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Abstract

Objective: It has been suggested that autoantibodies in systemic sclerosis (SSc) may induce the differentiation of cultured
fibroblasts into myofibroblasts through platelet-derived growth factor receptor (PDGFR) activation. The present study aims
to characterize the effects of SSc IgG on vascular smooth muscle cells (VSMCs) and to determine if stimulatory
autoantibodies directed to the PDGFR can be detected, and whether they induce a profibrotic response in primary cultured
VSMCs.

Methods: Cultured VSMCs were exposed to IgG fractions purified from SSc-patient or control sera. VSMC responses were
then analyzed for ERK1/2 and Akt phosphorylation, PDGFR immunoprecipitation, cellular proliferation, protein synthesis,
and pro-fibrotic changes in mRNA expression.

Results: Stimulatory activity in IgG fractions was more prevalent and intense in the SSc samples. SSc IgG
immunoprecipitated the PDGFR with greater avidity than control IgG. Interestingly, activation of downstream signaling
events (e.g. Akt, ERK1/2) was independent of PDGFR activity, but required functional EGFR. We also detected increased
protein synthesis in response to SSc IgG (p,0.001) and pro-fibrotic changes in gene expression (Tgfb1 +200%; Tgfb2 223%;
p,0.001)) in VSMCs treated with SSc IgG.

Conclusion: When compared to control IgG, SSc IgG have a higher stimulation index in VSMCs. Although SSc IgG interact
with the PDGFR, the observed remodeling signaling events occur through the EGFR in VSMC. Our data thus favour a model
of transactivation of the EGFR by SSc-derived PDGFR autoantibodies and suggest the use of EGFR inhibitors in future target
identification studies in the field of SSc.
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Introduction

Systemic sclerosis (SSc) is a chronic disorder of connective tissue

characterized by autoimmunity, inflammation, fibrosis and vas-

cular disease. Although the aetiology of this disease is poorly

understood, possible contributory factors include agonistic auto-

antibodies that target receptors, which in turn may contribute to

the SSc pathology. One such autoantibody has been reported to

target and activate the platelet-derived growth factor receptor

(PDGFR) on fibroblast cells, leading to downstream signaling

activity and culminating in pro-fibrotic events [1]. Such autoan-

tibodies were not detected in any controls but were in all SSc
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patients tested and also in graft-versus-host disease [2], two

conditions characterized by fibrosis and autoimmunity. The B-cell

depleting drug Rituximab, which may have beneficial effects on

lung function and skin fibrosis in SSc patients [3], has been

associated with reduced PDGFR phosphorylation in SSc skin [3],

supporting the possibility of agonistic anti-PDGFR-autoantibodies.

In contrast, others have reported that both healthy and SSc

patients possess such autoantibodies, and/or that such autoanti-

bodies do not lead to signaling activity [4–6]. PDGFR-activating

autoantibodies have also been reported in systemic lupus

erythematosus (SLE) patients [7].

Proliferative and obstructive vasculopathy is common in SSc.

Most patients experience Raynaud’s phenomenon, and many

develop vascular ulcers of the extremities [8]. Pulmonary arterial

hypertension (PAH) in SSc is a leading cause of mortality and

affects 10–12% of patients [9]. PAH is characterized by increased

pulmonary vascular resistance and features uncontrolled endothe-

lial and vascular smooth muscle cell (VSMC) growth, vasocon-

striction and extracellular matrix accumulation, thus obstructing

the pulmonary arterial circulation [9,10]. VSMCs are known to

express PDGFRs and in these cells PDGF is a mitogen [11].

Moreover, PDGFR-b immunoreactivity was reported to be more

prevalent and intense in the pulmonary vessels of a SSc-PAH

group than in controls [12]. Thus, if PDGFRs on VSMCs are

activated by anti-PDGFR autoantibodies present in the circulation

of SSc patients, this could contribute to the ubiquitous vascular

pathology of the disease. We therefore sought to determine if SSc

sera contain antibodies that stimulate VSMCs and if so, whether

these antibodies are directed to PDGF receptors.

It is also noteworthy that the expression levels of both the

PDGFR and epidermal growth factor receptor (EGFR) are

significantly increased in the vasculature of SSc-PAH patients

compared to controls [12]. In a molecular context, a certain

proportion of these receptors are expressed as heterodimers in

VSMCs and interestingly, the activation of early signaling events

by PDGF in these cells occurs through transactivation of the

EGFR via a process that is independent of PDGFR kinase activity

but dependent on EGFR kinase activity [13,14]. Thus, we

investigated whether the EGFR might play a role in VSMC

stimulation by SSc IgG. It is also known that Angiotensin II acts as

a growth factor and pro-inflammatory cytokine for cultured

VSMCs through binding to the Angiotensin II Type I receptor

(AT1R) [15,16]; thus this G protein-coupled receptor is recognized

as a major vascular remodeling effector [17]. Interestingly,

transactivation of the PDGFR by the AT1R has been shown to

be involved in VSMC signaling events [18]. Moreover, activating

anti-AT1R autoantibodies have been reported in SSc [19]. We

therefore also investigated the possibility that SSc IgG may

stimulate VSMCs through the AT1R.

