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Abstract

During dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI), it has been demonstrated that the arterial
input function (AIF) can be obtained using fuzzy c-means (FCM) and k-means clustering methods. However, due to the
dependence on the initial centers of clusters, both clustering methods have poor reproducibility between the calculation
and recalculation steps. To address this problem, the present study developed an alternative clustering technique based on
the agglomerative hierarchy (AH) method for AIF determination. The performance of AH method was evaluated using
simulated data and clinical data based on comparisons with the two previously demonstrated clustering-based methods in
terms of the detection accuracy, calculation reproducibility, and computational complexity. The statistical analysis
demonstrated that, at the cost of a significantly longer execution time, AH method obtained AIFs more in line with the
expected AIF, and it was perfectly reproducible at different time points. In our opinion, the disadvantage of AH method in
terms of the execution time can be alleviated by introducing a professional high-performance workstation. The findings of
this study support the feasibility of using AH clustering method for detecting the AIF automatically.
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Introduction

Cerebral perfusion describes the steady-state delivery of

nutrients and oxygen via blood to the brain tissue parenchyma,

and it comprises several cerebral hemodynamic parameters, i.e.,

cerebral blood flow (CBF), cerebral blood volume (CBV), and

mean transit time (MTT), which play important roles in the

diagnosis and management of many diseases [1–5]. At present,

several imaging techniques are used to analyze cerebral perfusion,

including positron emission tomography, single photon emission

computed tomography, and CT. However, most have the

disadvantage of using ionizing radiation. By contrast, magnetic

resonance imaging (MRI) does not have this shortcoming [6–9].

The technique of dynamic susceptibility contrast (DSC) using an

intravascular contrast agent is applied most frequently to the

quantification of cerebral hemodynamics [10]. This method

monitors the signal changes induced by the paramagnetic contrast

agent as it passes through cerebral vessels and a series of T2- or

T2*-weighted images are acquired over time [7,11,16].

According to indicator dilution theory, the quantification of

cerebral hemodynamics using the DSC-MRI technique requires

that these tissue voxel time courses are corrected for the tracer

concentration in an artery that feeds the corresponding part of the

brain, i.e., arterial input function (AIF) [12,13].In particular, to

evaluate the CBV, the tissue concentration curves are normalized

by the time integral of AIF [14,15], i.e.,CBV~

Ð
Ct(t)dtÐ

CAIF(t)dt
, and

the tissue concentration curve are deconvolved with AIF to

evaluate the CBF, as follows [2,6,15,16]:

CBF~ max½CBF|R(t)�~ max½Ct(t)6
{1CAIF(t)� ð1Þ

where Ct(t) is the time-concentration curve of the contrast agent

in the tissue voxel of interest (VOI), R(t) is the fraction of the

injected tracer still present in the vascular at time t after an

infinitely short injection of a tracer, CAIF(t) is the AIF, and 6
{1

represents a deconvolution operation, which is highly sensitive to

the AIF shape [14].

Thus, it is very important to obtain a reliable AIF before the

subsequent quantification of physiologically relevant parameters

[14]. The original methods for AIF detection were based on the

manual extraction of a region of interest, such as the middle

cerebral artery (MCA) and internal carotid artery (ICA), which

depended on the user’s experience and subjective judgments,

thereby leading to low accuracy and consistency [1,8,17–19].

Thus, the development of an automatic AIF detection method has

been an interesting and demanding research problem. To identify

AIF automatically, Murase et al. and Mouridsen et al. proposed

techniques based on fuzzy c-means (FCM) and k-means clustering

algorithms, respectively [8,18]. The feasibility of these two

clustering algorithms for AIF detection was validated, but both

share the drawback that the analysis results are reliant on the

initialization of cluster centers, which result in poor reproducibility

at repetition of AIF measurements.
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The present study proposes a clustering method based on the

agglomerative hierarchy (AH) algorithm, which was described

briefly in the later section of present manuscript. The performance

of the AH method was compared with previously reported

methods using FCM and k-means clustering in terms of detection

accuracy, computational complexity, and calculation reproduc-

ibility. Computer simulation as well as clinical study was

performed to evaluate the feasibility of the novel method for

AIF detection.

