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Abstract

In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal
toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of
publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested
using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this
compound, which records the responses induced when the compound interacts with different cellular systems or biological
targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising
method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate
potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with
publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these
extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of
interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity
potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with
structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader
range of animal toxicities.
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Introduction

The evaluation of chemical toxicity by traditional animal testing

protocols has proven prohibitively costly and time consuming for

screening large numbers of chemicals. A wide range of in vitro

bioassays are being developed and used as potential alternatives to

traditional animal models. In the past decade, the progress of high

throughput screening (HTS) techniques has resulted in the

generation of enormous amounts of bioassay data for large

collections of compounds. For example, PubChem, which is the

largest public data source [1], contained nearly 47 million

deposited compounds at the end of 2012. Among them, more

than 1,620,000 compounds have been tested by over 500,000

bioassays and thus there are more than 130 million bioactivity

outcomes (either actives, inactives or inconclusives) from these

bioassays on PubChem [2]. The generation of bioassay data is at

an unprecedented scale and the so called ‘‘big data’’ approaches

are required to analyze all the available data [3][4].

Many compounds (e.g., pesticides) of environmental or phar-

maceutical interest have been tested against multiple bioassays for

various purposes. For example: dichloro-diphenyl-trichloroethane

(DDT, CID 3306) has been tested against 383 PubChem assays as

of August, 2013, and it shows active responses in 28 assays. A

collection of data from these assays, especially the assays with

active responses, would provide useful response information to

study the potential toxicity responses of DDT in vivo. If a

compound is tested against a panel of bioassays, the test results

can be considered as a response profile for this compound.

Likewise, if a collection of chemicals is tested against the same

panel of bioassays, the response profiles of the chemical collection

constitute a set of common biological descriptors that reflect the

results of compounds interacting with different biological recep-

tors. Specifically, if the receptors of two or more bioassays are

potentially relevant to toxicity (i.e., two receptors belong to a

toxicity pathway), the response profiles contain potential pertur-

bation information of the tested compounds with respect to both

assays. This information is helpful for studying the systemic

chemical perturbation to the whole biological system. In this way,

experimentally profiling compounds of environmental interest
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based on relevant bioassay data has been used to study complex

animal toxicity [5].

Several recent efforts have attempted to use in vitro HTS

profiling to experimentally screen chemicals for potential toxicity.

For example, in 2006 the U.S. EPA initiated the ‘‘ToxCast’’

program with the goal of developing methods for utilizing diverse

in vitro HTS technologies to quickly screen for potential toxicity

and to prioritize candidates for future animal testing [6]. In the

first phase of this program, 309 well-characterized chemicals

(primarily pesticides) were screened against around 600 bioassays

using multiple HTS technologies. The ToxCast chemical library

has more recently expanded to over 1,800 compounds, spanning a

wide range of chemical use categories and structural classes, with

full data sets yet to be released [7][8]. In a related, multi-federal-

Agency effort, the Tox21 project is screening a chemical library

consisting of over 8,000 unique chemicals in panels of quantitative

HTS (qHTS) assays being developed at the NIH Chemical

Genomics Center (NCGC) [9]. In the early phases of this

program, the National Toxicology Program (NTP) tested an

initial set of 1,400 compounds across several cell-based assays

having potential relevance to toxicity. These qHTS data, currently

spanning several hundred bioassays, are publicly available in

PubChem in collaboration with the NCGC.

Acute toxicity is defined as the adverse effects occurring

following a short period of exposure or a short time of

administration of chemical substances [10]. In 2009, a collabora-

tive toxicological study aimed to develop and validate the use of in

vitro methods for the prediction of human acute toxicity. This

study, undertaken by several research organizations in Europe

[11], established that a set of 100 bioassays correlated with acute

toxicity for a set of 97 compounds. This latter study focused on a

relatively small set of compounds and a limited number of

bioassays were used.

