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Abstract

Theoretical and empirical evidence suggests that impaired time perception and the neural circuitry underlying internal
timing mechanisms may contribute to severe psychiatric disorders, including psychotic and mood disorders. The degree to
which alterations in temporal perceptions reflect deficits that exist across psychosis-related phenotypes and the extent to
which mood symptoms contribute to these deficits is currently unknown. In addition, compared to schizophrenia, where
timing deficits have been more extensively investigated, sub-second timing has been studied relatively infrequently in
bipolar disorder. The present study compared sub-second duration estimates of schizophrenia (SZ), schizoaffective disorder
(SA), non-psychotic bipolar disorder (BDNP), bipolar disorder with psychotic features (BDP), and healthy non-psychiatric
controls (HC) on a well-established time perception task using sub-second durations. Participants included 66 SZ, 37 BDNP,
34 BDP, 31 SA, and 73 HC who participated in a temporal bisection task that required temporal judgements about auditory
durations ranging from 300 to 600 milliseconds. Timing variability was significantly higher in SZ, BDP, and BDNP groups
compared to healthy controls. The bisection point did not differ across groups. These findings suggest that both psychotic
and mood symptoms may be associated with disruptions in internal timing mechanisms. Yet unexpected findings emerged.
Specifically, the BDNP group had significantly increased variability compared to controls, but the SA group did not. In
addition, these deficits appeared to exist independent of current symptom status. The absence of between group
differences in bisection point suggests that increased variability in the SZ and bipolar disorder groups are due to alterations
in perceptual timing in the sub-second range, possibly mediated by the cerebellum, rather than cognitive deficits.
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Introduction

For good reasons, an NIMH initiative is encouraging the

establishment of a domain-based, dimensional classification of

psychiatric illness [1], thus moving away from categorical

diagnostic classification systems. It is hoped that such an approach

will lead to enhanced and accelerated treatment options for

psychiatric disorders since gene variants or brain circuit abnor-

malities are more closely linked to cognitive or behavioral

abnormalities than to psychiatric diagnostic categories [2]. Interval

timing deficits are implicated in several developmental and

psychiatric disorders including schizophrenia, ADHD, autism.

For each of these diagnostic categories there is some evidence of

shared genetic risk [3,4]. These disorders share impairments in the

temporal organization of thoughts and behavior that interfere with

adaptive behavior. Interestingly, cognitive processes that are

deficient in these disorders are also associated with interval timing

deficits including social cognition [5,6], understanding of causality

[7], and language processing [8]. In addition the linkage of interval

timing to specific cognitive domains and its presence in several

debilitating psychiatric disorders, interval timing is a particularly

attractive because it can be used as a translational vehicle in

animals to understand pharmacological mechanisms and neural

circuits underlying temporal processing in humans [9]. Such

knowledge is crucial for the development of novel and effective

therapeutic interventions.

Few studies have examined interval timing across psychiatric

diagnostic categories to date. An exception is a recent study by

Penney & Meck [10] indicating that individuals at high risk for

schizophrenia versus affective disorders may have modality-

specific differences in clock speed relative to controls; specifically,

the high risk schizophrenia group showed larger differences

between auditory and visual clock speed on a temporal bisection

task relative to controls, whereas the high risk affective disorder

group fell between the two groups but did not statistically differ

from either. The question this paper poses is whether interval

timing deficits are related to symptom dimensions that cross

diagnostic categories. One possible dimension is psychosis.

Temporal processing abnormalities have been reported in

schizophrenia over timescales ranging from milliseconds to several

minutes and across a range of explicit timing tasks [11–18], and

the associated temporal fragmentation of conscious experience and

the corresponding lack of temporal organization in thoughts and
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behavior has been suggested to be an important contributor to the

pathophysiology of schizophrenia [19]. Because of its diverse

connections and uniform architecture, the cerebellum is believed

to play an important role in temporal coordination of information

between multiple brain regions [20,21]. This putative temporal

modulation by the cerebellum has been theorized to be disturbed

in schizophrenia and could account for a multitude of symptoms of

the disorder [19,22]. With respect to psychotic symptoms

specifically, temporal dys-coordination of incoming neural signals

could result in translation errors that contribute to hallucinatory

experiences and delusional interpretations of cerebellar output

signals. For example, temporal distortions in cerebellar auditory

output may cause internally generated thoughts to be interpreted

as originating from an external source, resulting in an auditory

hallucination [22].

Recent research has suggested that perceptual timing abnor-

malities may be a feature of psychosis more generally rather than

of schizophrenia specifically [23]. Consistent with this idea,

schizophrenia and psychotic affective disorders, including schizo-

affective disorder and psychotic bipolar disorder, show more

severe neurocognitive impairment than non-psychotic bipolar

disorder [24,25], which suggests that psychosis symptoms are

better predictors of neurocognitive impairments than DSM

diagnostic category.