Materials and Methods

All of the calculations and simulations were performed using an

off-line personal computer (Inter Core i3 M350 CPU processor,

2.27 GHz operating frequency, 2.0 GB RAM memory capacity,

Microsoft Windows 7 operating system). A MATLAB program

was developed in our department for AIF detection.

1. Clinical DSC-MRI perfusion data
Ethical clearance for this study was obtained from the Ethics

Committee at Shengjing Hospital, China Medical University (No.

2013PS113K), and written informed consent was obtained from

each participant before the study commenced.

Clinical DSC-MRI perfusion data were obtained from 42

healthy volunteers (aged, 23–69 years; average age, 49.5 years;

weight, 58614 kg; 27 males and 15 females). DSC-MRI

acquisition was performed using a 3.0 T whole-body MR scanner

with multichannel capabilities (MAGNETOM Verio; Siemens

Medical Solution, Erlangen, Germany). Perfusion imaging was

performed using a single-shot echo planar imaging (EPI) sequence

with the following parameters: TR = 1500 ms, TE = 30 ms,

matrix = 1286128, field of view (FOV) = 23623 cm, slice

thickness = 4 mm, spacing between slices = 5.2 mm, slice

number = 19, acquisition type = 2D, number of phase-encoding

steps = 127, transmitting coil = body, and flip angle = 90u.

Figure 1. Flowchart showing the automatic AIF detection processes applied to clinical DSC-MRI perfusion data in the present study.
doi:10.1371/journal.pone.0100308.g001

Figure 2. Comparison of AIFs obtained using different
clustering algorithms and the true AIF.
doi:10.1371/journal.pone.0100308.g002
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At the seventh time point, a gadolinium dose of 0.1,0.2 mmol/

kg (Gadovist; Bayer Schering Pharma AG, Berlin, Germany) was

administered, followed by an equal volume of saline flush, which

were both delivered at 4 ml/s. The horizontal part of the right

MCA was crossed by an imaging slice. Sixty-two whole-head

images were obtained (scanning time = 93 s) per subject. The

magnetization state was not steady at the beginning of perfusion

scanning, so the first two images were discarded, and time 0 was

assigned to the third volume acquired. Therefore, 60 volumes

were used for subsequent analysis.

2. Simulation scheme
To assess the feasibility of AH clustering method for AIF

detection, a simulation study was also conducted in the same

manner proposed by Peruzzo et al. [1] and Wu et al. [21], where a

‘true’ and a ‘false’ AIF was modeled. Partial volume effect (PVE)

was simulated using three kinds of tissues, normal gray matter

(GM), normal white matter (WM) and pathological GM. Typical

noise was added.

2.1 Simulated AIF. The AIF was modeled using the

following equation, which presented the shape and size obtained

by a standard contrast agent injection scheme [8,16].

CAIF(t)~
(t{t0)ae{(t{t0)=b twt0

0 otherwise

(
ð2Þ

where t0 represents the tracer arrival time,a is the measure of

inflow velocity steepness, and b is the washout velocity. A

recirculation process was added that comprised a copy of the

aforementioned function with a delay of td , which was convolved

with an exponential with a time constant of tr. We used values of

a = 3.0, b = 1.5 s, td = 8 s, tr = 30 s [1,6,8,16], and t0 = 26 s,

which approximated the arrival time of the contrast agent in our

clinical perfusion data.

2.2 Simulated tissue signal. The residue function R(t) was

modeled using a gamma-variate function, as follows:

R(t)~t| exp {
t

MTT

� �
ð3Þ

where MTT was calculated as CBV=CBF according to the central

volume theorem.

The concentration function of the contrast agent in a tissue

voxel Ct(t) was calculated using inversion formula of Eq. 1.

The concentration of the contrast agent was converted into the

MRI signal intensity using the following equation [15,16,21,22]

under the assumption that Ct is proportional to Delta R2*:

S(t)~S0|e{k|Ct(t)|TE ð4Þ

where S0 = 100 is the baseline signal intensity, k is a constant that

causes a 40% signal peak decrease from baseline with normal gray

matter (GM) after the tracer injection, which corresponds to the

values typically found in clinical cases, and TE is the echo time of

the scanning sequence. The signal time-intensity curves were

generated by simulating our real clinical perfusion data, where the

scanning duration was 90 s and TE = 30 ms.A sampling rate of 1s

was used.

