minimum library size used. Overall,

these results suggest that, at less than 200 reads, some samples may

be missing alleles, but that above 200 reads the bias introduced by

sample library size was likely reduced.

Statistical comparisons between populations
Both population pair (Roberts vs. Farewell, F = 6.99, df = 1,

P = 0.008) and habitats (lake vs. stream, F = 9.53, df = 1, P = 0.002)

differed from each other in the mean number of alleles per

individual fish (Fig. 3). In particular, the Roberts fish had, on

average, 0.53 fewer alleles than Farewell fish (6.93 vs. 6.39), while

stream fish had, on average, 0.67 fewer alleles than lake fish. The

interaction between pair and habitat was not significant (F = 0.22,

df = 1, P = 0.64), indicating that magnitude of the difference

between lakes and streams did not depend on the pair.

Our populations also differed from each other in their overall

MHC allele compositions (Fig. 7). Our two pairs were marginally

significantly different from each other (wald = 9.73, P = 0.08) while

lakes and streams were clearly significantly different in MHC allele

composition (wald = 15.5, P,0.001). There was also a significant

interaction between pair and habitat (wald = 6.51, P,0.001),

which shows that the alleles were not diverging in frequency

between habitats in a parallel fashion among our two pairs.

In addition to the overall significant differences, we also found a

number of alleles within each pair that differed significantly in

frequency (percentage of individuals where the allele was found)

between habitats (Fig. 7, Table S6, S7). In Roberts we found 28 (of

134) alleles that differed significantly in frequency at a= 0.05, of

which ten remained significant after controlling for multiple

comparisons. Six of these (#40, #265, #347, #336, #103 and

#132) were significantly more common in Roberts Lake whereas

the other four (#120, #298, #670 and #707) were significantly

more common in Roberts Stream. In Farewell we identified 21 (of

128) alleles that were significantly different in frequency between

the two habitats, of which seven remain significant after

controlling for multiple comparisons. Four were more frequent

Figure 5. Correlations between allele number and library size.
Each point indicates a genotyped sample. Samples with more than
1000 reads were sub-sampled to 1000 reads. No B (duplicate) samples
were included to avoid pseudo-replication. The lines indicate the best-
fit linear regressions for each population. Solid lines indicate
correlations that are statistically significant at a= 0.05. Dashed lines
indicate correlations that are not statistically significant. The 95%
confidence bands for each regression are indicated in gray.
doi:10.1371/journal.pone.0100587.g005

Figure 6. Changes in the correlation between library size and
allele number with different minimum sample library sizes. The
correlation coefficients shown in figure 5 were recalculated at
increasing minimum sample library sizes. Black circles denote statisti-
cally significant (a= 0.05) correlations, whereas gray circles denote
statistically insignificant correlations. The dotted line indicates a
correlation of zero. The size of the circles is proportional to the sample
size for each correlation.
doi:10.1371/journal.pone.0100587.g006

Figure 7. Differences in allele frequencies between lakes and
streams. Allele frequency is calculated as the proportion of individuals
carrying each allele in each population. Points closer to the dotted line
indicated alleles with frequencies similar in the lake and stream
populations. Red circles indicate alleles that were significantly different
in frequency between lake and stream habitats (within pairs). Blue
circles indicate insignificant differences in frequency. Filled black circles
indicate that the allele was significantly different after controlling for
multiple comparisons (false discovery rate = 5%). Note that frequencies
are plotted on a logit (non-linear) scale.
doi:10.1371/journal.pone.0100587.g007
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in the stream (#175, #182, #655 and #659), while the other two

(#1850 and #269) were more frequent in the lake. Taken

together, these results suggest lake and stream populations have

diverged in the relative frequency of certain MHC alleles

(sometimes quite substantially) despite a lack of physical barrier

to movement between habitats and previous evidence from neutral

markers for gene flow between similar paired lake and stream

populations [79].

Of the alleles that were significantly different in each pair after

controlling for multiple comparisons, our sub-sampling analysis

indicated that genotyping only half as many samples would allow

us to find the same significant differences between 0 and 91.8% of

the time for individual alleles in Roberts (Table S6) and between 0

and 77.1% of the time for individual alleles in Farewell (Table S7).

