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Abstract

Recently, the development of biobanks linked to electronic medical records has presented new opportunities for genetic
and epidemiological research. Studies based on these resources, however, present unique challenges, including the
accurate assignment of individual-level population ancestry. In this work we examine the accuracy of administratively-
assigned race in diverse populations by comparing assigned races to genetically-defined ancestry estimates. Using 220
ancestry informative markers, we generated principal components for patients in our dataset, which were used to cluster
patients into groups based on genetic ancestry. Consistent with other studies, we find a strong overall agreement (Kappa
= 0.872) between genetic ancestry and assigned race, with higher rates of agreement for African-descent and European-
descent assignments, and reduced agreement for Hispanic, East Asian-descent, and South Asian-descent assignments.
These results suggest caution when selecting study samples of non-African and non-European backgrounds when
administratively-assigned race from biobanks is used.
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Introduction

Hospital-based biobanks linked to electronic medical records

(EMRs) are a growing and cost-effective way to ascertain large

segments of a population for biomedical research studies. Genetic

and clinical studies increasingly require larger numbers of samples

to provide statistical power to discover genetic variation associated

with complex human diseases; using existing surveyed clinical

populations is a way to meet this demand quickly. Multiple studies

have been published illustrating the basic utility of biobanks for

validating existing association studies [1], performing phenome-

wide association studies [2,3], and for identifying novel genetic

associations within existing genotype-phenotype databases [4].

The use of EMR-based biobanks for research purposes is expected

to grow in the coming years [5,6].

The Vanderbilt DNA biobank (BioVU) contains nearly 160,000

DNA samples linked to electronic medical records at Vanderbilt

University and continues to accrue additional patient samples.

DNA is extracted from discarded blood samples collected during

routine patient care. EMR data is drawn from administrative

databases and scrubbed of identifying information to generate a

resource for researchers known as the Synthetic Derivative (SD)

[1,7]. A subset of the SD population has linked DNA samples,

forming the BioVU subset. Upon institutional approval of a

BioVU project, samples with the phenotype of interest, based on

data from the SD, can be accessed and genotyped. All genotype

data generated using BioVU samples is then made available to

Vanderbilt investigators for future studies. The BioVU design has

the distinct advantage of rapid sample accrual for a variety of

clinical traits present in the patient population; however, re-

contacting participants for sample collection or validation of

subject data is prohibited by both institutional policy and the de-

identification process, limiting some applications of the data.

With increased emphasis on the use of DNA biobanks, it is

important to note the critical role of race in genetic association

studies. A sample drawn from multiple underlying populations is

subject to population stratification, where each population has a

slightly different genetic architecture. If not properly accounted

for, these differences in allele frequency can result in false

associations. As such, it is common practice in genetic studies to

correct for underlying population sub-structure by estimating

global genetic ancestry for each sample [8]. This is often

accomplished by genotyping a set of ancestry informative markers

(AIMs) which are evaluated using either principal components

analysis (for a continuous estimate of ancestry group) [9] or cluster

analysis (for a categorical ancestry assignment) [10]. The

individual measure of genetic ancestry is then used to stratify

individuals or to include them as a covariate for adjustment in

statistical analyses to avoid confounding.

In lieu of genotyping AIMs, genetic studies sometimes use self-

reported race as a covariate, either as a surrogate for genetic

ancestry or to capture social and demographic components [11].

The complex nature of the relationship between race and genetic
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ancestry has been extensively explored [12], and multiple studies

have shown that self-reported race is generally reflective of an

individual’s genetic ancestry but does not account for population

substructure [13,14]. While self-reported race is commonly

collected in epidemiologic cohorts, many provider-based studies

use third-party reported race rather than self-reported race.

Studies of agreement between self and third-party race assignment

have been conducted, but have conflicting results, showing varying

levels of agreement[13–16].

Dumitrescu et al. [17] previously reported on the utility of using

third-party reported race for African-descent and European-

descent individuals within BioVU, citing a high concordance with

genetic ancestry. However, third-party assignment of these racial

categories may be influenced by subjective criteria for specific

racial groups. This notion is supported by a study that reported

high accuracy for distinguishing African American and European

American individuals (positive predictive value 0.95 & 0.94,

respectively) using third-party reporting, but less accuracy for

Hispanics and American Indians (positive predictive value 0.81 &

0.50, respectively)[18].

The accuracy of third-party racial assignments is especially

critical for biobank-based studies. Should an investigator seek to

perform a genetic study within a diverse population, sample

selection is likely dependent on the third-party racial assignment

within the EMR. As a result, samples of a different ethnicity may

be selected and genotyped, only to be excluded from analysis after

ancestry is determined using genetic data, resulting in a waste of

research funds. Additionally, genetic ancestry can influence some

clinical decision-making processes, including automated decision

support, which is being integrated into some EMRs [19,20].