Six true arterial voxels were included in the simulation study

and 16 false arterial voxels were simulated by varying t0 from 27 to

30 s, and td from 9 to 12 s in increments of 1.0 s. In addition, 440
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voxels representing normal GM tissue were simulated by setting

CBV = 4 ml/100 g, MTT = 460.33 s; 440 voxels that repre-

sented pathological GM tissue were simulated by setting CBV

= 3.3 ml/100 g, MTT = 1060.7 s;600 voxels that represented

normal white matter tissue were simulated by setting CBV

= 2 ml/100 g, MTT = 5.4560.33 s; and 400 voxels contaminated

by the PVE were simulated using linear combinations of a true

arterial signal and a signal for one of the different tissues, where

the weights were selected at random.

Finally, noise was added to 100 randomly extracted curves using

a previously reported technique [1,16]. Noise was modeled as a

zero-mean Gaussian function where the standard deviation (SD)

was selected to produce a signal-to-noise ratio (i.e., SNR = S0/

SD) of 20 as well as 40 and 60.

3. AIF calculation
3.1 AIF determination using simulated data. The AIFs

were calculated from the time-intensity curves of the simulated

signals as follows.

First, the signal intensity curves were converted into tracer

concentration curves, according to the following equation [6,7,18]:

C(t)~{
1

k|TE
ln (

S(t)

Sbaseline

) ð5Þ

where Sbaseline was the baseline signal intensity (i.e. t ,26 s), which

was obtained by averaging the pre-contrast signal. Next, two

previously used methods, i.e., k-means and FCM, were applied to

the converted data according to the mathematical principles

outlined in Refs 8 and 18, in which the parameter setting methods

for AIF detection are also described. The description of the

application of AH clustering is described briefly in the following.

The time-concentration curves that need to be clustered are

treated as a set of N items and the pairwise distance or similarity

between each two of the input vectors is calculated using the

Euclidean distance.

The iterative process of AH clustering is executed as follows.

1. Assign each item to a cluster to obtain N initial clusters.

2. Find the closest pair of clusters (shortest distance) and merge

them into a single cluster.

3. Calculate the distance between each two of the new clusters.

The distance can be computed using three different methods:

single-linkage, complete-linkage, and average-linkage. In the

present study, we apply average-linkage clustering, i.e., the

distance between one cluster and another cluster is considered

to be equal to the average distance between any member of one

cluster and any member of the other cluster.

4. Steps 2 and 3 are repeated until the desired number of clusters

is obtained.

As described in previous studies [1,8,18], the clustering number

was set to five. In general, the tracer time-concentration curves in

the arteries are characterized by a higher maximum concentra-

tion, an earlier maximum concentration, and a narrower full-

width half maximum (FWHM), which allows the arterial curves to

be distinguished from venous curves that appear wider with a later

bolus arrival, and tissue curves that are wider with a lower peak

height [1,7,17,18]. Thus, in order to determine which cluster best

represented the AIF automatically, several parameters related to

the mean curve of each cluster were calculated, such as the

Figure 3. Results of AIF detection based on different clustering methods. The first sub-figure showed the optimal slice image of the
randomly selected subject for clustering analysis which was extracted from the first volume of a series of dynamic images, and the right MCA was
highlighted by the white rectangle. Sub-fig. B, C and D illustrated the results obtained using AH, k-means and FCM clustering where the red points
represented the arterial areas.
doi:10.1371/journal.pone.0100308.g003

Figure 4. Comparison of the AIFs obtained using k-means,
FCM, and AH clustering methods.
doi:10.1371/journal.pone.0100308.g004
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maximum concentration (peak height, HP), time of maximum

concentration (time to peak height, TP), and FWHM, as well as a

measure (M) given by HP/[TP6FWHM]. The cluster with the

maximal M value was considered to contain arterial pixels and the

AIF was obtained as the mean curve [8].
3.2 AIF determination using clinical data. Fig. 1 shows a

flowchart that illustrates the automatic AIF detection process

applied to clinical perfusion data. The details of this process are as

follows.

First, due to the misalignments among the volume images at

different scanning time points caused by physiological fluctuations

(such as breathing and heartbeats) and the involuntary motions of

the subjects, which could corrupt the shape of the first passage and

result in serious quantification errors, all of the volumes were

aligned to the first pre-contrast volume using two well-known

software packages: SPM(http://www.fil.ion.ucl.ac.uk/spm/) (ver-

sion, SPM99)and INRIAlign 1.01 (http://www-sop.inria.fr/

epidaure/Collaborations/IRMf/INRIAlign.html) [23–25]. Image

smoothing can lead to bias during hemodynamic quantification, so

no smoothing operations were performed on any of the images.