Extending the analysis to alleles that were significantly different

before adjusting p-values for multiple comparisons, we found

significant differences in as few 0.2% of subsamples in Roberts and

0% in Farewell. Using STC thus appears to provide substantially

more power for testing hypotheses about MHC allele frequency

differences (and presumably other tests where power can be

increased by increased sample size) when compared to methods

where only half as many samples can be genotyped, provided the

accuracy of the genotyping was roughly equal between the two

methods.

Discussion

Next generation technologies are quickly replacing traditional

sequencing and conformation based approaches as the methods

most suitable for sequencing multi-locus genes like those of the

MHC [51,52,80]. In this paper we have proposed a new

bioinformatic method for genotyping MHC genes using NGS

technology and applied it successfully to a large sample of 295

threespine stickleback. A handful of methods for correctly

genotyping MHC using NGS have been proposed in the last

few years [44,45,53,80]. These methods have taken standard

quality control approaches typically applied to cloning and

sequencing and applied them to the output of next generation

sequencers. The stated goal of these approaches was to use

frequency and similarity criteria to correctly classify sequences as

either artifacts or alleles, much as one would with sequences

derived from individual clones. STC represents not just a variation

or improvement on these methods, but offers a qualitatively

different approach to genotyping. STC takes full advantage of the

increase in sequence data acquired during next-generation

sequencing by using a clustering algorithm to group together

similar sequence variants. Because all sequences, artifactual or not,

are derived from allelic sequences originally present in the sample,

there is information in the artifactual sequences as well that can be

used in genotyping alleles.

Previous approaches to genotyping MHC genes using next-

generation sequencing technologies have typically struggled with

two problems. First, there is a range of read frequencies within

which there will be a substantial number of both true allelic

sequences and artifactual sequences, making it difficult to

adequately balance the rate of false positives and false negatives

during genotyping. Second, it can be difficult to distinguish

whether two similar, but relatively frequent, sequences represent

two alleles or one allele and one artifact derived from that allele.

One recent previous approach [53] has proposed solving these

problems by running duplicates of every sample, which, while

effective, substantially reduces the number of samples that can be

successfully genotyped in a given sequencing run. STC is able to

overcome these problems in a number of different ways. First, true

alleles will usually generate distinct clusters no matter what their

frequency (unless they are just a few SNPs away from another true

allele), whereas artifacts will generally cluster with the alleles from

which they are derived unless they are chimeric or otherwise

extremely error ridden. Second, read frequency criteria can be

applied within clusters to reliably distinguish clusters that represent

two alleles versus one. Note that this discrimination occurs not just

during the clustering in phase 3, but is dealt with implicitly in

phase 2 during sequence combination, where frequent, but

obvious, artifacts are combined with potential alleles based on

the error profiles of the given NGS technology. Finally, STC

allows the user to be relatively conservative in applying allelic

status during phase 3, thus reducing false positives, and then allows

the user to recover many of the false negatives that may have

dropped out in the subsequent phase 4, if those false negatives are

found in other individuals from a population.

Sample Library Size
One concern of previous authors has been to ensure that

enough reads are present in a given sample library to ensure

accurate genotyping. Previous methods have taken a probabilistic

approach based on multinomial distributions to determine the

minimum number of reads required to estimate a genotype at

some level of confidence [45]. Sommer et al. [53] take this

approach a step further by incorporating estimates of relative

amplification efficiency into calculating minimum library sizes

necessary to ensure, for example, 99% probability of not missing

any alleles. While these recommendations are useful, especially

when sequencing an organism for the first time, we believe they

are too conservative for at least two reasons. First, Sommer et al.

[53] base their recommendations on the maximum expected allele

number (in our case 12) and the minimum relative amplification

efficiency of any allele to be included in an analysis (for which they

provide ways of estimation after genotyping). This effectively

targets the worst case scenario and likely overshoots the number of

reads necessary to genotype most of the samples in the library,

reducing the number of samples that can be genotyped in a given

sequencing run. Moreover, the minimum number of reads

required is highly dependent of the relative amplification

efficiencies, which cannot always be estimated a priori, and for

which there is going to be substantial variation between samples.

