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Multilevel Hierarchical Kernel Spectral Clustering for
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Abstract

Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained
optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual
level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training
phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample
extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the
structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing
distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large
scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that
real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-
art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a
major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels
of hierarchy using internal cluster quality metrics on 7 real-life networks.
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Introduction

Large scale complex networks are ubiquitous in the modern era.
Their presence spans a wide range of domains including social
networks, trust networks, biological networks, collaboration
networks, financial networks etc. A complex network can be
represented as a graph G=(V,E) where V represent the vertices
or nodes and E represents the edges or interaction between these
nodes in this network. Many real-life complex networks are scale-
free [1], follow the power law [2] and exhibit community like
structure. By community like structure one means that nodes
within one community are densely connected to each other and
sparsely connected to nodes outside that community. The large
scale network consists of several such communities. This problem
of community detection in graphs has received wide attention
from several perspectives [3-14].

The community structure exhibited by the real world complex
networks often have an inherent hierarchical organization. This
suggests that there should be multiple levels of hierarchy in these
real-life networks with good quality clusters at each level. In other
words, there exist meaningful communities at refined as well as
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coarser levels of granularity in this multilevel hierarchical system of
the real-life networks.

A state-of-the-art hierarchical community detection technique
for large scale networks is the Louvain method [15]. It uses a
popular quality function namely modularity (Q) [3,5,6,16] for
locating modular structures in the network in a hierarchical
fashion. Modularity measures the difference between a given
partition of a network and the expectation of the same partition for
a random network. By optimizing modularity, they obtain the
modular structures in the network. However, it suffers from a
drawback namely the resolution limit problem [17-19]. The issue
of resolution limit arises because the optimization of modularity
beyond a certain resolution is unable to identify modules even as
distinct as cliques which are completely disconnected from the rest
of the network. This is because modularity fixes a global resolution
to identify modules which works for some networks but not others.

Recently the authors of [20] show that methods trying to use
variants of modularity to overcome the resolution limit problem,
still suffer from the resolution limit. They propose an alternative
algorithm namely OSLOM [21] to avoid the issue of resolution.
However, in our experiments we observe that OSLOM works well
for benchmark synthetic networks [4] but in case of real-life
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Figure 1. Steps undertaken by the MH-KSC algorithm.
doi:10.1371/journal.pone.0099966.g001

networks it is unable to detect quality coarse clusters. We also
evaluate another state-of-the-art hierarchical community detection
technique called the Infomap method [7]. The Infomap method
uses an information theoretic approach to hierarchical community
detection. It uses the probability flow of random walks as a
substitute for information flow in real-life networks. It then
fragments the network into modules by compressing a description
of the probability flow.

Spectral clustering methods [10-14] belong to the family of
unsupervised learning algorithms where clustering information is
obtained by the eigen-decomposition of the Laplacian matrix
derived from the affinity matrix ($) for the given data. A drawback
of these methods is the construction of the large affinity matrix for
the entire data which limits the feasibility of the approach to small
sized data. To overcome this problem, a kernel spectral clustering
(KSC) formulation based on weighted kernel principal component
analysis (kPCA) in a primal-dual framework was proposed in [22].
The weighted kPCA problem is formulated in the primal in the
context of least squares support vector machines [23] which results
in eigen-decomposition of a centered Laplacian matrix in the dual.
As a result, a clustering model is obtained in the dual. This model
is build on a subset of the original data and has a powerful out-of-
sample extension property. This property allows cluster affiliation
for unseen data.

The KSC method was applied for community detection in
graphs by [24]. However, their subset and model selection
approach was computationally expensive and memory inefficient.
Recently, the KSC method was extended for big data networks in
[25]. The method works by building a model on a representative
subgraph of the large scale network. This subgraph is obtained by
the fast and unique representative subset (FURS) selection
technique as proposed in [26]. During the model selection stage,
the model parameters are estimated along with determining the
number of clusters £ in the network. A self-tuned KSC model for
big data networks was proposed in [27]. The major advantage of
the KSC method is that it creates a model which has a powerful
out-of-sample extensions property. Using this property, we can
infer community affiliation for unseen nodes of the whole network.