To follow up on this suggestion, we examined whether

perceptual timing deficits differentiate bipolar disorder with

psychotic features from bipolar disorder without psychosis and

to what extent mood symptoms independently contribute to

timing abnormalities. Investigations of time perception in bipolar

disorder for short durations, i.e., those in the second or millisecond

range, are scarce. Two reports, both from the same group [26,27],

included bipolar disorder patients and compared them with a

control group on time perception and in both cases comparisons

have been for the supra-second range. However, mood disorders

in these samples were not restricted to bipolar disorder partic-

ipants only and psychotic symptoms were not explicitly examined,

making results difficult to interpret. Specifically, Bschor et al. [26]

reported that depressed (meeting criteria for DSM-IV major

depressive episode) and manic (DSM-IV manic) patients did not

differ from controls on either a 7-second time production or an 8-

second time-estimation task. In a subsequent study by the same

group using the same criteria [27], depressed patients over-

reproduced a 6-second interval, and no differences between

patients and controls were observed in a 1-second time reproduc-

tion task. To our knowledge, our recent study examining

performance on a paced finger tapping task in bipolar disorder

[28] was the first to examine explicit timing in bipolar disorder in

the sub-second time domain; we found that bipolar disorder

patients tapped faster and had increased variability that could be

attributed to clock rather than motor timing variance; tapping

variables were not correlated with mood symptoms, but psychosis

history was not explicitly examined. Importantly, the milliseconds

durations are the time range in which sensory perceptions are

linked to internal cognitive and motor programs [29].

The present study set out to address the question of whether

perceptual timing aberrations are associated with psychotic

symptoms by studying psychosis-related phenotypes in relation

to clinical populations without psychotic symptoms and to healthy

controls. An additional goal was to determine whether perceptual

timing deficits on this task were apparent in bipolar disorder in the

absence of psychotic symptoms, given earlier evidence from our

group suggesting altered clock speed and increased variability in a

paced finger tapping task [28]. Specifically, the present study

compared a sample of individuals with schizophrenia, schizoaf-

fective disorder, bipolar disorder with and without psychotic

features, and healthy neurotypical controls on an auditory

temporal bisection task. In this task, participants classify test tones

of intermediate durations to ‘‘short’’ or ‘‘long’’ anchor tones. The

primary advantage of this task compared to other standard time

estimation tasks is that the source of differences between groups

can be attributed to either perceptual timing, i.e. ‘‘clock’’ variables,

or to cognitive, i.e. mnemonic, factors. We hypothesized that

schizophrenia, schizoaffective disorder, and bipolar disorder with

psychotic features groups have significantly increased variability

compared to controls and that the bipolar disorder group without

psychotic features would not be significantly different from the

control group.

Methods

The study procedures were approved by the Indiana University-

Purdue University Indianapolis Internal Review Board, and the

study was conducted in accordance with the Declaration of

Helsinki (Edinburgh amendments). Written informed consent was

obtained from all participants. Obtaining informed consent

involved the following steps. First, one of the investigators

discussed the research study with the individual and ensured that

the potential participant understood the procedures, risks, and

benefits. Once an individual agreed to participate and signed the

consent form, he or she was reassured once again that

participation was voluntary and that it could be ended at any

time without consequence. Second, prior to actually entering the

study, an assessor who was not a member of the research staff once

again reviewed the study and underscored the voluntary nature of

participation. Inpatients who had been involuntarily committed

because the severity of psychiatric symptoms had impaired their

ability to manage daily affairs and impaired insight into his or her

illness were not approached for the study until the symptoms had

responded to treatment as judged by the patient’s physician and

the lack of delusions on diagnostic interview.

Participants
There were 73 healthy controls (HC; 29M:44F), 34 bipolar

disorder with psychotic features (BDP; 14M:20F), 37 bipolar

disorder without psychotic features (BDNP; 16M:21F), 66

schizophrenia (SZ; 41M:25F) and 31 schizoaffective (SA;

12M:19F). Patients were recruited through physician referrals

from clinics affiliated with the Indiana University School of

Medicine in Indianapolis, Indiana, USA. Control participants

were recruited using flyers and advertisements. Exclusion criteria

for all participants included a history of neurological or

cardiovascular disease, clinically documented hearing loss, head

injury resulting in loss of consciousness, electroconvulsive therapy,

diagnosis of alcohol or other substance dependence within 3

months, and intelligence quotient (IQ) below 70. For control

participants, exclusion criteria also included a history of substance

abuse or dependence, a diagnosis of any current or past DSM-IV

mood or psychotic disorder, or first-degree relatives with BD or

schizophrenia.