Second, minimum size recommendations assume that identify-

ing all alleles for all samples is necessary for accurately estimating

all the parameters or testing all the hypotheses one might be

interested in. This is not necessarily true. If the goal is to provide

estimates of population level diversity (i.e. how many alleles are

present in the population) having some samples with incomplete

genotypes due to having fewer reads is unlikely to change the

population estimate. In fact, in such situations it would be better to

aim for genotyping more samples than for increasing the number

of reads for each sample, which increases the chances of finding

rare alleles. Alternatively, if the final goal is to compare individual

level diversity with some other measured phenotype (i.e. parasite

burden), missing an allele in a few samples may alter the effect size

estimate only slightly. In those cases, one possibility would be to

use read number as a covariate in downstream analyses, or weight

individual allelic diversities by the number of reads. If the final

goal is to use the presence or absence of a given allele in

association tests with other phenotypes (i.e. parasite infection), a

small number of false negatives due to incomplete genotyping will,

at worst, reduce statistical power but is unlikely to bias associations

one way or the other. Our overall results suggest that having at

least 200 reads was sufficient for reducing the bias introduced by

small library sizes, although even this number may be too large if
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we remove the highly divergent, very low efficiency alleles from

the analysis. Ideally, we would recommend targeting at least 50

reads per allele for a sample with mean allelic diversity (i.e.

,target 350 reads per sample if the expected average allele

number of 7), or more as funds allow, because there will always be

variability in the number of reads per sample in any given run.

Amplification Efficiency
Even if library sizes are adequate for genotyping, it is possible

that some alleles may amplify with relatively lower efficiency,

either because of differences in the primer or amplicon sequence,

or because of differences in PCR conditions between reactions and

runs. STC allows for the identification of such alleles in two ways.

First, alleles that amplify with low efficiency will have, on average,

lower relative cluster sizes than other alleles. Second, alleles that

tend to amplify with low efficiency will be more likely to be

dropped during phase 3 before being added back to genotypes

during phase 4. We showed that cluster size and rate of dropping

in phase 3 were moderately negatively correlated in our data set,

and plotting the relationship suggested that a group of highly

divergent alleles were especially likely to be dropped (Fig. 4, Fig. 5).

As suggested by our results from duplicated samples, it is possible

that, in many cases, these alleles were not only dropped during

phase 3, but were completely absent from some sample libraries. If

the alleles in this group originated from a single divergent locus, it

would mean that in 52 of 302 samples we did not identify any

alleles from this locus.

One of our divergent alleles (#83) has been previously reported

by Lenz et al. [42], who found this sequence in every one of 23

cloned and sequenced three-spine stickleback samples (sequence

was previously uploaded to GenBank: AF395709). Similarly, the

same sequence was found in a highly conserved cluster of similar

sequences in a sample of 30 threespine stickleback and in a sample

of 30 nine-spine stickleback (Pungitius pungitius) [33]. These

authors speculated that these sequences, because of their lack of

diversity among individuals, could potentially originate from an

invariant MHC class-II like locus involved in antigen processing

[81]. Blasting these sequences against the published stickleback

genome [61] reveals that they all clearly map to a single MHC

class II locus (located on linkage group VII) with associated

expressed sequence tags (ESTs). Using a comparative approach

among teleosts, Dijkstra et al [60] argue that this locus is, in fact, a

classical MHC class II locus (DB type) and not an MHC class II-

like locus (DM type) that are thought to be involved in antigen

processing. In our data set, this cluster of divergent alleles share,

on average, only 65% sequence similarity with other class II

alleles, contain no frame shifts (except in one case) or premature

stop codons, and retain enough of the forward and reverse primer

sequences to be amplified in most cases. However, without further

information it may be difficult to determine whether these alleles

are traditional class II or class II-like alleles, but no evidence

presented here would suggest they do not originate from a normal

MHC class II locus. One possible explanation for their lack of

genetic diversity is that their isolated genomic location relative to

other MHC class II loci [60] may not predispose them to gene

conversion or recombination events, which is thought to be one of

the primary generators of MHC allelic diversity [35,82,83].