Second, the slice image containing the right horizontal MCA

was extracted from the first dynamic volume image. The selection

of an optimal slice affects the accuracy of AIF determination.

Previous reports have shown that selecting a slice containing the

MCA causes fewer hemodynamic quantification errors than a slice

containing the ICA because the delay and dispersion are

minimized between the AIF measurement location and peripheral

tissue [1,12,13,26]. Eq. (5) was applied to the given slice to convert

the signal time-intensity curves into tracer time-concentration

curves.

Third, only a small fraction of the entire set of time-

concentration curves represented arteries. Most of the curves

correspond to other tissue voxels where the curves changed very

slightly. It is necessary to eliminate these weak pixels to optimize

AIF detection. Thus, we computed the area under each curve

(AUC) and excluded the PAUC percentage of curves with the

smallest areas [18].

Fourth, some irregular and distortion time-concentration curves

due to PVE bias, shifts in voxels, and physiological pulsations were

obtained during clinical data scanning. These rough and erratic

curves would lead to poor estimates of the true AIF. Therefore, the

following measure was used and the PRough percentage of the

curves with the largest integral values was discarded [18].

Roughness~

ðT

o

(C
00
(t))dt ð6Þ

Based on Mouridsen et al., the values of PAUC and PRough were

set to 0.90 and 0.25, respectively [18].

Fifth, the new criterion proposed by Bleeker et al. was utilized

to further reduce the effects of PVE on the AIF measurement

[17,26], which relies on the fact that the perfusion parameters

could be measured from the second passage as well as the first

passage. The new guidelines for the detection of PVE was carried

out by using the ratio of the steady-state integral value relative to

the AUC of the first passage, which should result in an equal value

for tissue and arterial responses. It should be emphasized that this

criterion was simplified in the present study. First, the first tracer

passage was fitted using a Gamma-variate function [27]. The area

under the fitted curves was calculated and abbreviated to AUC1st.

Second, the start point of the steady state was assigned to the first

time point after the peak that was ,30% of the maximum of the

time-concentration curve [28]. The 10 succeeding time points
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were then integrated and the result was abbreviated to AUC2nd

[17]. Finally, the ratio of AUC2nd to AUC1stwas calculated for all

of the remaining curves, and curves with ratios that fell outside the

range of acceptance (mean ratio 620%) were considered to be

severely contaminated by PVE and excluded [17].

Finally, AH, FCM, and k-means clustering algorithms were

applied separately to the residual curves. The clustering number

was still set to five and the AIF curve was determined

automatically using the measure M = HP/[TP6FWHM] once

again.

4. Statistical analysis
The performance of the AH clustering method was evaluated

based on comparisons with the traditional k-means and FCM

algorithms, which are currently applied methods for AIF

detection.

4.1 Statistical analysis of simulated data. Statistical

analyses were performed using various shape parameters, such

as the FWHM, TP, and HP, to evaluate the AIF detection

accuracy [29]. Moreover, the PVE level was defined as the

percentage of non-arterial curves in clusters selected as arterial

curves [1]. A low PVE level indicated that the corresponding

algorithm performed well in distinguishing arterial voxels from

other tissue elements. In general, an estimated AIF with a lower

PVE level had a greater HP and a smaller FWHM, while an earlier

TP indicated that the relevant algorithm was affected less by bolus

delay and dispersion [29,30].

Second, the quantification of CBV depended on the AIF

integral, so the AUC was used as another important parameter to

assess the estimated AIF [1,29].

Finally, the difference between the estimated AIF and the true

AIF was computed as the root mean square error(RMSE):

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 ½(AIFestimate(ti){AIFtrue(ti))�2

n

s
ð7Þ

where n was the scanning duration (90 s).

4.2 Statistical analysis of in vivo measurements. First, in

the same manner as the simulation study, the accuracy of AIF

detection using the three different clustering methods was assessed

based on shape parameters (HP, TP, and FWHM), M values, and

AUCs.