In [28], the authors used multiple scales of the kernel parameter
o to determine the hierarchies in the data using KSC approach.
However, in this approach the clustering model 1s trained for
different values of (£,0) and evaluated for the entire dataset using
the out-of-sample extension property. Then, a map is created to
match the clusters at two levels of hierarchy. As stated by the
authors in [28], during a merge there might be some data points of
the merging clusters that go into a non-merging cluster which is
then forced to join the merging cluster of the majority. In this
paper, we overcome this problem and generate a natural
hierarchical organization of the large scale network in an
agglomerative fashion.

The purpose of hierarchical community detection is to
automatically locate multiple levels of granularity in the network
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with meaningful clusters at each level. The KSC method has been
used effectively to obtain flat partitioning in real-world networks
[24,25,27]. In this paper, we exploit the structure of the eigen-
projections derived from the KSC model. The projections of the
validation set nodes in the eigenspace is used to create an iterative
set of affinity matrices resulting in a set of increasing distance
thresholds (7). Since the validation set of nodes is a representative
subset of the large scale network [26], we use these distance
thresholds (z;€7") on the projections of the entire network obtained
as a result of the out-of-sample extension property of the KSC
model. These distance thresholds, when applied in an iterative
manner, provide a multilevel hierarchical organization for the
entire network in a bottom-up fashion. We show that our proposed
approach is able to discover good quality coarse as well as refined
clusters for real-life networks.

There are some methods that optimize weighted graph cut
objectives [29-31] to provide multilevel clustering for the large
scale network. However, these methods suffer from the problem of
determining the right value of £ which is user defined. In real-
world networks the value of £ is not known beforehand. So in our
experiments, we evaluate the proposed multilevel hierarchical
kernel spectral clustering (MH-KSC) algorithm against the
Louvain, Infomap and OSLOM methods. These methods
automatically determine the number of clusters (£) at each level
of hierarchy. Figure 1 provides an overview of steps involved in the
MH-KSC algorithm and Figure 2 depicts the result of our
proposed MH-KSC approach on email network (Enron).

In all our experiments we consider unweighted and undirected
networks. All the experiments were performed on a machine with
12 Gb RAM, 2.4 GHz Intel Xeon processor. The maximum size
of the kernel matrix that is allowed to be stored in the memory of
our PC is 10,000x10,000. Thus, the maximum cardinality of our
training and validation sets can be 10,000. We use 15% of the total
nodes as size of training and validation set (if less than 10,000)
based on experimental findings in [32]. We make use of the
procedure provided in [25] to divide the data into chunks in order
to extend our proposed approach to large scale networks. There
are several steps in the proposed methodology which can be
implemented on a distributed environment. We describe this in
detail later.

Kernel Spectral Clustering (KSC) Method

We first summarize the notations used in the paper.

Notations

1. A graph is mathematically represented as G=(V,E) where
V represents the set of nodes and ES V' X V represents the
set of edges in the network. Physically, the nodes represent
the entities in the network and the edges represent the
relationship between these entities.
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The cardinality of the set V'is denoted as N. 6.  maxk is the maximum number of eigenvectors that we want
3. The training, validation and test set of nodes is given by V., to evaluate.

Viaiia and Vieg respectively. 7. K(:,) represents the positive definite kernel function.
4. The cardinality of the training, validation and test set is 8. The matrix § represents the affinity or similarity matrix.

given Niy, Nyaiid; Nest- 9. Prepresents the latent variable matrix containing the eigen-
5. The adjacency list corresponding to each vertex v;el is projections.

given by x; =A(: ,i). 10.  / represents the /% level of hierarchy and maxk stands for the

coarsest level of hierarchy.
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(a) Affinity matrix created at different levels of hierarchy in left to right order. The x-axis and the y-axis in
each subgraph represents the size of the affinity matrix at each level of hierarchy. The number of block-diagonals
in each subgraph represents k at that level of hierarchy.

(b) Result of MH-KSC algorithm on Enron dataset. Circles which have the same colour are part of the same
cluster at the top most level of hierarchy. We depict clusters at 2 different levels of hierarchy using the toolbox
provided in [21].

Figure 2. Result of proposed MH-KSC approach on the Enron network.
doi:10.1371/journal.pone.0099966.g002

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | 99966



Multilevel Hierarchical KSC for Large Scale Complex Networks

Data: Graph G = (V, E) representing large scale network.

Result: Multilevel Hierarchical Organization of the network.

Divide data into train.validation and test set, Vi, Viaid Viest-
Construct dataset D = {1,}‘:\'_‘;. 1, € RN from training set Vi,.
Perform KSC on D to obtain the predictive model as in ll.