Single Read Alleles
Aside from stochastic or amplification bias, cases where alleles

are represented by only one or two reads could also result from

sequencing errors in the barcodes such that reads are assigned to

the incorrect sample (fairly unlikely given the redundancy of our

barcodes). Alternatively, a very small amount of contamination

during PCR setup could introduce alleles from other samples into

the PC template. Previous approaches to genotyping have

required at least three reads of a given sequence in at least two

samples to consider it as a possible true allele [45,46]. In contrast,

STC includes no such a priori filter. Although clusters must pass a

size threshold before being considered good clusters (and thus true

alleles), STC includes a cross-checking step that allows users to

include small clusters as true alleles if they appear in larger clusters

in other samples. In many cases this will result in a decrease in

false negatives, because alleles that amplify at with low efficiency

will often be represented by only a few reads, especially in sample

libraries of small to moderate size. In theory, small clusters

represented by only a single read could be included as true alleles.

We leave it to the user to decide how best to deal with such cases.

We have taken the conservative approach of only adding small

clusters as dropped true alleles if the total number of reads in the

cluster is at least three. This is superficially similar to previous

approaches, but note that only the cluster must contain at least

three reads but that the reads do not have to represent the same

sequence. Note also that, in STC, a sequence could be represented

by two reads and be combined with a number of other sequences

during phase 2 to increase its total read count well above three. An

alternative approach would be to omit single read and double read

clusters only when they do not represent low-efficiency alleles (as

defined by the user based on average cluster sizes or frequency of

dropping out during phase 3). A more probabilistic approach

could, after phase 4, use multinomial probability distributions to

omit clusters that would not occur in 95% of sequencing runs,

assuming the same library size and number of alleles.

Alternative Sequencing Technologies
An important feature of STC is that it can be applied, in theory,

to any data set of MHC allele sequences (or other multi-allelic

amplicon from a gene family) generated by NGS technology as

long as 1) many reads can be generated for individual samples and

2) individual sample libraries can be subset from the entire library

using barcoding or other techniques. As other sequencing

technologies increase their average read lengths, researchers will

likely begin to shift away from pyrosequencing to alternative

technologies (i.e. Illumina). There are a number of issues to

consider when applying STC to data sets generated using such

alternatives. First, Illumina sequencing typically produces many

more reads per sequencing run than does pyrosequencing.

However, sequencing facilities can often target a very specific

number of sequences with barcoding, and thus users should be

able to specify a smaller target number of reads based on the

number of samples and desired coverage. Second, Illumina

sequencing is more prone to substitution errors than to indel

errors. In phase 2 of STC, sequences are combined when they are

very similar but of different lengths, meaning with Illumina data

few sequences may be combined. Future implementations of STC

for Illumina data could skip phase 2 entirely, or phase 2 could be

modified to combine sequences where a single substitution results

in the creation of an open reading frame (i.e. a stop codon). Third,

error rates tend to be an order of magnitude lower (0.3–4% versus

12%) than with pyrosequencing. This would mean that the

proportion threshold (c) will likely need to increased to something

around 9:1 rather than 4:1 as currently implemented for

pyrosequencing. One of the overall advantages of STC is its

flexibility, giving the user the ability to adjust the STC parameters

based on the number of samples, the number of amplified loci, and

expected error rates. Although we have not yet implemented STC

for non-pyrosequenced data, we see no reason why STC could not
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be applied directly to Illumina generated sequence data with

minimal modifications to the STC protocol.

Future Directions
One of the advantages of STC is that all the reads present in the