Several virtual screening studies aimed to extract useful bioassay

information from public data sources for specific compounds were

also reported. For example, Rohrer and Baumann developed a

workflow to construct a maximum unbiased validation (MUV)

data set from multiple bioassay collections of PubChem for virtual

screening purposes [12]. Butkiewicz et al. selected nine datasets

from the confirmatory HTS data of PubChem to benchmark

computer-aided drug discovery studies [13]. Schierz studied the

effect of false positive problems of the PubChem bioassay on

virtual screening [14]. Moreover, the PubChem bioassay data

have been used in various modeling studies: a decision tree

approach using the HTS data [15]; a Bayesian approach using the

HTS data [16]; a support vector machine (SVM) approach for

inhibitor or ligand classifications [17]; and a GPU accelerated

SVM approach [18]. In 2010, Xie reviewed the previous

applications of bioassay data in PubChem and he also addressed

two major challenges in the application of PubChem bioassay

data: a biased active/inactive ratio and experimental errors shown

as false positives or negatives [19]. Overall, previous studies using

public bioassay data (i.e., PubChem) required extensive manual

data curation.

Due to the nature of manual selection of bioassays from public

resources, the total amount of data that could be analyzed is

limited in the above-mentioned studies. In these studies, the

correlation between a small set of bioassays with targeted complex

bio-activities (e.g. animal toxicity) is somewhat arbitrary because of

the manual selection. Furthermore, since there is no standard

criterion for representation and annotation of public bioassay data,

the quality and format of the available data may vary from

different sources and greatly affects the potential usefulness of

these bioassay results. Thus, an automatic data mining method is

necessary to extract, integrate, and evaluate bioassays from public

data sources. Automatically selected bioassays could be used in

future studies to profile compounds of particular biological

interest.

In this study, we developed a new data mining method to

extract information rich bioassays from PubChem that could be

used to generate response profiles for the evaluation of animal

acute toxicity of compounds. The protocol developed in this study

is entirely general and could be applied to processing other big

data type public sources (such as being generated in ToxCast and

Tox21), as well as to the profiling of other complex bioactivities

(i.e., other animal toxicities).

Materials and Methods

Publicly Available Bioassays
Public bioassay data was obtained from the PubChem

repository developed by the National Center for Biotechnology

Information (NCBI). As of February, 2014, there were 739,668

bioassays recorded in this repository. These assays were either

collected from other bioassay databases, such as ChEMBL [20], or

deposited by various laboratories such as the screening centers of

the Molecular Libraries Program (MLP) of the National Institutes

of Health (NIH) (http://www.mli.nih.gov/mli/). For example, the

NCI60 bioassays, consisting of 60 human tumor cell lines, were

developed by the Developmental Therapeutics Program of the

National Cancer Institute (DTP/NCI) and used as an anticancer

drug screen panel [21]. Each bioassay has a unique PubChem

assay identifier (AID). The number of compounds tested in every

bioassay ranges from 1 (e.g., AID 569473) to more than 400,000

(e.g., AID 602332). Although many bioassay data were originally

deposited as continuous data, we used the PubChem classification

results (active, inactive, and unspecified/inconclusive) in our study

to simplify the data mining procedure.

Profiling Compounds with PubChem Bioassays
1 Identifying target compounds using the PubChem

compound accession identifier. Normally compounds col-

lected from various sources have their own identifiers, such as CAS

Registry numbers (http://www.cas.org/content/chemical-substances/

faqs, Accessed June 1, 2013), and ZINC ID (http://zinc.docking.org/,

Accessed June 1, 2013). All these identifiers are used by various

chemical sources, which normally contain millions of compounds. For

PubChem, each compound has a unique compound accession

identifier (CID) linked to a unique chemical structure. When a

compound is listed on PubChem, there is usually a formal chemical

name, synonyms, which includes trivial names, brand names, IUPAC-

like name, chemical formula, and basic physical properties (e.g.,

molecular weight). Among all this information, only CID can be used

to identify a unique compound by its chemical structure. For this

reason, all the compounds in our dataset were initially identified by

their CIDs. This procedure was finished by automatically transferring

other existing identifiers (e.g., CAS) in our dataset into CIDs or

automatically searching for a corresponding CID by the chemical

structures.

2 Generating the initial response profiles. The PubChem

compounds can be virtually linked to their bioassay records

through Entrez Utilities (http://www.ncbi.nlm.nih.gov/books/

NBK25500/, Accessed June 1, 2013). Entrez Utilities were

developed by the NCBI to let users query various databases

through a web browser. We developed programs to perform on-

line data extraction from PubChem by embedding the keywords of

Entrez Utilities into Perl scripts, which are provided in Protocol
S1.

Profiling Animal Toxicants: A Big Data Approach
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The number of compounds that show active results in a HTS

bioassay is often much less than the number of inactives. Thus, a

bioassay with very few active responses, which indicates little

response information recorded by this assay in our target

compounds, was excluded first. We used an arbitrary cutoff,

which ensures at least 6 actives in each selected bioassay among

the target compounds, to remove those somewhat ‘‘insignificant’’

bioassays that provide little information.