Second, the calculation-recalculation reproducibility of each

method was evaluated by comparing the AIF results calculated

independently 100 times in succession. The robustness, which is

defined as the variance of AIF curves, was quantified using:

Robustness~
XN

i~1

XM
j~1

AIFi(j){
1

N

XN

i~1

AIFi(j)

" #2

, ð8Þ

where M = 60 represents the number of dynamic scanning

volumes and N = 100 is the number of repeated calculations [20].

Third, the calculation time for each clustering method was

recorded to determine the algorithm that could perform AIF

selection most rapidly.

The statistical analysis was performed using SPSS (SigmaStat,

2.03, Inc., Chicago, IL). The difference was investigated using a

paired-samples t-test, where P,0.05 was considered significant.

Figure 5. Comparison of reproducibility of the AIF detection using AH (A), FCM (B), and k-means (C) clustering methods. Each
algorithm was executed independently 100 times in succession, and the robustness values were respectively 0.0000 for AH, 0.0032 for FCM, and
0.0007 for k-means.
doi:10.1371/journal.pone.0100308.g005
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Results

1. Results of the simulation study
The results of the simulation study are shown in Fig. 2 and

Table 1. Fig. 2 shows a comparison of the estimated AIFs derived

from the three clustering methods and the true AIF when SNR

= 20. Table 1 shows the results of the statistical analysis.

Based on a visual inspection of Fig. 2, we can see that AH-based

method produced the nearest approximation to the true AIF and

this conclusion was validated quantitatively by the RMSE

indicator shown in Table 1. Table 1 also shows that the AH-

based AIF was affected least by PVE contamination. Compared

with the two previously reported clustering methods, AH

clustering method also produced a larger AUC, higher peak,

narrower FWHM, and a lower trend line at the tail, which also

demonstrate that AH method was affected less by PVE during AIF

detection [29–31].Moreover, TP occurred earlier with AH

clustering method than FCM and k-means algorithms, which

shows that AH method was affected less by tracer transport delays

[30]. Table 1 also shows that the M value of AH-based AIF was

much closer to that of the true AIF than both k-means-based and

FCM-based AIFs.

2. Results of the clinical verification
According to the processes described earlier, separate AIFs were

estimated by applying the three clustering methods to each

participant. A randomly selected subject (a 48-year-old female) is

used to illustrate the AIF detection performance of the different

algorithms (Figs 3 and 4). Figure 3 shows the same regions and the

different regions that were selected as arterial voxels using the

three different clustering methods. Similar arterial regions were

extracted and only minor differences were visible. Figure 4 shows

that compared with AH-based AIF, the AIFs determined using the

k-means and FCM methods were similar to those in the simulation

study, and they had smaller peaks and higher tails.

The statistical results for the 42 volunteers are shown in Table 2.

Table 2 indicates that the results of the clinical study had similar

trends to the simulation study, i.e., a higher HP, narrower FWHM,

earlier TP, larger AUC, and larger M values for AH clustering

compared with both FCM and k-means clustering methods. The

statistical result demonstrated that the HP of AIF based on AH

clustering method was significantly different compared with those

based on both FCM and k-means algorithms (P,0.05). There was

no significant difference in TP between AH and FCM methods,

and between AH and k-means methods (P.0.05). The difference

in FWHM was significant between AH and FCM methods (P,

0.05),but not between AH and k-means clustering methods (P.

0.05).There were significant differences in both the AUC and M

values between AH and FCM clustering, and between AH and k-

means clustering (P,0.05).These results indicate that AH algo-

rithm can obtain a more accurate AIF than each of the other two

methods [29,30].

Table 2 shows clearly that the execution times varied

enormously between AH and the other two methods, and the

difference was significant (P,0.05). Thus, high computational

complexity was an undesirable drawback of AH method during

AIF determination.

In addition, the calculation reproducibility of each AIF

detection method was addressed. Each algorithm was executed

100 times independently. Table 2 shows that the robustness

indicator was zero with AH method but greater than zero with

FCM and k-means methods, which demonstrates that the AIFs

were perfectly reproducible with AH algorithm but not with FCM

and k-means methods. For the randomly selected example, the

same conclusion can be derived intuitively from Fig. 5.

Discussion

The quantification of cerebral perfusion can provide important

information during clinical diagnosis and treatment of several

pathologies related to cerebral hemodynamics. However, DSC-

MRI quantification requires advance knowledge of the AIF. The

conventional manual selection method for AIF is time-consuming

and experience-dependent, which results in irreproducible AIF

detection results [1,17]. Thus, an automatic and accurate method

for AIF detection is essential in routine clinical practice.