sample library contribute to genotyping. This could provide a

number of potential advantages beyond simply genotyping. First,

by grouping reads into clusters that derive from true alleles, a

better estimate of the relative amplification efficiencies could be

estimated than if relative efficiencies are estimated only from reads

that match alleles directly [45,53]. Second, current methods do

not allow for estimation of allele and locus copy number within

samples. Alleles may be present as homo or heterozygotes, or may

be present at more than one locus due to gene duplication

[25,32,37]. The number of loci may also vary between individuals,

even within a single populations [16]. Currently, only the presence

or absence of alleles can be inferred when loci are amplified

simultaneously, and only a maximum MHC locus number can be

inferred from the most diverse genotyped samples. It is possible

that the data provided by grouping reads into clusters could be

used in a full probabilistic model to simultaneously infer

amplification efficiencies, allele copy, and locus copy number

across all samples simultaneously. Such a model is beyond the

scope of this paper, but we note that Dirichlet processes have been

used as priors in Bayesian models infer HIV haplotype number

from DNA isolated from infected patients [84,85]. We believe the

success of these models suggest that STC, or similar, recently

introduced methods [86], may, in the future, provide researchers

not only with high-throughput genotyping of MHC in non-model

organisms, but provide a fuller picture of multi-locus MHC

genotypes as well. For the present we offer STC as an efficient,

accurate, and extremely flexible method for genotyping MHC

(and other multi-locus templates) using NGS which produces data

that can be applied to a variety of downstream parameter

estimation and hypothesis testing applications.

Supporting Information

Figure S1 Negative correlation between average good
cluster size and frequency of dropping. Each point

indicates a single allele. Calculation of cluster size averages do

not include clusters originally dropped in phase 3. Each point

indicates a genotyped sample. Samples with more than 1000 reads

were sub-sampled to 1000 reads. No B (duplicate) samples were

included to avoid pseudo-replication. he solid line indicates the

best-fit linear regression. The 95% confidence band for the

regression is indicated in gray. Alleles associated with the

‘‘divergent’’ allele cluster (see Figure S2) are filled in black.

(TIFF)

Figure S2 Unrooted, neighbor-joining tree of all alleles
appearing in at least 10 samples. Dotted rectangle highlights

group of highly divergent sequences (see also Table S5), all of

which appear to amplify with lower efficiency than most other

alleles. Three other alleles (two singletons) also belong in also

group with these alleles, but were present in fewer than 10

samples. Scale bar indicates 1% sequence similarity (,2 bp).

(TIFF)

Figure S3 Correlations between good cluster number
and minimum library size. Plots are identical to figure 5,

except that the y-axis shows only alleles identified through phase 3

(i.e. good, but not dropped, clusters). Samples with more than

1000 reads were sub-sampled to 1000 reads. Points represent

individual genotyped samples. No B (duplicate) samples were

included to avoid pseudo-replication. The lines indicate the best-fit

linear regressions for each population. The confidence bands for

each regression are indicated in gray.

(TIFF)

Table S1 List of barcodes used for 454 sequencing.

(XLS)

Table S2 Genotyping results for individual samples.

(XLS)

Table S3 Clustering results for individual sequences
from sample X.

(XLS)

Table S4 Combined pairs of sequences from sample X.

(XLS)

Table S5 Table of alleles identified across all samples.

(XLS)

Table S6 Allele frequencies, G-tests, and sub-sampling
analysis results (Roberts). G-statistics are from tests of

whether the lake and stream differ significantly in allele frequency

for each given allele. The proportion of sub-samples where sample

size was divided in half (total = 10000) where the allele was

statistically significant between habitats (a= 0.05) is given. Both p-

values and proportion of significant sub-samples are shown when

p-values are unadjusted and adjusted using a false discovery rate of

5%.

(XLS)

Table S7 Allele frequencies, G-tests, and sub-sampling
analysis results (Farewell). G-statistics are from tests of

whether the lake and stream differ significantly in allele frequency

for each given allele. The proportion of sub-samples where sample

size was divided in half (total = 10000) where the allele was

statistically significant between habitats (a= 0.05) is given. Both p-

values and proportion of significant sub-samples are shown when

p-values are unadjusted and adjusted using a false discovery rate of

5%.

(XLS)

File S1 R script (runSTC.R) for running phases 2–4 of
STC. This script (along with the accompanying functions, will

allow users to run phases 2–4 of STC. A more thorough version of

this file is available at the Dryad Digital Repository (http://dx.doi.

org/10.5061/dryad.4fn4g), along with a README.txt file that

contains more information on using the scripts and example data

files.

(R)

File S2 R functions to accompany the runSTC.R script
(File S1).

(R)
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