After removing insignificant bioassays, we can build an m6n

dimension matrix M, as the initial response profiles for our target

compounds. This matrix consists of m bioassays as columns and n

compounds as rows. The cell Mij of M has a value of either 1

(indicates compound j is active in assay i), 21 (indicates compound

j is inactive in assay i), or 0 (indicates compound j is inconclusive or

untested in assay i). An assay in this matrix could also be

considered as a vector Ai (i = 1–n) with n dimensions.

3 Selecting the most useful bioassays for the targeted

compounds’ animal toxicity. It is clear that not all the initially

selected PubChem bioassays are useful to the type of animal

toxicity that we want to study (i.e., animal acute toxicity). To assess

informational or statistical relevance, we evaluated all the

bioassays in the initial response profiles based on their correlation

to our target animal toxicity. Thus, the animal toxicity results

could also be constructed as an extra vector T with the same

dimensions of assay vector Ai. We used two parameters to select

the most relevant bioassays. Firstly, the correct classification rate

(CCR) between animal toxicity vector T and Ai (i = 1–n) is

calculated as:

CCR~
sensitivityzspecificity

2
ð1Þ

Sensitivity~

Number of True Positives TPð Þ
Number of True Positives TPð ÞzNumber of False Negatives FNð Þ

ð2Þ

Specificity~

Number of True Negatives TNð Þ
Number of True Negatives TNð ÞzNumber of False Positives FPð Þ

ð3Þ

A True Positive (TP) is defined when a compound is active in

both T and Ai. A True Negative (TN) is defined when a compound

is inactive in both T and Ai. A False Positive (FP) is defined when a

compound is active in Ai but inactive in T. A False Negative (FN) is

defined when a compound is inactive in Ai but active in T. An

assay with high CCR value indicates that the correlation between

this assay and the target animal toxicity (animal acute toxicity in

this study) is high.

Secondly, we defined a parameter L(Ai) to calculate the

likelihood of correlation between the activities of bioassay and

animal toxicity for the targeted compounds as follows:

L Aið Þ~
TP

TPzFN
|

FPzTN

FPz1
ð4Þ

The higher L(Ai) value for a bioassay indicates this bioassay has

higher correlation with animal toxicity. The parameter L(Ai) gives

higher weights to the True Positive Rate (TPR) rather than the

True Negative Rate. Thus, if the number of FP compounds

increases, the L(Ai) value will significantly decrease.

4 Evaluating the animal acute toxicity potentials of

chemicals using selected bioassay data. The activity of a

compound in PubChem bioassays is categorized by active

(represented as 1 in this study), inactive (represented as 21) or

inconclusive/untested (represented as 0). If one compound was

tested using multiple assays, the consensus activity was calculated

by evaluating the individual response of this compound in all

tested bioassays. Considering that any given compound usually

was tested in assays from different sources and protocols, we

defined a new parameter, called S score, to rank the toxicity

potential of compounds from multiple bioassays as follows:

Sj~
Xn

i~0

R

Rij~

At

Ai|Aj

, if active

0, if inconclusive or untested

It

Ii|Ij

, if inactive

8>>>>><
>>>>>:

ð5Þ

Among the above equations, the S score for compound j is

defined as the sum of the normalized response parameter R for

each individual bioassay. When the response of assay i is active, R

is normalized by considering the total number of active responses

(At) in M, the total number of active responses in this bioassay (Ai),

and the total number of active responses in this specific compound

in all the bioassays (Aj). Similarly, when the response of assay i is

inactive, R is normalized by considering the total number of

inactive responses (It) in M, the total number of inactive responses

in this bioassay (Ii), and the total number of inactive responses in

this specific compound in all the bioassays (Ij). The R is zero when

there is no test data or the response is ‘‘inconclusive’’.

In summary, the whole profiling procedure, which lies at the core

of this paper (Figure 1), is to automatically mine the public big data

resources for the compounds of specific interest. The response

profiles, obtained from the in vitro-in vivo relationship analysis, could

be viewed as the potential toxicity mechanisms of toxicants and be

used to prioritize candidates for future animal testing.