In this study, we developed a novel approach based on AH

clustering to measure the AIF. This method was verified using

both simulated and clinical data based on comparisons with two

previously reported methods for AIF detection, i.e., k-means and

FCM clustering techniques, in term of detection accuracy,

computational complexity, and calculation-recalculation repro-

ducibility. The true AIF was present in the simulated section and

we conducted a comparison to determine the algorithm that

performed the best at AIF selection. Figure 2 shows that AH-based

AIF obtained results that were closer to the true AIF than the

FCM- and k-means-based AIFs. Table 1 also shows that the

parameters derived from AH-AIF were closer to those for the true

AIF. Thus, the AIF detection performance of AH clustering was

better than that of the FCM and k-means methods. Similar results

were obtained in the clinical study. Compared with other tissue

curves, it is expected that the AIF curves represent the shape

features with a higher HP, narrower FWHM, lower PVE, earlier

TP, and larger AUC, etc. Hence, AH clustering yielded AIFs more

in line with the expected AIF [30,31]. Maybe this is dependent on

two good qualities of AH method, clustering analysis and iterative

procedure [1]. First, cluster analysis can select nodes with similar

kinetics, as it is based on Euclidean distance computed for whole

time-concentration curves. Thus, an increased robustness against

noise of AH method is achieved, since all noisy voxels have

different kinetics. Second, the iterative approach is another

advantage of the AH clustering method, which differs from k-

means and FCM clustering. In this study, although k-means and

FCM clustering methods used the same cluster analysis, it

performed only two processing steps, which might result in the

consequence that they were more influenced by PVE as shown in

Table 1. Compared to k-means and FCM clustering the AH

method produced AIFs that were more in accordance to what was

expected. Irreproducible AIFs will lead to unstable quantification

of CBF, so the reproducibility of each algorithm was assessed using

the same batch of data. The results showed that AH method had

perfect reproducibility, whereas k-means and FCM methods did

not yield stable AIF detection results, which may be related to their

sensitivity to the randomly selected initialization parameters. This

suggests that AH clustering algorithm is preferable to the two

previously reported clustering methods for AIF determination.

In addition, we addressed the computational time requirement

of each method. The results demonstrated that the mean

execution time was significantly longer with AH method. This

may be a problem in clinical practice, but it should be emphasized

that this research was conducted using a standard laptop and its

limited CPU operating frequency and memory capacity meant

that the calculation speed was low compared with a high-

performance workstation dedicated to image processing. In our

opinion, the disadvantage of a relatively long execution time might

be eliminated if the AH-based method was performed on a
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professional workstation, or at least alleviated, and sometimes it is

worthwhile to achieve more accurate AIF.

It should be noted that our research had three main limitations.

First, we limited our research to the area around the MCA, which

is the most frequently used region. In addition, only a global value

was calculated. However, the AIF should be obtained for each

pixel, i.e., local AIF values, to reduce the effects of the tracer delay

and dispersion on hemodynamic quantification. As reported by

Kjølby et al., however, PVE will affect the local AIF selection and

quantitative perfusion estimates [39]. Thus, only a few attempts

have been made to perform local AIF measurements [4,23,32].

For the global AIF, many different deconvolution approaches can

be used to reduce the impacts of tracer delay, including time

insensitive block-circulant singular value decomposition (cSVD)

and nonlinear stochastic regularization (NSR) [4,21,33–38].

Second, we only focused on evaluating the performance of the

three different AIF detection methods and we did not calculate the

absolute values of the hemodynamics, such as CBF, CBV, and

MTT. In fact, the AIF is only an interim result relative to the final

hemodynamic estimates. We did not attempt final hemodynamic

quantification because several different deconvolution approaches

are available, which have various effects on CBF quantification.

Third, all of the participants in the clinical study were healthy and

subjects with nervous system diseases were not included, such as

acute stroke, arterial stenosis, and other abnormalities.

In conclusion, AH method can obtain absolutely robust AIFs

more in line with the expected AIF than the traditional k-means

and FCM clustering methods. Given its computation complexity,

however, it will be necessary to perform AH clustering algorithm

using a professional workstation to reduce the runtime.
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