Before decision support rules are implemented that consider race

in treatment decisions, it is important to characterize the accuracy

of race within EMRs. In this work, we characterize how well

administrative third-party race assignment within BioVU reflects

ancestry estimated from genetic data.

Methods

Ethics Statement
BioVU, Vanderbilt University’s biobank, uses de-identified patient

electronic medical records. This study is considered non-human

subjects research by the Vanderbilt institutional review board.

Sample Selection
A total of 7,252 individuals were selected from BioVU,

specifically to over-represent diverse populations and individuals

with ‘‘unknown’’ administrative race assignments. Within the

synthetic derivative (SD) and BioVU, race is administratively

assigned to one of eight predefined categories: White (W), Black

(B), Asian/Pacific (A), Native American (N), Indian (I), Hispanic

(H), other (O), or unknown (U) (Table 1). Based on communica-

tions with clinical personnel who regularly assign race codes, in

practice, the Native American (American Indian) and Indian

(South Asian) race codes are sometimes incorrectly used

interchangeably. No individuals with ‘‘other’’ ethnicity were

selected in this study. For this paper, we will refer to the

predefined, administratively-assigned racial categories as Cauca-

sian, African American, Asian/Pacific, Native American, Indian,

and Hispanic (Table S1).

Genotyping
All 7,252 BioVU samples were genotyped using the Illumina

VeraCode GoldenGate assay in the Center for Human Genetics

Research (CHGR) DNA Resources Core at Vanderbilt University

for 308 ancestry informative markers (AIMs) and scanned on the

Illumina BeadXpress reader. AIMs genotypes were merged with

existing data for 805 individuals from the International HapMap

Project (Phase 3, Revision3, Build 36), including 165 CEU, 203

YRI, 137 CHB, 113 JPT, 101 GIH samples, and 86 MXL, as

reference populations to assist in determining genetic ancestry

(Table S1). The genetic data underwent quality control measures,

including removal of 39 non-autosomal SNPs, 38 SNPs not also in

the HapMap dataset, and 11 SNPs that were co-linear with

principal component (PC) three and caused atypical clustering,

leaving 220 SNPs for analysis (SNP list available upon request).

Within the final merged dataset of 220 SNPs for 8,057 individuals,

all SNPs had a minor allele frequency (MAF) greater than five

percent. Of the BioVU samples in our dataset, 52% (4,192) were

female.

Genetic Ancestry Assignment
We performed principal components analysis (PCA) for 220

SNPs using the EIGENSTRAT package [9] on the combined

samples. Outlier removal was disabled for all EIGENSTRAT

analyses. Consistent with published studies [9], we generated the top

ten principal components to estimate genetic ancestry based on

genetic sharing of SNPs with HapMap samples of known

continental origin. To assign genetic ancestry for each individual

we performed model-based clustering, using the mclust [21] R

package, to define and assign individuals to clusters using an

ellipsoidal model with varying volume, shape, and orientation. We

indicated that mclust should define five clusters in order to

differentiate the five ancestry groups known to be present in the

dataset (European-descent, African-descent, East Asian-descent,

South Asian-descent, and Hispanic-descent). By plotting a 10 by 10

matrix of all pairs of PCs, colored by the defined clusters, we visually

determined that PCs 1, 2, 3, 7, 9, and 10 optimally captured

separation of the five clusters. These six PCs were used to perform

clustering. Genetic variance within the European-descent cluster

was captured in the unused principal components, and may reflect a

bias toward European-descent components within this set of AIMs.

Statistical Methods
Administratively-assigned race was compared to cluster-based

ancestry assignment (Table 2) through contingency table analysis

using STATA 12. Additionally, comparisons for HapMap cluster

assignment is shown in Table S2. Agreement between these two

classification methods was measured by Cohen’s Kappa coefficient

[22], which takes into account the expected agreement of two

‘raters’ based on the distribution of categories within the dataset.

In this context, administrative assignment is the first ‘rater’ and

genetically determined ancestry is the second ‘rater’. Kappa is

standardized on a scale from -1 to 1, where 1 indicates perfect

agreement, 0 indicates agreement that would be expected by

chance, and negative values indicate less agreement that would be

expected by chance. Genetic ancestry categories are mutually

exclusive, so an individual can only be assigned to one category,

based on clustering from principal components analysis.