Rat and Mouse LD50 Dataset
The rat acute toxicity data collection is described in our previous

publication [22]. It is comprised of 7,385 unique organic

compounds with rat LD50 values expressed as a negative logarithm

in units of moles per kilogram. Since we only consider the

classifications of the bioassay data, the acute toxicity results of these

compounds were also classified as ‘‘toxic’’ when –log10LD50(mol/kg)

. 3.00, and ‘‘nontoxic’’ when –log10LD50(mol/kg) , 2.00. The

compounds with –log10LD50(mol/kg) values between 2.00 and 3.00

are marginal. Among 7,385 compounds, there are 1,916 com-

pounds deemed toxic, 2,544 marginal compounds, and 2,925

nontoxic compounds. This classification cut-off for animal acute

toxicity was also used in previous studies based on acute toxicity

guidelines [23]. Marginal compounds were removed initially, so

there are totally 4,841 compounds being used in this study.

Profiling Animal Toxicants: A Big Data Approach
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Results and Discussions

The Overview of PubChem Bioassay Data for the Target
Compounds

The total number of PubChem bioassays initially used for

profiling was over 739,000 and the size of data was over four

terabytes (Figure 1). After we removed marginal toxicity

compounds, there were a total of 4,841 unique organic

compounds with their LD50 data. Among these compounds,

3,840 compounds can be found in PubChem and have a unique

structure-matched CID. Using these CIDs, we extracted 12,786

bioassays in which at least one of these compounds showed active

responses. This effort resulted in 1,993 out of the 3,840

compounds with 479,549 data points. As mentioned above, we

removed bioassay with less than 6 active compounds per assay. As

the result, there were a total of 555 bioassays in the preliminary

response profiles (204,912 data points) for 1,899 compounds

(Figure 1).

The response matrix (M) based on the initial response profiles of

the 1,899 compounds can be viewed as a heatmap (Figure 2). Not

surprisingly the majority of the responses in the initial response

profiles are either null/inconclusive (represented as ‘‘0’’) or

inactive (represented as ‘‘21’’). The ratio of the active responses

(represented as ‘‘1’’) in this initial response heatmap is very low,

which also reflects the nature of most HTS data. However, it is

clear that the initial M only reflects responses of the target

compounds in all tested PubChem bioassays. It is necessary to

develop automatic tools to search for the most relevant bioassays

to our target animal toxicity.

Searching for Bioassays Useful to Animal Toxicity
The relevance between animal acute toxicity and each of the

555 initial bioassays was calculated and ranked using both the

CCR and L parameters described above. Figure 3 shows the

distribution of 555 bioassays against their CCR and L parameters.

The table on the right side displays the values of TP, FP, TN, FN

along with CCR, and L parameters for some representative

bioassays (Figure 3). If only CCR is used as the ranking criteria,

the top bioassays will have very limited TP and TN counts, as

shown in the examples in area A of Figure 3. It is understandable

that one individual bioassay is not able to fully replicate the

complex toxicity mechanisms of animal toxicity and, hence, the

results from a single bioassay are not able to correlate with the

animal toxicity perfectly for all compounds. For this reason, only

using the CCR as the parameter to rank bioassays will result in

biased results (i.e. accidental selection of the bioassays with few TP

and TN counts).

Figure 1. The automatic response profiling based on in vitro-in vivo relationship.
doi:10.1371/journal.pone.0099863.g001
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Figure 2. The heat map for the response profiles of 1,899 compounds against 555 bioassays. The red dot (Value = 1) indicates the
compound has an active response in the corresponding bioassay. The light green dot (Value = 21) indicates the compound has an inactive response
in the corresponding bioassay. The grey dot (Value = 0) indicates the compound is untested or has inconclusive results in the corresponding bioassay.
doi:10.1371/journal.pone.0099863.g002

Figure 3. The distributions of 555 bioassays against their CCR values and the L parameters with animal acute toxicity. The graph
could be divided into 4 areas by using two cutoff values (CCR = 0.6 and L = 7): 1) A indicates low L and high CCR; 2) B indicates high L and high CCR; 3)
C indicates high L and low CCR; and 4) D indicates low L and low CCR. The tables on the right side displayed the counts of TP, FP, TN, FN along with
CCR and L values for some bioassays from area A, B and C, respectively.
doi:10.1371/journal.pone.0099863.g003
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Considering the systemic effect of potential toxicants, we need