Patients and Methods

Ethics Statement
All serum samples were obtained from patients or control

subjects who had provided written informed consent for the use of

their biological samples. The study was approved by the ethics

committee of the Université de Montréal (CERSS#919) and by

the ethics board of the SMBD Jewish General Hospital, Montreal,

Quebec, Canada. Our use of animal-derived cells was approved

by the Animal Ethics Committee of the Université de Montréal

(protocol #09-156) and conformed to the Guide for the Care and

Use of Laboratory Animals.

Patients and biological samples
Serum samples from 23 SSc patients were obtained from the

biobank of the Canadian Scleroderma Research Group (CSRG),

maintained at the University of Calgary. For this study we

required that subjects have early (5 years or less since onset of first

non-Raynaud’s symptom) diffuse cutaneous SSc according to 1980

ACR preliminary classification criteria [20], and not be on any

immunosuppressive or steroid therapy. Prospective data collected

on each patient by their rheumatologists at the time of the patient’s

visit, as previously described [8], included: Modified Rodnan skin

score [21], Medsger vascular disease severity [22], presence of any

active vascular cutaneous ulcers, pulmonary hypertension (PH;

defined as an estimated systolic pulmonary arterial pressure

(PAP)$45 mmHg on echocardiogram which correlates strongly

with right heart catheter studies [23,24]), and presence of anti-

centromere, anti-topoisomerase, and anti-RNA Polymerase III

antibodies. Anti-centromere antibodies were detected by indirect

immunofluorescence staining of HEp-2 cell substrates (Immuno-

Concepts Inc., Sacramento, CA), while anti-topoisomerase anti-

bodies were measured by an addressable laser bead immunoassay

using an INOVA ENA 9 QuantaPlex kit (INOVA Diagnostics,

San Diego, CA) and a Luminex 100 illuminometer (Luminex

Corp., Austin, TX), and antibodies to RNA Polymerase III were

detected by ELISA (INOVA) [25].

Controls from CSRG-participating clinics consisted of five age-

and sex-matched otherwise healthy individuals with osteoarthritis

who were not on corticosteroids or immunosuppressives, seven

normal healthy individuals, one SLE patient and one sample from

a normal pooled blood bank.

Immunoglobulin purification
IgG was purified from serum using Immobilized Protein A/G

(Pierce, Rockford, IL) according to manufacturer recommenda-

tions, scaled down for use with Handee Mini Spin Columns

(Pierce). All binding, wash and elution steps were performed by

gravity-flow. The flow-through was reapplied three times, and the

bound protein washed three times with 1 M NaCl and 8 times

with binding buffer (Pierce). Eluted IgG was immediately

neutralized with Tris-HCl (pH 8.5) and concentrated using

Amicon 100 kDa centrifugation tubes (Millipore, Billerica, MA)

according to manufacturer instructions, thereby excluding any

growth factors or other molecules smaller than 100 kDa. To verify

the efficiency of IgG purification and the quality of purified IgG

samples, eluates were examined by 10% acrylamide SDS-PAGE

followed by Coomassie blue staining. A bicinchoninic acid (BCA)

assay (Pierce) was used to determine concentration of IgG samples.

Samples were aliquoted and stored at 280uC until required for

use in cell stimulation experiments.

Reagents, antibodies and pharmacological inhibitors
Recombinant human PDGF-BB and EGF were obtained from

Biosource (Camarillo, CA). Recombinant rat PDGF-BB and

recombinant human TGF-b1 were purchased from R&D Systems

(Minneapolis, MN). Angiotensin II was from Sigma (St. Louis,

MO). The following pharmacological inhibitors were used in our

study: PDGFR inhibitors AG1296 (Calbiochem, Gibbstown, NJ)

and imatinib mesylate (Alexis Biochemicals, San Diego, CA);

AT1R inhibitor irbesartan (a kind gift from Dr. Pierre Moreau,

Université de Montréal); and EGFR inhibitor AG1478 (Biomol,

Plymouth Meeting, PA).

Antibodies specific for Phospho-p44/42 MAPK (pERK1/2)

(Thr202-Tyr204) and p44/42 MAP Kinase (ERK1/2), Phospho-

Akt (Ser473), Akt, Phospho-EGF Receptor (Tyr845) and EGF

Receptor (C74B9) were from Cell Signaling Technology (Beverly,
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MA). Anti-Mouse CD140a (PDGFR a) and CD140b (PDGFR b)

Functional Grade Purified neutralizing antibodies were obtained

from eBioscience (San Diego, CA). Anti-PDGFRa and b
antibodies were from Upstate Biotechnology (Lake Placid, NY).

Cell culture
Aortic VSMCs were isolated from Wistar rats by explant and

maintained in high-glucose DMEM supplemented with 10% fetal

bovine serum (FBS). MRC5 cells were obtained from ATCC, and

cultured according to supplier recommendations. Cells at 75%

confluence were rendered quiescent by incubation for 48 hours in

serum-free high glucose DMEM and Ham’s F-12 (1:1) supple-

mented with 15 mM Hepes (pH 7.4), 0.1% low-endotoxin bovine

serum albumin (Sigma), and 5 mg/mL transferrin (Sigma) for 48 h.