Obtain Pualid = [€1.. ... €Nuae|T using predictive model and Vyalga.
Construct Sfﬁld(i.j) = CosDist(eq.€5) = 1 — TTT:ITT%IT Vey, ey € Pralud-
Begin validation stage with: h = 0, t(© = 0.15.

[C®, k] = Grccdy:\larOrdcr(Sf,?“d.l(D)‘). /* Algorithm 2, Figure 4
Add t@ to the set T and C® to the set C.

9 while £ > 1 do

10 h:=h+1.

E I - - Y N S

o

11 Create SE,:_,)M using S‘(,:{,;) and C"-1) a5 shown in @).
12 Caleulate ¢(®) using equation lﬂl.

13 [C?), k) = Crccdy:\[urOrdcr(Sé:},d. t(h)).

14 Add t™® to the set T and C™) to the set C.

15 end
/* Iterative procedure to get the set 7.

16 Obtain Prest like Pratd and begin with: h =1, t() € T

17 [S).CWD k| = GreedyFirstOrder(Piese.tV)). /+ Alogrithm 3, Figure 5

18 Add C) to the set C.

19 foreach t®) ¢ T _h > 1do

20 | [C™) k] = GreedyMarOrder (S, ).

21 Add C™ to the set C.

22 Create S‘(::ﬁll using S,(Ch,), and C™™) as shown in @).

23 end

24 Obtain the set C for test set and propagate cluster memberships iteratively from 1% to coarsest
level of hierarchy.

Figure 1. Algorithm 1:MH-KSC Algorithm

*/

*/

Figure 3. Algorithm 1: MH-KSC Algorithm.
doi:10.1371/journal.pone.0099966.9003

11.  Set C comprises multilevel hierarchical clustering informa- KSC methodology
tion. Given a graph G, we use the fast and unique representative
12. Coarsest level of hierarchy corresponds to fine grained subset (FURS) selection [26] technique to obtain training and

clusters and finer levels of hierarchy correspond to coarse
clusters.

validation set of nodes V. and Vygiq. FURS [26] 1s a deterministic
subgraph selection technique where nodes with high degree
centrality are greedily selected from most or all the communities in
the network. Nodes with high degree centrality are usually located

Data: Affinity matrix S and threshold t.

Result: Clustering information C' and number of clusters k.

1 k=1 and totinst = 0.

2 while tofinst # |S| do

3 Find i in range (1, |S]) for which number of instances j, st. S(i,j) <f j=1,..., |S]. 1s
maximum.

4 Put indices of instance i and all instances j, s.t. S(i.j) < t. to Cy.

5 k:=k + 1 and totinst := totinst + |Cy|.

(3 Set all elements corresponding to the indices in Ck to oo in S.

7 Add Cy to the set C.

8 k:=k-1.

Figure 2. Algorithm 2:GreedyM axOrder

Figure 4. Algorithm 2: GreedyMaxOrder.
doi:10.1371/journal.pone.0099966.g004
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Data: Projection matrix P,,,. threshold ¢(*).

=iy - ol e s ol )
Result: Affinity matrix S¢Z;,. clustering information ( () and k.

1 k=1.

while |Pise| # 0 do

w

3 Select 1** node and locate all nodes j for which CosDist(e 1,€5) < ¢,
A . (1) ~{1)
4 Put all these instances in C);"" and to set C (1),
5 kE=k+1.
(3 Remove these instances from Py to have a reduced Ppog.
. ) (1) y . ) )
/* The affinity matrix (S[.;,) is not calculated as it would be unfeasible to store
an N x N matrix in memory. */
v k=k-1.
8 fori =1 to |C'V| do
9 for j=i+1to|C")) do
v o(2) /- -\ . . \ - B a4
10 Caleulate S;7},(i.7) as the average CosDist(-,-) between the eigen-projections of the
instances in (,'l“-' and ('é“.
/* Affinity Matrix calculated for the first time. */

Figure 3. Algorithm 3:GreedyFirstOrder

Figure 5. Algorithm 3: GreedyfFirstOrder.
doi:10.1371/journal.pone.0099966.g005

at the center, away from the periphery of the network and can
better capture the inherent community structure. Since our goal is
a locate multilevel hierarchical clustering in the large scale
network, it is essential that the training and validation set are
representative of the underlying community structure of the
network. A detailed description of the FURS approach and its
comparison with other state-of-the-art subset selection techniques
is provided in [26].