novel methods to evaluate the correlations between bioassays and

target animal toxicity. Our hypothesis based on systemic effects is

that if the bioassay includes a receptor that contributes to a toxicity

pathway and is relevant to the target animal toxicity, this bioassay

should provide useful information relative to the target animal

toxicity. However, if compounds show inactive results in a

particular bioassay, it does not necessarily mean that these

compounds are not toxicants since they may bind to other

receptors that perturb the toxicity pathways to induce systemic

toxicity. In another word, an ‘‘active’’ response in a bioassay may

relate directly to toxicity in animals, but an ‘‘inactive’’ result in a

bioassay does not imply lack of toxicity in animals. To represent

this scenario, we designed the novel L parameter as the second

scoring criteria. Figure 4 shows the relationship between L

parameters and the true positive rates of the relevant bioassays for

our target animal acute toxicity. It is notable that the true positive

rates of the bioassays are all quite high (around 90%) when the L

parameters are above 7 and in these instances, the number of FP

cases is low (Figure 4). The L parameter well reflects the nature of

our hypothesis. On the other hand, only using the L parameter to

select bioassays may result in biased selections. For example,

several bioassays with high L values that are located in area C of

Figure 3 all have high true positive rates but with few active

responses. This condition may be due to chance when considering

that the CCR is near to random. For this reason, we used a

CCR.0.6, a typical cutoff used by many modeling approaches for

model selection, to pre-select 95 bioassays out of the total of 555

bioassays. These 95 bioassays were then ranked by their L

parameters. The top four assays, which are located in the area B of

Figure 3, all have high true positive rates and the ratio of active

responses in the testing result indicates that this correlation is not

coincidental. The top ranked 47 bioassays (about 50% of the 95

bioassays) were selected to build the response profiles, in which all

L parameters are larger than 6.4. All the 555 bioassays with their

parameter information were listed in Table S1 and the selected

47 bioassay were listed in Table S2.

In addition, we performed the Chi2 test [24] to examine the

compound activity distributions between animal acute toxicity and

the PubChem bioassays. A higher Chi2 value represents a higher

relationship between bioassays and animal test. However, Chi2 test

still cannot fully avoid biased conditions, similar to those shown in

Figure 3. For example, the bioassay with AID 504847 is to

identify inhibitors of the vitamin D receptor. It was ranked as one

of the top 10 assays if we used Chi2 values as the criterion (Chi2 =

42.5 for this bioassay). The compounds tested by this bioassay

have a large overlap with our acute toxicity database (727

compounds total) and that is the major reason that this bioassay

has a high Chi2 value. Using our method, it was ranked #159. It

shows somewhat relationship but does not rank as high as the most

useful bioassays for animal acute toxicity (see section 3.4 for

further discussion). Another example is the bioassay with AID

651741, which is to detect the agonists of the antioxidant response

element (ARE) signaling pathway. This bioassay also shows high

Chi2 value (40.8) but is ranked low in our study (#83). Although

the Chi2 values show usefulness to indicate the importance of

bioassays to animal toxicity, ranking by Chi2 values does not fit

our hypothesis of systemic effect as described above. We listed all

Chi2 values for the 555 bioassays in Table S1 for comparison

purposes.

Classifying Compounds for their Animal Acute Toxicity
using the Resulting Response Profiles

The resulting response profiles, consisting of 47 top ranked

bioassays, were applied to classify the animal acute toxicity for the

compounds of interest. It is well known that the bioassay data may

contain experimental errors due to multiple reasons (using a single

dose instead of multiple doses for testing, the purity of the samples,

assay artifacts, etc.). Classification of a compound as toxic is

relatively uncertain if it only shows active responses in one or two

of bioassays we selected, although these bioassays show certain

relationship to animal toxicity. On the other hand, if a compound

has ‘‘missing data’’ or ‘‘inconclusive’’ results in many selected

bioassays, it is not reasonable to consider it as non-toxic since it

may show ‘‘active’’ results when testing against these bioassays in

the future. Therefore, it is reasonable to define the following

criteria when we use our selected bioassays to classify compounds:

A compound will be selected for classification if: 1) three or more

assays in our selected set of 47 bioassays have an active response

for this compound; or 2) this compound has a reported response

(either active or inactive) in more than 50% of the 47 assays (25

assays or more). There were 123 compounds selected from the Rat

LD50 dataset based on these criteria, and of these, 64 compounds

were toxicants and 59 compounds were non-toxicants. The S

scores of these 123 compounds were calculated. Using the L

parameter to select bioassays and the S score to prioritize

compounds, we could re-organize a portion of the original

response profiles, as shown in Figure 3, into a new heatmap

(Figure 5) illustrating the response profiles of our focused subset

of 123 animal acute toxicants and non-toxicants. If we use the

threshold of S = 0 to classify compounds, it is clear that the

compounds with an S score above 0 are mostly toxic except one

compound (CID 5405, terfenadine, an antihistamine used for the

treatment of allergic conditions). It causes cardiotoxicity at high

doses, but its major active metabolite does not [25]. However,

those compounds with an S score below 0 contain both toxicants

and non-toxicants, which also fit our hypothesis based on systemic

effects, as described above. Based on this discovery, we propose

that the compounds with larger S scores are potential toxicants by

using the response profiles consisting of the top ranked bioassays in

our study. Figure 6 shows the molecular structures of 10

compounds with the highest S scores (Compound 1–10). Appar-

ently they are not similar to each other if only considering their

chemical structures. However, these compounds are indeed similar

Figure 4. The relationships between L parameters and 1) the
True Positive Rate (blue dots); and 2) the number of total False
Positives (red dots) for 555 bioassays.
doi:10.1371/journal.pone.0099863.g004
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to each other based on their response profiles from the 47

bioassays (Figure 7).

These 47 top-ranked bioassays could also be used as a testing

battery to prioritize new compounds for future animal testing. To

prove their usefulness, we used these 47 bioassays to prioritize new

PubChem compounds for their potential to be animal acute

toxicants. There are 10,508 compounds that do not exist in our

current Rat LD50 acute toxicity data set, and each of them has an

active response in at least one of the 47 bioassays. If we employ

similar criteria to that described above, where a compound is

required to have at least three active responses in the panel of 47

bioassays, there are 2,033 new PubChem compounds that are

evaluated for potential animal acute toxicity. The maximum S

score of these compounds is 44. The 10 compounds with the

highest S score were also listed in Figure 6 (Compound 11–20).

And their response profiles were shown in Figure 7 as a

comparison to those of 10 compounds with the highest S score in

our acute toxicity set. Compound 13 and 18 have similar chemical

structures and are also comparable to compound 1 in our acute

toxicity database (Figure 6). But most of the remaining

compounds have different chemical structures, but similar

response profiles.

We selected the top 32 new compounds, which all have an S

score value larger than 41, and examined their toxicity potential

by manually searching the literature and public sources. All 32

compounds, as listed in Table S3, have toxicity reports. Among

them, six compounds have toxicity data in the Hazardous

Substances Data Bank (http://toxnet.nlm.nih.gov/cgi-bin/sis/

htmlgen?HSDB, Accessed June 1, 2013). They were experimen-

tally identified to cause specific side effects in humans. Most of the

other compounds (i.e., anthracycline antibiotics, camptothecin

analogs, polypeptide antibiotics, etc.) were used as chemothera-

peutic agents for cancers and were proved to be cytotoxic. Some of

these compounds also have been tested in animals and show

toxicity. For example, anthracycline antibiotics and their analogs

are well-known for their genotoxicity and cardiotoxicity. Also, the

anti-tubulin agents, vinblastine and colchicine, show genotoxicity

in rat micronucleus test. The above analysis provides indirect but

clear evidence of the applicability of our tool to prioritize potential

toxicants for future animal testing.

Potential Toxicity Mechanisms Relevant to the Selected
Bioassays

Table S1 lists all 555 PubChem bioassays used in this study,

including the top 47 ranked bioassays in Table S2 (all assays with

CCR.0.6 for acute toxicity and ranked by their L values). It is

noticeable that some bioassays have low correlations with animal

Figure 5. The reorganized heat map for the response profiles of 123 compounds against 47 bioassays. The left separated column shows
the animal acute toxicity for each compound.
doi:10.1371/journal.pone.0099863.g005
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Figure 6. The list of the top ten compounds with the highest S values from our acute toxicity database (1–10) and from data mining
of new PubChem compounds (11–20). The toxicity related excerpts and sources for the new PubChem compounds were listed in Table S3.
doi:10.1371/journal.pone.0099863.g006
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acute toxicity (CCR,0.6), although the number of target