Results

The distribution of administratively-assigned race across the

sample used in this study, within BioVU, and within the entire

synthetic derivative (SD)—as well as population-level counts for

Davidson County Tennessee—are shown in Table 2. Plotting PC

1 versus PC 2 (Figure 1A) shows differentiation between

Caucasian, African American, and Asian/Pacific assigned indi-

viduals, with Hispanic, Native American, and Indian assigned
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individuals falling between the three foci. Results from the model-

based clustering are shown in Figure 1B. Clusters for European-

descent, African-descent, and East Asian-descent clusters are

distinct. The South Asian-descent and Hispanic-descent clusters

are less defined, due to their varying degrees of admixture. Our

ability to make inferences about the accuracy of Native American

and Indian codes is limited due to ambiguous use of these codes in

clinical practice, limited availability of Native American HapMap

reference populations, and small sample size within our dataset.

Kappa (K) measures of agreement between third-party race

assignment and estimated genetic ancestry are shown in Table 3

(more detailed information on Kappa statistics shown in Table

S3). Over the entire dataset, agreement was reasonably high

(K= 0.872), largely driven by European-descent (K= 0.906) and

African-descent (K= 0.964) individuals. Less agreement was seen

for East Asian-descent (K= 0.825) and Hispanic-descent

(K= 0.718) individuals. We also assessed agreement between

individuals with Native American (N) and Indian (I) racial codes

and South Asian ancestry estimated by the Gujarati Indian

reference samples (GIH) to examine the hypothesis that these

codes predominantly represent South-Asian ancestry. This agree-

ment (K= 0.284) was expectedly low, indicating that while they

may be misappropriated in the clinical environment, it is not

strongly in favor of South-Asian ancestry. Notably, when

stratifying by sex, we observe similar Kappa agreement values

for European and African-descent genetic ancestry groups. In

other groups, females tend to have slightly higher Kappa values

than males, with the largest difference in agreement by sex

observed for individuals in the South Asian-descent genetic cluster.

In addition to using Kappa statistics to measure agreement,

Table 1. Distribution of administratively-assigned race.

Race Study Sample BioVU Synthetic Derivative Davidson Co.*

Caucasian 4,232 (58.4%) 102,018 (64.4%) 1,116,837 (51.6%) 385,039 (61.4%)

African American 1,094 (15.1%) 14,223 (9.0%) 191,246 (8.8%) 173,730 (27.7%)

Asian/Pacific 228 (3.1%) 1,380 (0.9%) 14,449 (0.7%) 15,083 (2.4%)

Hispanic 230 (3.2%) 2,147 (1.3%) 37,466 (1.7%) **

Native American 184 (2.5%) 212 (0.1%) 1,868 (0.1%) 2,091 (0.3%)

Indian 7 (0.1%) 1,711 (1.1%) 20,613 (1.0%) 4,338 (0.7%)

Unknown 1,277 (17.6%) 36,696 (23.2%) 781,074 (36.1%) 46,400 (7.5%)

Total 7,252 (100%) 158,387 (100%) 2,163,553 (100%) 626,681 (100%)

Race categories listed are based on classification options originating from the SD. Our BioVU dataset contained no individuals labeled Other (O). Vanderbilt University
Medical Center is located in Davidson County, TN. 2010 US census data is shown for Davidson County, Tennessee [25]. * For Davidson County, ‘‘Asian/Pacific’’ includes
Asian (Non-Indian), Native Hawaiian, and Pacific Islander individuals, ‘‘Native American’’ includes Native American (American Indian) and Alaskan Native individuals,
‘‘Indian’’ includes Asian Indian individuals, and ‘‘Unknown’’ includes ‘some other race’ and individuals who reported two or more races for the census. ** ‘‘Hispanic’’ is
not listed a race in the US Census; rather, Hispanic-origin is indicated and is not exclusive to any racial category. For example, 25,156 individuals in Davidson County who
self-identified as ‘White’ also self-identified, separately, as Hispanic. Within Davidson County, 9.8% of individuals indicated Hispanic origin.
doi:10.1371/journal.pone.0099161.t001

Table 2. Percentages of each administratively-assigned race assigned to each genetic ancestry group.

Genetic Ancestry

European African East Asian Hispanic South Asian

Administratively-Assigned
Race

Caucasian 4,174 24 8 16 10

(98.6%) (0.6%) (0.2%) (0.4%) (0.2%)

African American 11 1,080 0 3 0

(1.0%) (98.7%) (0.0%) (0.3%) (0.0%)

Asian/Pacific 9 0 182 2 35

(3.9%) (0.0%) (79.8%) (0.9%) (15.4%)

Hispanic 58 8 2 154 8

(25.2%) (3.5%) (0.8%) (67.0%) (3.5%)

Native American 90 17 18 18 41

(48.9%) (9.2%) (9.8%) (9.8%) (22.3%)