Experiments were conducted on cells at passages 5–13. For

experiments with pharmacological inhibitors, cells were pre-

treated for 30 minutes with vehicle alone or with the indicated

concentrations of inhibitors.

Cells were maintained in the absence of antibiotics and

routinely tested for mycoplasma contamination using LookOutTM

Mycoplasma PCR Detection Kit (Sigma) or MycoAlertTM

Mycoplasma Detection Kit (Lonza, Rockland, ME).

Immunoblot analyses
350,000 VSMCs were seeded in 6-well plates in DMEM/

10%FBS. Quiescent cells were stimulated with 200 mg/mL

purified IgG [1] for 5 minutes, at 37uC under 5% CO2. After 5

minutes, cells were gently washed two times with ice-cold PBS and

whole cell extracts were prepared using Triton-X lysis buffer

(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 50 mM NaF, 5 mM

EDTA, 40 mM b-glycerophosphate, 1 mM sodium orthovana-

date, 0.2 mM phenylmethylsulfonyl fluoride (PMSF), 1 mg/mL

leupeptin, 1 mM pepstatin A, 2 mg/mL aprotinin, 1% Triton-X-

100, 10% glycerol) for 30 min at 4uC. Lysed material was then

centrifuged at 13,0006g for 10 min and the supernatant collected.

Equal amounts of lysate proteins (20–50 mg) were loaded on 7.5 or

10% polyacrylamide gels and subjected to SDS-PAGE. In some

Western blot experiments, cellular extracts were divided and used

in parallel. Proteins were transferred to nitrocellulose membranes

in 25 mM Tris, 192 mM glycine and 20% methanol using a Bio-

Rad Transblot Cell transfer apparatus. Immunoblotting with each

antibody was carried out according to manufacturer instructions.

Western blot bands were analyzed by densitometry using

ImageQuant TL version 2002 (Amersham, NJ). Densities of p-

ERK bands were normalized to corresponding total ERK bands.

A stimulation index was determined for each sample using the

equation (S-C)/(P-C)6100 where S, C, and P represent the

normalized band intensities of a given sample, the negative control

and the positive control, respectively [1]. In addition, we measured

the phosphorylation of ERK2 by ELISA, using DuoSet IC:

Human/Mouse/Rat Phospho-ERK2 (T185/Y187) ELISA kit

(R&D Systems) according to manufacturer recommendations.

Immunoprecipitation assays
Quiescent VSMCs were lysed on ice, using a RIPA buffer

(50 mM Tris-HCl (pH 7.4 at 4uC), 150 mM NaCl, 5 mM EDTA,

50 mM NaF, 40 mM b-glycerophosphate, 1% Triton-X-100,

10% glycerol, 0.1% SDS, and 1% Na-deoxycholate, 1 mM

sodium orthovanadate, 1 mg/mL pepstatin, 2 mg/mL aprotinin,

1 mg/mL leupeptin, 0.2 mM PMSF) for 30 minutes. 500 mg of

whole cell extracts were incubated for 4 hours at 4uC with 2 mg of

anti-PDGFR-b (Upstate), 200 mg SSc or control IgG immobilized

on 50 mL protein-A-Sepharose beads (GE Healthcare). The

immune complexes were washed four times with Triton X-100

lysis buffer and 2X Laemmli’s sample buffer was added. The

immunoprecipitated proteins were analysed by immunoblotting

using commercial anti-PDGFR-b antibodies.

RT-qPCR analysis
150,000 VSMCs were seeded in 6-well plates in DMEM/

10%FBS. Quiescent cells were stimulated with 200 mg/mL

purified IgG [1] for 2 hours (col1a1 and colIII) or 72 hours (Tgfb1,

Tgfb2, Tgfb3), at 37uC under 5% CO2. Cells were then gently

washed with ice-cold PBS and flash-frozen in liquid nitrogen.

Next, cell lysates were collected and total RNA isolated using

RNeasy Mini Kit (QIAGEN) according to manufacturer direc-

tions, and spectrophotometric quantification of RNA samples was

performed. RNA integrity was verified using a Bioanalyzer system

at the Institute for Research in Immunology and Cancer (IRIC;

Montreal). Total RNA (2 mg) was reverse-transcribed using the

High Capacity cDNA Reverse Transcription kit with random

primers (Applied Biosystems) as described by the manufacturer.

Real-time PCRs were subsequently performed using the Fast

SYBR Green Master Mix (Applied Biosystems) with the following

primers: colIII: FWD 59-AGATGCTGGTGCTGAGAAG-39;

REV 59-TGGAAAGAAGTCTGAGGAAGG-39; Tgfb1: FWD 59-

CCTGGAAAGGGCTCAACAC-39; REV 59-CAGTTCTTCT-

CTGTGGAGCTGA-39; Tgfb2: FWD 59-AGTGGGCAGCTT-

TTGCTC-39; REV 59-GTAGAAAGTGGGCGGGAT G-39;

Tgfb3: FWD 59-AGTGGCTGTTGCGGAGAG-39; REV 59-GC-

TGAAAGGTATGACATGGACA-39; Actb: FWD 59-CCCGCG-

AGTACAACCTTCT-39; REV 59-CGTCATCCATGGCGAA-

CT-39 (UPL probe #17). Quantitect primer assay (QIAGEN) was

used for col1a1. b-actin was used as endogenous control. Samples

were initially denatured at 95uC for 3 min followed by 40 cycles of

5 sec at 95uC and 30 sec at 60uC. All reactions were run in triplicate

and the average threshold cycle (Ct) values were used for

quantification. The relative quantification of target genes was

determined using the DDCT method [26]. Briefly, the Ct values of

target genes were normalized to those of an endogenous control gene,

b-actin (DCt = Cttarget2CtCTRL) and compared with a calibrator:

DDCT = DCtSample2DCtCalibrator. Relative expression (RQ) was

calculated as RQ = 22DDCT.