compounds tested in these bioassay are relatively high. For

example, non-cell-based receptor binding assays, such as BCL2

(AID 2129), tyrosyl-DNA phosphodiesterase (AID 485290),

glutaminase (AID 624170 and 624146), etc., or the assays used

to screen pathogens (i.e., Mycobacterium tuberculosis H37Rv (AID

1332), a notorious pathogen which increases resistance to

antibiotics) apparently have no relationship with animal acute

toxicity. Among all the assays having higher correlations with

animal acute toxicity (CCR .0.6), their priority as potential

screening alternatives could be ranked using the L value. The top

47 ranked bioassays selected in this study are mostly from the

Developmental Therapeutics Program (DTP) of the National

Cancer Institute (NCI). These assays belong to the NCI 60 human

tumor cell lines used as an anticancer drug screen panel, called as

NCI60 [21]. The protocols used in these assays could be classified

by nine distinct tumor types: leukemia, colon, lung, CNS, renal,

melanoma, ovarian, breast, and prostate (Figure 7). The

screening used the sulforodamine B (SRB) assay, which is one of

the most widely used methods for in vitro cytotoxicity screening, to

identify compounds with growth-inhibitory or toxic effects on

particular cell lines [26]. Hence, it is reasonable to assume that this

assay might be relevant to in vivo acute toxicity [27]. The tumor

mice model assays are used to estimate compound antitumor

activity based on the percent of tumor shrinkage relative to the

control, indicating the cytotoxicity of the compounds. Some of the

NCI60 assays, using a human tumor xenograft mouse model, also

have high rankings because of the high specificity and high

coverage of non-toxic compounds (e.g., AID264).

The NCGC has deposited datasets for many bioassays

potentially related to toxicity into PubChem, many of which were

developed through collaboration with the NTP as part of the

Tox21 project. Among them, there are 13 cell viability assays of

various human primary cell lines [28]. Several of these were found

to have a relatively high correlation (CCR.0.6) with animal acute

toxicity (i.e., AID 426, AID 540 and AID 544). However, most of

Figure 7. The heatmap of 10 top-ranked acute toxicity compounds (from 1–10) along with 10 top-ranked new PubChem
compounds (from 11–20). All the compounds were ranked based on the S values of their biological responses in 47 bioassays identified in this
study.
doi:10.1371/journal.pone.0099863.g007
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the NCGC cell viability assays were excluded from our top ranked

47 assays because of their relatively low L value. One possible

reason for the scoring performance difference between the NCI60

assays and the NCGC cell viability assays could be related to the

difference in definition of active compounds. In the NCI60 assays,

a compound is considered to be active if the GI50 (concentration

required for 50% inhibition of growth) is more potent at 1 mM or

less. This is a stringent threshold used to define actives in

bioassays. On the contrary, in the NCGC/NTP cell viability

assays, an active compound could have an IC50 (concentration

required for 50% of inhibition) ranging from 0.6 nM to 92 mM as

long as the responses can be well fitted to the Hill equation. This

method to define actives resulted in more false positives in the

assays when compared with the animal toxicants. Interestingly,

two other NCGC/NTP assays out of these 13 cell viability assays

have higher rank in our study. These two cell-based assays

primarily aimed at identifying compounds with specific inhibitory

effects against either the D1 dopamine receptor (AID 488983) or

retinoid-related orphan receptor gamma (AID 651802). We

suspect that the true positives identified in these two assays could

be cytotoxic and cytotoxicity is one of the potential artifacts that

were not excluded when data were deposited into PubChem,

which can also cause decreasing signal in assays.

Conclusions

In this study, we developed a new data mining method to

extract useful bioassays to generate response profiles for the

evaluation of animal acute toxicity of organic compounds. Next,

we developed a new scoring system to estimate the relevance

between in vitro bioassay outcomes and the animal acute toxicity of

4,841 compounds. The top ranked 47 bioassays were considered

to have potential in vitro-in vivo correlations, although the final

number of compounds that could be evaluated due to sparse assay

coverage was relatively small (N = 123). Most of these bioassays

belong to the NCI60 human tumor cell lines applied as an

anticancer drug screen panel. Moreover, we developed another

scoring system to calculate the consensus S score for a compound

based on its response profile. Compounds with higher S score are

found to have higher toxicity potential. We tested the usefulness of

the automatic response profiling workflow by prioritizing new

PubChem compounds with toxicity potentials. The 32 compounds

with the highest S scores were examined manually by literature

searching and found to have positive results in various toxicity

studies. The protocols and the whole profiling workflow developed

in this study could be used to explore useful public bioassay data,

especially the big data type resources, for compounds of interest,

which are targeted by other complex bioactivities (i.e. other animal

toxicities).
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