Indian 3 2 0 0 2

(42.8%) (28.6%) (0.0%) (0.0%) (28.6%)

Unknown 1,126 83 26 21 21

(88.3%) (6.5%) (2.0%) (1.6%) (1.6%)

Percentages reflect the proportion of individuals assigned to a genetic ancestry cluster for given administratively-assigned race.
doi:10.1371/journal.pone.0099161.t002
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agreement can be visualized as the percent of individuals with a

given administratively-assigned race assigned to each of the five

genetic ancestry clustering groups (Table 2). We also examined the

genetic ancestry of individuals with race status ‘‘unknown’’ to

determine if some groups were more likely to be assigned this status

than others (Table S4). The majority (88.2%) of samples with

‘‘unknown’’ race are genetically of European-descent, consistent

with the overall representation of European-descent individuals in

BioVU. African-descent individuals constitute 6.5% of the ‘‘un-

known’’ individuals, while East Asian-descent, South Asian-descent,

and Hispanic-descent individuals, each, constitute about 2%.

Discussion

Genetic and epidemiological studies routinely use self-reported

race or genetic ancestry to adjust for confounding factors and/or to

tailor genetic effects to specific population subgroups. Global

genetic ancestry is often used to correct for population stratification

in genetic analyses, because it roughly reflects differences in allele

frequencies between continental populations. The social construct

of race is often used to capture other demographic factors, such as

access to care, dietary and environmental exposures, and socioeco-

nomic status. Self-reported race has been shown to be highly

correlated to genetic ancestry and is often used as a surrogate for

continental ancestry. In many clinical datasets, self-reported

ancestry is not available and various administrative procedures

are used to assign race status. While it is unknown to what degree

administratively-assigned race captures the various social and

cultural aspects of an individual, in this work we show that it has

only moderate agreement with genetic ancestry for certain

populations. We observed strong agreement between administrative

race assignment and genetically determined ancestry for European-

descent and African-descent individuals; there was less agreement

between assigned race and genetic ancestry for East Asian-descent,

South Asian-descent, and Hispanic-descent individuals. Given this

fact, investigators should use caution when using administratively-

assigned race as a proxy for genetic ancestry, and expect some

misappropriation of racial categories by third party assignment.

Interestingly, East Asian-descent, South Asian-descent, and

Hispanic-descent individuals all have slightly different agreement

statistics by sex, with females tending to have slightly higher

agreement between administrative assignment and genetic ances-

try. Previous studies have reported subjective misclassification of

Hispanic individuals by sex, causing non-Hispanic females to be

classified as Hispanic because of adopted spousal surnames [23].

In our data the agreement is biased slightly in the opposite

direction, with females having more accurate administratively-

assigned race, based on genetic ancestry estimates. While

somewhat unexpected, this could be because third-party assigners

are more comfortable asking females, rather than males, questions

about their race and ethnicity [24].

Approximately 18% of the individuals in our dataset had an

administratively-assigned race specified as ‘‘unknown’’ (Table 1).

The distribution of genetic ancestries within these samples was

significantly different from the larger dataset, with more Europe-

an-descent individuals than expected (results not shown). As a

result, ‘‘unknown’’ race in BioVU should not be used as an

indicator of minority population status—it is far more likely that

individuals with ‘‘unknown’’ race are of European-descent.

In conclusion, administratively assigned race is an accurate

predictor of genetic ancestry for the ascertainment of European-

descent and African-descent individuals, but is less accurate for

other diverse populations. Investigators accessing Asian-descent or

Hispanic-descent populations should expect a moderate number of

samples to have administrative race labels inconsistent with genetic

Figure 1. Comparison of administratively-assigned race and genetic ancestry, based on principal component analysis. A) All pairwise
combinations of principle components (PCs) 1 through 3, by administratively assigned race. B) All pairwise combinations of PCs 1 through 3, by
cluster assignments corresponding to genetic ancestry. Comparison of Frames 1A and1B indicate individuals with administratively assigned race
different than their genetically defined ancestry cluster. For example, the East Asian-descent cluster (1B; blue) contains individuals with
administratively-assigned race (1A) of Caucasian (green), Hispanic (purple), and Other (orange).
doi:10.1371/journal.pone.0099161.g001
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ancestry. When race is an important factor in a study, we

recommend, when possible, that a low-cost genotyping array, such

as a fixed content Illumina BeadChip (i.e. Illumina HumanCore

array) be used to genotype ancestry-informative markers (AIMs) to

determine genetic ethnicity.

Supporting Information
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Table S2 Percentages of each administratively-assigned
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Table S4 Genetic ancestry for samples with adminis-
tratively-assigned race listed as ’unknown’.

(DOC)
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