[3H]-leucine and [3H]-thymidine incorporation assays
45,000 or 60,000 VSMCs were seeded per well in 24-well plates

for [3H]-leucine and [3H]-thymidine incorporation assays, respec-

tively. After 24 hours, cells were rendered quiescent for 48 hours,

then stimulated in triplicate with positive controls or purified IgG

samples (200 mg/mL). For cell proliferation assays, [3H]-thymi-

dine (MP Biomedicals) was added to a final concentration of

0.5 mCi/mL, and for protein synthesis assays, [3H]-leucine (MP

Biomedicals) was added to a final concentration of 0.3 mCi/mL.

Cells were then incubated for 24 hours at 37uC, 5% CO2. After

24 hours, media was removed, and cells were washed and fixed

overnight at 4uC with ice-cold 5% tri-chloro-acetic acid (Fisher).

Plates were gently washed with water and once dry, the cells were

solubilized in 0.1N NaOH and added to scintillation tubes

containing EcoLite(+) scintillation cocktail (MP Biomedicals), and

vortexed vigorously. Radioactivity was measured using a Tri-Carb

2100TR Liquid Scintillation Analyzer (Packard) as counts per

minute (CPM) per well and expressed as fold change from basal.

Statistical analyses
Statistical analyses were performed using GraphPad Prism

version 5.0 for Mac (GraphPad Software, San Diego, CA).

Comparison of two groups was carried out by two-tailed t-test, and

comparison of more than two groups was carried out with one-way
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ANOVA and a Bonferroni post-test. Statistical significance was

accepted at P#0.05.

Results

Patients
We studied sera from 23 SSc patients with a disease duration of

5 years or less since first non-Raynaud’s symptom and not on any

steroid or immunosuppressive therapy. General characteristics of

our patient cohort are summarized in Table 1 (details of individual

subject characteristics are available in Table S1). 91% of patients

were female. The mean age was 48.7 years. The mean modified

Rodnan Skin Score was 16.5 and the mean Medsger vascular

disease severity score was 1.9. 36% of SSc patients had active

vascular ulcers and 4.8% had pulmonary hypertension on

echocardiography. 19% of patients had anti-centromere antibod-

ies, and 29% had anti-topoisomerase antibodies. A large

proportion, 43%, of our patients had anti-RNA polymerase III

antibodies, which is not surprising since this antibody is more

common in diffuse cutaneous SSc [25,27]. 8.7% of our patient

group had received some immunosuppressive treatment less than a

year prior to having their blood drawn. The 13 controls consisted

of 5 normal subjects, 5 osteoarthritis patients, one SLE patient and

one sample from a normal pooled blood bank. The mean age of

controls was 43.6 (SD = 16.5) and 83% were females.

Purified IgG from SSc sera have a greater stimulation
index in VSMC than normal IgG

Quiescent VSMCs were exposed for 5 minutes to 200 mg/mL

IgG purified from SSc and control sera, and ERK1/2 and Akt

phosphorylation were analyzed as an indication of activation of

early signaling pathways involved in vascular remodeling events

[28,29]. As previously conducted [1], a stimulation index was

determined for each sample (Table S1) by densitometric analyses

of Western blots (Fig. 1A). A comparison of the mean stimulation

activity of SSc IgG with that of control IgG revealed a higher

stimulation capacity in the SSc samples (p = 0.0474; Fig. 1B), and

the highest levels of ERK1/2 and Akt phosphorylation were

observed in cells treated with SSc IgG (Fig. 1B).

In addition to immunoblot analyses, we measured by ELISA the

ability of a subset of IgG samples (SSc subjects 3 and 6–15) to

induce ERK2 phosphorylation. Again, the increase in ERK2

phosphorylation in SSc-IgG-treated VSMCs was greater than in

control-IgG-treated cells (Fig. 1C). Using sera from 2 SSc subjects,

cells were exposed to 50, 100, 150 and 200 mg/mL IgG. The

increase in ERK1/2 phosphorylation was dose-dependent (Fig.

S1).

The purified IgG samples had the same effects on other cell

lines. Although we studied the effects of SSc IgG mainly in

VSMCs obtained from rat cells, the increased phosphorylations of

Akt also occurred in cells of human origin. Primary diploid human

fibroblasts (MRC5 cells) exposed to different SSc IgG fractions

exhibited increased Akt phosphorylation, similar to that seen in rat

VSMCs (Fig. S2).