Table 1 shows clinical information for each group. Sex was

unevenly distributed across groups, X2(4) = 9.82, p = 0.04,

primarily due to the difference in proportion in the ratio of males

to females in the schizophrenia group compared to the other 3

clinical groups (BDNP, BDP, SA). Age did not differ across groups

(F(4, 234) = 0.47, p = 0.76).

Diagnostic status for the schizophrenia group was determined

using the Structured Clinical Interview for Diagnostic and

Statistical Manual of Mental Disorders-IV Axis I Disorders,
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Patient Version (SCID-I/P) [30] sections for mood disorders,

psychotic disorders, and substance abuse disorders, as well as chart

review. Kappa inter-rater reliability in our lab has been 0.95 for

schizophrenia versus mood disordered, or other diagnoses in

patients who have been prescreened for showing psychosis.

Control participants were interviewed using the non-patient

version of SCID-I/NP [31] sections for mood, psychotic, and

substance abuse and the SCID II [32] to exclude psychiatric

disorders. All diagnostic and clinical interviews occurred within 14

days of the temporal bisection task. Mood symptoms in

participants with bipolar disorder were assessed using the Young

Mania Rating Scale (YMRS; available for 28 BDP and 31 BDNP)

[33] and the Montgomery-Asberg Depression Rating Scale

(MADRS; available for 27 BDP and 31 BDNP) [34]. Schizophre-

nia and schizoaffective participants’ symptoms were assessed using

the Positive and Negative Syndrome Scores (PANSS; available for

51 SZ and 22 SA) [35]. Finally, WASI IQ was available for 67

HC, 32 BDP, 37 BDNP, 61 SZ, and 30 SA. Clinical and IQ

information can be found in Table 1. The number and percentage

of each group taking the major classes of psychotropic medication

are listed in Table 2. Complete medication information was not

available for 2 BDP, 2 SZ, and 1 SA.

Task procedure
Tone stimuli (880 hz) consisted of anchor tones with durations

of 300 and 600 ms, along with five arithmetically spaced

intermediate durations of 350, 400, 450, 500, and 550 ms.

During the test phase of the experiment, tones were classified

according to their perceived similarity to the short (i.e., 300 ms) or

long (i.e., 600 ms) anchor values. To address potential difficulties

related to task comprehension, a concrete procedural context

related to bird classification was adapted from Elvevåg and

colleagues [15].

The task procedure was divided into training, practice, and test

phases. The experiment began with a training phase in which the

short and long anchors were paired with a small (1.8461.92 in.)

and a large (3.6063.78 in.) bird silhouette, respectively. To ensure

that participants had learned the anchor durations, six presenta-

tions of each anchor were randomly administered within a 12-trial

practice block in the absence of the associated bird silhouette.

Following each presentation, participants received on-screen

instructions to press the ‘‘Short’’ key if the sound was made by

the small bird and to press the ‘‘Long’’ key if the sound belonged

to the big bird. Visual feedback (i.e., ‘‘correct’’ or ‘‘incorrect’’) was

provided after each response, and correct responses were

associated with a monetary bonus of 10 cents. A 1 s inter-trial

interval separated feedback offset and stimulus presentation. The

practice phase was repeated in 12-trial blocks until an accuracy

level of 75% or greater was reached: the session was aborted if

75% accuracy had not been achieved after three practice blocks.

The test phase of the experiment was presented in three blocks

of 35 trials each (five presentations of each auditory duration).

Participants were asked to classify each auditory stimulus as either

‘‘Short’’ or ‘‘Long’’ based on their perceived similarity to the

sounds made by the small or large bird. Because the bisection task

is an assessment of subjective time perception, response accuracy

could only be determined for the anchor durations during the test

phase. Each correct classification of the short and long anchors

earned participants a reward of 10 cents, for a possible bonus of

$3.00. To help ensure that the participants understood the task, a

practice block consisting of one presentation of each stimulus was

administered immediately prior to the test phase to allow

Table 1. Clinical and IQ information for each group.

BDNP BDP SZ SA Controls

PANSS total score 56.5 (12.6) 54.4 (11.8) —

Positive 15.3 (5.6) 14.9 (4.5) —

Negative 14.2 (5.0) 12.2 (3.8) —

General 26.9 (6.5) 27.3 (6.4) —

YMRS total score 8.5 (10.0) 15.9 (14.1)

MADRS total score 9.6 (9.7) 9.6 (11.6)

WASI IQ 108 (16) 102 (14) 92 (14) 95 (14) 110 (14)

doi:10.1371/journal.pone.0097964.t001

Table 2. Numbers and percentages of major psychotropic medications prescribed across groups.