We use 15% of the total nodes as size of training and validation
set (if less than 10,000 otherwise 10,000 nodes) based on
experimental findings in [32]. Firstly, we apply FURS to obtain
the training set of nodes V4. Once these nodes are selected in the
training set we remove these nodes from the network but maintain
the topology (degree distribution) of the network. We then apply
FURS again to obtain the validation set of nodes V,giq. Thus,
both these sets Vy and Vygiia are selected such that they retain the
inherent community structure of the large scale network. We then
use the entire large scale network as the test set V.

For V; training nodes the dataset is given by D={xi}l}»V:"1,
x;€RY. The adjacency list x; can efficiently be stored into memory
as recal-world networks are highly sparse and have limited
connections for each node v;.

Given D and maxk, the primal formulation of the weighted
kernel PCA [22] is given by:

1 maxk —1 1 maxk —1

WO 0 1eT Dol

min —
2Ny /; (1)

WDy 2 1=

such that e(’)=(I>w”>+b11Ntr,l=l, ...,maxk—1,

T
where el!) = [esh,...,e%)”} are the projections onto the eigen-

space, [=1,...,maxk-1 indicates the number of score variables
required to encode the maxk clusters. However, it was shown in
[27] that we can discover more than maxk communities using these
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maxk-1 score variables. D¢ 1eRNr*Nir is the inverse of the degree
matrix  associated to the kernel matrix Q with

Q,-j=K(x,,xj) =¢(x,~)T¢(xj). ® is the N, xd), feature matrix
such that ®= [qﬂ(xl)T; e ¢(thr)T] and y,eR" is the regular-

ization constant. We note that N, <N 1i.e. the number of nodes in
the training set is much less than the total number of nodes in the
large scale network.

The kernel matrix Q is constructed by calculating the similarity
between the adjacency list of each pair of nodes in the training set.

Each element of Q, defined as Qij:\l\‘x\\?ﬁ is calculated by
xill [

estimating the cosine similarity between the adjacency lists x; and
X;j using notions of set intersection and union. This corresponds to

using a normalized linear kernel function K(x,z)= m [23].

The primal clustering model is then represented by:

elm =}v(/)T¢(xi)+b;,i= 1,....N,, (2)

where ¢ : RY >R is the feature map i.c. a mapping to high-
dimensional feature space d, and b, are the bias terms,
I=1,...,maxk-1. For large scale networks we can utilize the
explicit expression of the underlying feature map as shown in [25]
and set dy=N. The dual problem corresponding to this primal
formulation is given by:

Dg ' MpQoD = 7,0, (3)

where Mp is the centering matrix which is defined as
Iy, 15 D*l)

Mp=1Iy, — (T”# . The o are the dual variables
IN[,‘ Q N

and the kernel function K :RY xRV R plays the role of
similarity function. The dual predictive model is:

June 2014 | Volume 9 | Issue 6 | 99966
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(a) Affinity matrices created at different levels of hierarchy for Net, network. The x-axis and

the y-axis in each subgraph represents the size of the affinity matrix. The number of

block-diagonals in each subgraph represents k at that level of hierarchy.

(b) Original hierarchical network (left) and estimated hierarchical network (right) for synthetic network with
10. 000 nodes. The orientation and position of the communities might vary in the two plots. Both plots have 3
clusters with 5 micro communities, 4 clusters with 4 micro communities and 2 clusters with 3 micro communities.

Figure 6. Result of MH-KSC algorithm on benchmark Net; network.

doi:10.1371/journal.pone.0099966.9g006

Nir
é(l)(x) - Z af.l)K(x,xi) +by, (4)

i=1

which provides clustering inference for the adjacency list x
corresponding to the validation/test node v.

Multilevel Hierarchical KSC

We use the predictive KSC model in the dual to get the latent
variable matrix for the validation set Vg represented as
Pyia=ler,. .. ,eN‘,u,“,]T and the test set Vi (entire network)
denoted by Py In [27] the authors create an affinity matrix Sygiq
using the latent variable matrix Pz which is a Nygjig X (maxk-1)
matrix, as:

.
€ &

lleill[jes]|”

Syaiia (i) = CosDist (e;,e;) =1 —cos(e,e;) =1 (5)

PLOS ONE | www.plosone.org

where CosDist(:,") function calculates the cosine distance between
2 vectors and takes values between [0,2]. Nodes which belong to
the same community willhave CosDist(e;,e;) closer to 0, vi, j in the
same cluster. It was shown in [27] that a rotation of the Syuiq
matrix has a block diagonal structure. This block diagonal
structure was used to identify the ideal number of clusters £ in
the network using the concept of entropy and balanced clusters.