PDGFR-b interacts more avidly with SSc IgG than control
IgG but does not mediate the increase in ERK1/2 and Akt
signalling

In order to address the ability of SSc IgG to recognize and

specifically bind the PDGFR, we next performed immunoprecip-

itation studies using purified IgG from a subset of 8 SSc and 7

control subjects (Representative data shown in Fig. 2A, B).

Although there was variation among samples, on average, the SSc-

IgG immunoprecipitated significantly more PDGFR-b than

control IgG (p = 0.0385; Fig. 2C). We did not observe any

statistically significant correlation between the stimulation index of

individual samples (Table S1) and the capacity to immunoprecip-

itate the PDGFR-b.

We next investigated whether the catalytic activity of the

PDGFR was involved in SSc-IgG-induced early signaling events in

VSMC. The quinoxaline AG1296 is a highly potent and selective

inhibitor of the PDGFR-a and b isoforms and its family members

c-kit and flt3 [30,31]. Cells pre-treated with AG1296 had indeed a

dramatic reduction in ERK1/2 phosphorylation upon stimulation

with PDGF-BB. However, SSc-IgG-induced ERK1/2 and Akt

phospho-signals were not affected by the use of this PDGFR kinase

inhibitor (Fig. 3A, Fig. S3). To further substantiate these

observations, cells were also pre-treated with imatinib mesylate,

which, in addition to blocking the kinase activity of c-Abl also

antagonizes the PDGFR and c-kit [32]. Once again, the observed

SSc-IgG-induced activation of ERK1/2 and Akt was not affected

by this drug although it diminished the response to PDGF-BB

stimulation (Fig. 3B, C). Thus, despite the ability of the SSc-IgG

fractions to recognize and stably interact with the PDGFR-b, our

data suggest that they do not use the kinase activity of this receptor

family to transmit downstream intracellular signals.

Epidermal growth factor receptor (EGFR), but not the
AT1R, plays a key role in the VSMC response to SSc IgG

Since anti-AT1R autoantibodies have been demonstrated in

SSc [19] we tested the AT1R antagonist irbesartan in SSc-IgG

stimulated cells. In our study, the AT1R antagonist irbesartan

abolished Ang II signaling in VSMC but did not affect SSc IgG-

induced ERK and Akt phosphorylation (Fig. 3C). The potent and

selective EGFR kinase inhibitor AG1478 [33] was also tested. At

very low concentration, this compound significantly reduced EGF-

induced phosphorylation of ERK1/2 and Akt (Fig. 3C). As

previously shown [34], AG1478 also diminished the ability of Ang

II to induce ERK1/2 and Akt activation resulting from AT1R-

EGFR transactivation [18]. More importantly, blocking the

EGFR phospho-transferase activity severely affected SSc IgG-

induced activation of these early signaling events, suggesting a role

for the EGFR’s catalytic activity in the cellular response to SSc

IgG (Fig. 3C).

Table 1. Characteristics of our SSc cohort (N = 23).

% or mean ±sd

Mean age, years 48.7614.5

Female 91%

Disease duration, years 3.561.2

Mean Modified Rodnan Skin Score 16.5611.2

Mean Medsger vascular disease severity 1.961.3

Subjects with active vascular ulcers 36%

Subjects with pulmonary hypertension 4.8%

Subjects with anti-centromere antibodies 19%

Subjects with anti-topoisomerase antibodies 29%

Subjects with anti-RNA polymerase III antibodies 43%

Subjects with recent use of immunosuppressive drugs 8.7%

doi:10.1371/journal.pone.0100035.t001
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SSc IgG causes growth and pro-fibrotic responses in
VSMCs

To address the potential of SSc IgG to cause pathophysiological

changes in VSMCs that are linked to vascular remodeling events,

we measured changes in cell growth and proliferation. These

experiments were conducted with a subset of our SSc (n = 10) and

control IgG samples (n = 5). Cell proliferation studies, as measured

by incorporation of radiolabeled thymidine after incubation of

VSMC with 200 mg/mL IgG, indicated that neither SSc nor

control IgG caused any detectable increase in DNA synthesis (data

not shown). Purified IgG from both controls and SSc patients did

cause an increase in protein synthesis as measured by radiolabeled

leucine incorporation, but protein synthesis was greater in VSMCs

stimulated with SSc IgG (Fig. 4A). While on average, control IgG

increased protein synthesis by 46% above basal levels, SSc IgG

caused a mean increase of 93% (p = 0.0008).

Given the fibrotic features of SSc, we measured the expression

of genes with roles in fibrosis, specifically Col1a1, ColIII, and Tgfb1,

2, and 3. Most importantly, we found that VSMCs responded to

stimulation with purified SSc IgG by modulating the gene

expression of TGF-b isoforms 1 and 2 (Fig. 4B, C). TGF-b is

considered a master regulator of fibrotic processes [35]. Cells were

stimulated with PDGF and TGF-b1, which modulates its own

gene expression, as positive controls. Again, the IgG buffer

solution alone had no detectable effect on the expression of any of

the three protein isoforms. Tgfb1 expression was induced

significantly by all SSc IgG samples tested, and was induced to a

lesser degree by some, but not all, control IgG samples (Fig. 4B).

On average, SSc IgG caused a 2-fold induction of Tgfb1 in

VSMCs, which was significantly higher than control IgG (p,

0.0001). In contrast, Tgfb2 expression was decreased in cells

treated with SSc IgG (p = 0.0009); Fig. 4C). Tgfb3 gene expression

was not affected by treatment with SSc IgG (data not shown). Also,

SSc IgG did not affect expression of the collagen genes, col1A1 or

colIII in VSMCs after 72 h (data not shown), despite this being the

time point at which PDGF and TGF-b caused the greatest

modulations in col1A1 or colIII gene expression in these cells (data

not shown).

Relationship to disease phenotype
Patients were grouped according to various disease manifesta-

tions (e.g. presence or absence of vascular ulcers, level of disease

severity, mRSS, autoantibodies, pulmonary hypertension, etc.)

and compared for differences in assay results (e.g. IgG stimulating

activity, protein synthesis, etc), but no significant differences were

found between groups (data not shown). Similarly, past use of

immunosuppressive therapy did not have any effect on the cell-

based assay results.

Discussion

Our study demonstrated that SSc IgG induced growth and

profibrotic responses in cultured VSMCs, which are known

contributors to obstructive vasculopathy. We found that exposure

of VSMCs to SSc IgG led to activation of protein kinases known to

regulate vascular remodeling events. Activation of PDGFR and/or

EGFR leads to initiation of numerous signaling cascades,

including the ERK1/2 and Akt pathways [36,37]. In VSMCs,

ERK1/2 has been shown to be a crucial signaling molecule

involved in various aspects of vascular remodelling, including the

control of TGF-b gene expression, thus the fibrotic response, upon

PDGF stimulation [28], and the protein kinase Akt regulates

numerous cellular processes, including protein synthesis [38–40].

The increases in ERK1/2 and Akt phosphorylation that we

observed were not inhibited by PDGFR inhibitors but were

inhibited by an EGFR inhibitor, despite SSc IgG binding to

Figure 1. Effects of purified scleroderma (SSc) and control (Ct) IgG on signaling activity in vascular smooth muscle cells (VSMCs). A,
Representative Western blots showing ERK1/2 and Akt phosphorylation in quiescent VSMCs treated for 5 minutes with 200 mg/mL purified IgG, the
IgG buffer alone, or with 50 ng/mL PDGF. B, Densitometric quantification of all immunoblot bands, expressed as a stimulation index scaled to the
positive control (PDGF; stimulation index of 100) and negative control (buffer; stimulation index of 0) on the same gel, from 13 control and 23 SSc
samples. The stimulation index is calculated as (S-C)/(P-C)6100 where S, C, and P represent the normalized densitometric pERK1/2 band intensities of
a given Sample, the negative Control and the Positive control, respectively. The mean stimulation with 95% confidence intervals is indicated. *
p = 0.0474. C, ELISA analysis of ERK2 phosphorylation in VSMC stimulated with 200 mg/mL SSc IgG (n = 10) or control IgG (n = 10). Error bars represent
95% confidence interval. p = 0.0559. buff = buffer; PDGF = platelet-derived growth factor.
doi:10.1371/journal.pone.0100035.g001
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PDGFR-b. Also, there was greater protein synthesis in VSMCs

stimulated with SSc IgG, as well as simultaneous Tgfb1 upregula-

tion and Tgfb2 downregulation, in response to VSMC exposure to

SSc IgG. TGF-b1 is generally considered to have important pro-

fibrotic roles in fibrosis, while the TGF-b2 isoform has been

described as anti-fibrotic. Decreased production of TGF-b2 is

associated with increased expression of a collagen mRNA variant

in avian scleroderma, thus its downregulation would lead to a pro-

fibrotic state [41].

A small number of studies have addressed the presence of

functional activating autoantibodies in SSc, albeit with seemingly

contradictory results [1,4–6,19]. Baroni et al. found unique and

necessary presence of autoantibodies in SSc directed to the

PDGFR on fibroblasts [1], while other studies found no difference

in PDGFR-binding antibodies between control and SSc groups

[5,6] and/or no agonistic activity at all [4,5]. In our cell-based

assays, we found variability among the tested samples. Although all

SSc and Ct samples immunoprecipitated the PDGFR-b to some

degree, certain SSc IgG samples bound the receptor with much

greater affinity than the controls. Similarly, the cellular responses

to IgG stimulation were more pronounced in SSc IgG-treated

cells.

The use of PDGFR kinase inhibitors, however, did not interrupt

the signaling activity that we observed suggesting that, although

there was PDGFR-binding, this was not the mechanism of action

of stimulatory IgG on these cells. Also, it has been reported that

SSc autoantibodies can have functional activity on AT1Rs in

endothelial cells [19], but we were not able to detect autoanti-

bodies that stimulated signaling through the AT1R in our

VSMCs. We did, however, observe signaling that required the

catalytic activity of the EGFR. The EGFR is known to have trans-

activating activity [42,43] and has also been reported to

heterodimerize with other receptors, including the PDGFR [13].