Determining the Distance Thresholds

We propose an iterative bottom-up approach on the validation
set to determine the set of distance thresholds 7. In our approach,
we refer to the affinity matrix at the ground level of hierarchy as

Sg?l)lid. The Sig),id matrix is obtained by calculating the CosDist(-,)
between each element of the latent variable matrix P,y iz as
mentioned earlier. After several empirical evaluations, we observe
that distance threshold at level O of hierarchy can be set to values
between [0.1,0.2]. In our experiments we set #?=0.15. This
allows to make the approach tractable to large scale networks

which will be explained later.
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(a) Affinity matrices created at different levels of hierarchy for Net, network. The r-axis and
the y-axis in each subgraph represents the size of the affinity matrix. The number of
block-diagonals in each subgraph represents k at that level of hierarchy.

(b) Original hierarchical network (left) and estimated hierarchical network (right) for synthetic network with
50. 000 nodes. The orientation and position of the communities might vary in the two plots. Original network
has 3 clusters with 11 micro communities, 2 clusters with 14, 13. 12 and 7 micro communities each. 1 cluster with
10 and another 1 with 6 micro communities. Estimated network has 3 clusters with 11 micro communities, 2
clusters 13, 10 and 3 micro communities each and 1 cluster with 14, 12, 9 and 4 micro communities respectively.

Figure 7. Result of MH-KSC algorithm on benchmark Net, network.

doi:10.1371/journal.pone.0099966.g007

We then use a greedy approach to select the validation node
with maximum number of similar nodes in the latent space i.e we
select the projection ¢ which has a maximum number of
projections ¢ satisfying Sf,?l}id(i,]')<t(0). We put the indices of
these nodes in C§0) representing the 17 cluster at level 0 of
hierarchy. We then remove these nodes and corresponding entries

from Si(z)l)lid to obtain a reduced matrix. This process is repeated
iteratively until Si(o)z)lid becomes empty. Thus, we obtain the set
cO={ Cio), . ,C‘(IO)} where ¢ is the total number of clusters at
ground level of hierarchy. The set C© has communities along
with the indices of the nodes in these communities.

PLOS ONE | www.plosone.org

To obtain the clusters at the next level of hierarchy we treat the
communities at the previous levels as nodes. We then calculate the
average cosine distance between these nodes using the information
present in them. At each level % of hierarchy we create a new
affinity matrix as:

(1)
D=1 22 =1 Sygrig (1)
! J

Sthalis) =
h— h—1
vali |C§ D|X|(§ ”

. (6)

where || represents the cardinality of the set. In order to determine
the threshold at level % of hierarchy, we estimate the minimum

June 2014 | Volume 9 | Issue 6 | 99966
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Multilevel Hierarchical KSC for Large Scale Complex Networks

cosine distance between each individual cluster and the other
clusters (not considering itself). Then, we select the mean of these
values as the new threshold for that level to combine clusters. This
makes the approach different from the classical single-link
clustering where we combine two clusters which are closest to
each other at a given level of hierarchy and the average-link
agglomerative clustering where we combine based on the average
distance between all the clusters.

The reason for using mean of these minimum cosine distance
values as the new threshold is that if we consider the minimum of
all the distance values then there is a risk of only combining 2
clusters at that level. However, it is desirable to combine multiple
sets of different clusters. Thus, the new threshold /7 at level / is set
as:

M= mean(minj(Sl(,ZZd(i,j))),i #J. (7)

We use this process iteratively till we reach the coarsest cluster
where we have 1 cluster containing all the nodes. As a
consequence ~ we  obtain  the  hierarchical  clustering
C={CO,. .. ,C"M} automatically. As we move from one level
of hierarchy to another the value of distance threshold increases
since we are merging large clusters at coarser levels of hierarchy.
We finally end up with a set of increasing distance thresholds
T={/0,. . fmey,

Requirements for Feasibility to Large Scale Networks

The whole large scale network is used as test set. The latent
variable matrix for the test set is obtained by out-of-sample
extensions of the predictive KSC model and defined as
P,mz[el,...,eNn,“]T, Since we use the entire network as test
set, therefore, Nyy=N. The Py matrix is a N X (maxk-1)
dimensional matrix. So, we can store this P matrix in memory
but cannot create an aflinity matrix of size N X N due to memory
constraints.