Interestingly, PDGFR and EGFR are constitutively expressed as

heterodimers in primary cultured VSMCs and the activation of

early signaling events by PDGF in these cells occurs through the

transactivation of the EGFR via a process that is independent of

PDGFR kinase activity but dependent on EGFR kinase activity

[13]. Heterodimerization of these two receptors has also been

shown in a bladder cancer cell line transfected with the PDGFR-b
gene [44]. PDGF has also been reported to trans-activate EGFR

in skin fibroblasts and in cell-free membranes [45–47]. Indeed, we

have also observed PDGFR-EGFR heterodimers in quiescent

VSMCs in our lab as previously reported by Saito et al.[13] (Fig.

S4). Although SSc-IgG-induced signaling was not blocked with

PDGFR kinase inhibitors or an AT1R antagonist, it is conceivable

that the EGFR signaling that we observed is one part of a multi-

receptor signaling system that may include PDGFR (Fig. 5). In this

Figure 2. IgG from systemic sclerosis (SSc) patients bind more
to PDGFR than control (Ct) IgG. A, Representative immunoblot of
PDGFR-b immunoprecipitated with different control or SSc IgG samples,
or with a commercially available PDGFR-b antibody (P). The whole cell
extract (WCE) was loaded in the far right lane. B, Average densitometric
analysis of immunoblots from two separate experiments. C, Compar-
ison of mean band intensities for control and SSc samples. * p = 0.0358.
doi:10.1371/journal.pone.0100035.g002

Figure 3. The phosphotranferase activity of EGFR plays a key
role in SSc IgG-induced early signaling events in VSMCs. A,
Quiescent vascular smooth muscle cells (VSMCs) were pre-treated for 30
minutes with vehicle (0.01% DMSO) or PDGFR-inhibitor AG1296 (5 mM)
before stimulation with 50 ng/mL PDGF (P) or 200 mg/mL control (Ct) or
systemic sclerosis (SSc) patient IgG. B, Quiescent VSMCs were pre-
treated for 60 minutes with 10 mM imatinib mesylate (Imat; +) or with
0.01% DMSO (2), followed by 5-minute stimulation with 50 ng/mL
PDGF or 200 mg/mL IgG from control or SSc patients. C, Quiescent
VSMCs were pre-treated with inhibitors (Inh; 10 mM imatinib mesylate
(im), 1 mM irbesartan (ir), 250 nM AG1478 (A)), or 0.01% DMSO (2) for
30 minutes prior to stimulation for 5 minutes with 50 ng/mL PDGF (P),
100 nM angiotensin II (AngII), 100 ng/mL epidermal growth factor
(EGF), or 200 mg/mL SSc or control IgG. All results shown are
representative of at least two experiments with similar results.
doi:10.1371/journal.pone.0100035.g003
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context, we propose that SSc IgG may engage the PDGFR, a

process leading to EGFR activation and subsequent induction of

cellular signaling events in a manner independent of the enzymatic

activity of the PDGFR, like previously proposed [13]. Our study

supports these interesting findings and extends them by showing

that this can also occur with activating autoantibodies. How the

PDGFR affects the EGFR in the absence of its kinase activity is

still unknown but could involve the tyrosine kinase c-Src [14]. In

experimental models of SSc, the selective Src kinase inhibitor

SU6656 reduced the development of dermal fibrosis [48]. Thus,

targeting of Src kinases may be another promising approach in the

treatment of SSc.

EGFR-binding autoantibodies have previously been reported in

SSc patients, as well as in SLE patients and autoimmune mice

[49], but those antibodies had neutralizing or inhibitory effects on

A431 cells with the inhibition of DNA synthesis. Taken together

with the finding that in VSMCs, a significant proportion of

EGFRs and PDGFRs exist as heterodimers [13] and tests in our

lab that show no significant difference in EGFR immunoprecip-

itation with SSc compared to control IgG (data not shown), we

consider unlikely that anti-EGFR autoantibodies are responsible

for our observations.

Interestingly, a recent study described SSc IgG that bind to

permeabilised VSMCs and induce VSMC contraction [50].

Although the relationship between IgG binding to the VSMC

and VSMC reactivity was not discussed, it is known that EGFR

activation leads to Ca2+ release from intracellular stores [51], and

subsequent vascular contraction [52].

The VSMC response to stimulation with purified IgG is

consistent with SSc characteristics such as the changes in gene

expression reflecting pro-fibrotic changes. TGF-b1 is a pro-fibrotic

cytokine and its up-regulation is clearly linked with increased

fibrosis [53]. TGF-b2 has been reported to have anti-fibrotic

effects in the avian scleroderma model [41], its presence being

linked to reduced expression of a pro-collagen mRNA variant.

Thus our finding that TGF-b2 is down-regulated by SSc IgG is

consistent with a pro-fibrotic state. Also, the increased protein

synthesis we observed reflects cell growth and may be relevant in

the context of PAH, for example.

We did not detect any relationship between the patient

phenotype and stimulatory activity in terms of ERK1/2 or Akt

phosphorylation, protein synthesis, gene expression changes, or

receptor binding. However, our sample size was relatively small

for this type of analysis and we do not feel that any firm

conclusions should be drawn until much larger numbers of

patients are studied. This would allow better evaluation of the

clinical significance of these autoantibodies and of the relationship

of these antibodies with the clinical manifestations of SSc.

The presence of increased numbers of autoantibodies define

autoimmune diseases and recently autoantibodies have been

investigated for functional pathogenic activity. The functional

autoantibodies which we describe may have a role in initiating

and/or perpetuating the vascular disease of SSc. Further studies

are required to better understand the role of the EGFR and to

determine if and how the PDGFR and EGFR might interact in

response to autoantibody binding. Finally, the rather disappoint-

ing results from the use of the non-selective c-Abl, PDGFR, c-kit

inhibitor imatinib in SSc clinical trials ([54–56] and reviewed in

[57]) may in part be explained by the involvement of EGFR, as we

observed in our study. Thus, it may be worthwhile to examine the

effects of EGFR inhibitors on the course of the vascular disease of

SSc.

Figure 4. Systemic sclerosis (SSc) IgG causes growth and pro-
fibrotic responses in vascular smooth muscle cells (VSMCs). A,
Protein synthesis was measured by [3H]-leucine incorporation in
quiescent VSMCs stimulated with IgG buffer, angiotensin II (AngII), or
with 200 mg/mL SSc or control (Ct) IgG (left), and mean protein synthesis
was compared for Ct-IgG and SSc-IgG treated cells (right). Protein
synthesis is shown as a fold-change with respect to basal levels. **
p = 0.0008. B, Expression of transforming growth factor-b1 (TGF-b1)
mRNA (Tgfb1) in VSMCs upon treatment with IgG buffer (buff), 50 ng/mL
platelet-derived growth factor (PDGF), 10 ng/mL TGF-b1, or 200 mg/mL
IgG for 2 hours (left). Results are normalized to b-actin expression and
expressed as a fold-change with respect to untreated VSMCs. Mean TGF-
b1 expression in Ct-IgG-treated VSMCs compared with that in SSc-IgG
treated cells (right). ** p,0.0001. C. Expression of TGF-b2 mRNA (Tgfb2)
in VSMCs upon treatment with IgG buffer, 50 ng/mL PDGF, 10 ng/mL
TGF-b1, or IgG for 2 hours (left). Results are normalized to b-actin and
expressed as a fold-change with respect to untreated VSMCs. Mean TGF-
b2 expression in Ct-IgG-treated VSMCs compared with that in SSc-IgG
treated cells (right). ** p = 0.0009. All results shown are representative of
at least two experiments. Error bars represent standard deviation.
doi:10.1371/journal.pone.0100035.g004
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Supporting Information

Figure S1 SSc IgG causes increased ERK phosphorylation in

quiescent vascular smooth muscle cells in a dose-dependent

manner. Cells were exposed to 50, 100, 150 and in the case of SSc

5 200 mg/mL IgG.

(TIF)

Figure S2 Effects of purified scleroderma (SSc) and control (Ct)

IgG on signaling activity in a primary human fibroblast cell line

(MRC5), after 5 minutes of exposure to 200 mg/mL purified IgG,

50 ng/mL PDGF, or the IgG buffer.

(TIF)

Figure S3 The platelet-derived growth factor receptor (PDGFR)

inhibitor AG1296 does not inhibit the phosphorylation of ERK or

Akt in vascular smooth muscle cells (VSMCs) stimulated with IgG

from systemic sclerosis (SSc) patients. The inhibitor was effective in

completely reducing the signal in response to stimulation with

PDGF (compare PDGF/DMSO (lane 13) vs PDGF/AG1296

(lane 11)). Quiescent VSMCs were pre-treated for 30 minutes with

vehicle (0.01% DMSO) or PDGFR-inhibitor AG1296 (5 mM)

before stimulation with 50 ng/mL PDGF (P) or 200 mg/mL

control (Ct) or scleroderma (SSc) IgG.

(TIF)

Figure S4 Constitutive heterodimerization of epidermal growth

factor receptor (EGFR) and platelet-derived growth factor

receptor (PDGFR) in quiescent vascular smooth muscle cells

(VSMCs). Quiescent VSMCs were treated with the cross-linker 1-

Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride

(EDAC) for 20 or 30 minutes. Cell lysates were prepared as

described (Mol Cell Biol. 2001;21(19):6387-94C) and proteins

were immunoprecipitated with anti-EGFR antibodies and im-

munoblotted for PDGFR-b.

(PDF)

Table S1 Details of individual patient samples. ANA, type of

anti-nuclear antibodies detected; PH, pulmonary hypertension;

DSS, Medsger disease severity score (0 = normal, 1 = mild,

2 = moderate, 3 = severe, 4 = endstage); mRSS, modified Rodnan

skin score; 1T, anti-topoisomerase I; 2R, anti-RNA Polymerase III;
30, none detected; 4n.a., data not available; 5C, anti-centromere;
6recent = having been stopped less than one year prior to blood

draw; 7‘‘not recent’’ = having been used at any time more than a

year prior to blood draw; CS, corticosteroids; HCQ, hydroxy-

chloroquine; MTX, methotrexate; 8stimulation index is calculated

as (S-C)/(P-C)6100 where S, C, and P represent the normalized

densitometric pERK1/2 band intensities of a given Sample, the

negative Control and the Positive control, respectively.

(PDF)
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