To make the approach feasible to large scale network we put a
condition that the maximum size of a cluster at ground level
cannot exceed 10,000 (depending on the available computer
memory) and the maximum number of clusters allowed at the
ground level is 10,000. This limits the size of the affinity matrix at
that level of hierarchy to be less than 10,000 x10,000. It also effects
the choice of the initial value of the distance threshold #?. If we set
19 100 high (>0.2) then majority of the nodes at the ground level
in the test case will fall in one community resulting in one giant
connected component. If we set the value of #9 too low («0.1)
then we will end up with lot of singleton clusters at the ground
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Table 3. Nodes (V), Edges (E) and Clustering Coefficients (CCF) for each network.

Network Nodes Edges CCF
Facebook (Fb) 4,039 88,234 0.6055
PGPnet (PGP) 10,876 39,994 0.008
Cond-mat (Cond) 23,133 186,936 0.6334
Enron (Enr) 36,692 367,662 0.497
Epinions (Epn) 75,879 508,837 0.1378
Imdb-Actor (Imdb) 383,640 1,342,595 0.453
Youtube (Utube) 1,134,890 2,987,624 0.081
doi:10.1371/journal.pone.0099966.t003

level in the test case. In our experiments, we observed that the
interval any value between [0.1,0.2] is good choice for the initial
threshold value at level 0 of hierarchy. To be consistent we chose
f©=0.15 for all the networks.

Multilevel Hierarchical KSC for Test Nodes

The wvalidation set is a representative subset of the whole
network as shown in [26]. Thus, the threshold set 7 can be used to
obtain a hierarchical clustering for the entire network. To make
the proposed approach self-tuned, we use > >0.15, >0,
during the test phase.

In order to prevent creating the affinity matrix for the large
network we follow a greedy procedure. We select the projection of
the first test node and calculate its similarity with the projections of
all the test nodes. We then locate the indices (j) of those projections
s.t. CosDist(ey,e;) < D If the total number of such indices is less

than 10,000 then we put them in cluster C}l) otherwise we select
the first 10,000 indices and place them in cluster Cgl)‘ This is due

to the constraint that the size of a cluster (Cil)) at ground level
cannot exceed 10,000. We then remove entries corresponding to
those projections in Py to obtain a reduced matrix. We perform
this procedure iteratively until Py 1is empty to obtain
C(1)={C§1), ...,CD} where 7 is the total number of clusters at
hierarchical level 1. After the 17 level, we use the same procedure
that was for validation set i.e. creating an affinity matrix at each
level using the cluster information along with the threshold set 7 to
obtain the hierarchical structure in an agglomerative fashion. The
cluster memberships are propagated iteratively from the 17 level to
the highest level of hierarchy. The multilevel hierarchical kernel
spectral clustering (MH-KSC) method is described in Figure 3
which refers to Algorithm 2 and Algorithm 3 in Figure 4 and
Figure 5 respectively.

Time Complexity Analysis

The two steps in our proposed approach which require the
maximum computation time are the out-of-sample extensions for
the test set and the creation of the affinity matrix from the ground
level clusters.

Since we use the entire network as test set the time required for
out-of-sample extension is O(N; x N). Our greedy procedure to
obtain the clustering information at the ground level C%V requires
O(r x N) computations where 7 is the number of clusters at 1% level
of hierarchy for the test set. This is because for each cluster
Cﬁ”eC“’ we remove all the indices belonging in that cluster from
the matrix Pjey. As a result the size of Py decreases till it reduces
to zero resulting in O(r x N) computations. The affinity matrix
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(a) Multilevel Hierarchical Organization for Fb network

Hierarchical Tree Structure for Enrem Network
1 T T T T T T T T T

(b) Multilevel Hierarchical Organization for Enr network

Figure 8. Tree based visualization of the multilevel hierarchical organization prevalent in 2 real-life networks.
doi:10.1371/journal.pone.0099966.g008

Sggt Is a symmetric matrix so we only need to compute the upper However, as shown in [25], we can perform the out-of-sample
or the lower triangular matrix. The number of cluster-cluster extensions in parallel on n computers and rows of the affinity
e Crx(