Psychotropic Medications

BDNP (N = 37) BDP (N = 32) SZ (N = 64) SA (N = 30)

No psychotropic medication 14% (N = 5) 22% (N = 7) 9% (N = 6) 13% (N = 4)

Atypical antipsychotic 68% (N = 25) 72% (N = 23) 77% (N = 49) 80% (N = 24)

Typical antipsychotic 3% (N = 1) 9% (N = 3) 23% (N = 15) 7% (N = 2)

Anticonvulsant 27% (N = 10) 38% (N = 12) 11% (N = 7) 23% (N = 7)

Antidepressant 16% (N = 6) 28% (N = 9) 23% (N = 15) 40%(N = 12)

Anticholinergic 0% (N = 0) 0% (N = 0) 11% (N = 7) 5% (N = 5)

*No control participants were taking psychotropic medication. Medication information was not available for 2 BDP, 2 SZ, and 1 SA.
doi:10.1371/journal.pone.0097964.t002
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participants to ask questions and become familiar with the

procedure.

Each test block was preceded by a short (,5 min) rest period.

To minimize memory demands for the anchor values, the short

and long anchors were presented and paired with the small and

big bird silhouettes, respectively, prior to the commencement of

each of the three test blocks.

Behavioral data and analysis
The proportion of long responses, p(long), made to the anchors

and intermediate signals were quantified separately for each

participant and duration condition. The proportional data can be

plotted as a function of signal duration to yield a psychometric

response curve that is typically sigmoidal in form, indicating a near

absence of long responses to signals that fall close to the short

anchor value, to a predominance of long responses as signals come

to approach the duration of the long anchor. Sigmoidal functions

were fit to the proportional response data from each participant

using the regression feature of SigmaPlot 9.0 (Systat Software, Inc.,

San Jose, CA), which employs a least squares method to estimate

equation parameters and identify the durations that correspond to

p(long) values of 0.25, 0.50, and 0.75 from the fitted sigmoidal

curve.

The duration at which the proportion of long responses was

equivalent to 0.50 for each duration condition was identified as the

bisection point, or the duration at which short and long responses

occurred with equal probability. In addition to the bisection point,

the values derived from the fitted sigmoidal functions were used to

calculate the difference limen (DL) and Weber fraction (WF),

which represent the slope of the psychometric response curves and

can be interpreted as an index of timing variability. The DL is

calculated as one-half the difference between the durations

corresponding to p(long) = 0.75 and p(long) = 0.25 ((0.75–0.25)/

2), where smaller values indicate steeper slopes and greater

temporal precision. The WF is computed by dividing the DL by

the bisection point, which normalizes the DL values with respect

to the timed durations. Thus, the WF provides an index of

Weber’s Law (i.e., a constant coefficient of variation of subjective

time across various temporal durations) by allowing for a direct

comparison of timing variability across various anchor pairs.

All statistical analyses were conducted using SPSS 21.0. Non-

parametric Kruskal-Wallis tests with Group (SZ, SA, BDP, BDNP,

HC) as a between-subjects factor were used to analyze differences

between groups when assumptions of traditional analysis of

variance (ANOVA) were violated, i.e. the Levene’s test for

homogeneity of variance and the Shapiro-Wilks test for normality

were significant (p,0.05), as was true for all dependent variables

for the temporal bisection task; moreover, nonparametric tests are

more resilient to unequal sample sizes such as those in the present

study. Results were considered significant if they were below p,

0.05. Planned Mann-Whitney post-hoc tests comparing clinical

groups with the control group were conducted using a Bonferroni

corrected alpha level of 0.013 (0.05/4 = 0.0125 = 0.013).

The effects of clinical symptoms were evaluated using planned

bivariate Pearson correlations of primary dependent variables

(bisection point, DL and WF) with YMRS and MADRS scores for

the bipolar disorder groups and with the PANSS for the

schizophrenia spectrum groups (schizophrenia and schizoaffective

disorder).

Results

Practice accuracy
All participants were able to differentiate between the ‘‘short’’

and ‘‘long’’ anchor tones with a 75% accuracy rate by the end of

the practice session. Practice accuracy did not differ across groups,

H(4) = 4.27, p = 0.371. However, there were differences between

groups with respect to how many participants took 2 practice

blocks to achieve the 75% criterion, X2(4) = 12.28, p = 0.02; this

effect was driven by the SZ group, the only group whose observed

count exceeded the expected count (expected:observed = 5:11).

Bisection point
The proportion of Long responses for each of the test durations

and the resulting psychophysical response functions for each of the

5 groups are plotted in Figure 1, where they are largely

overlapping. Likewise, the mean bisection point for each group,

plotted in the left panel of Figure 2, is similar across groups.

Consistent with these observations, the groups did not differ

statistically on bisection point (H(4) = 1.61, p = 0.81).

Response variability
Examination of the 4 panels on the right side of Figure 1 shows

that in general the psychophysical functions the clinical groups had

flatter slopes compared to controls. This impression was confirmed

by a significant effect of Group on DL (H(4) = 17.53, p = 0.002).

Post-hoc tests using Mann-Whitney tests showed increased

variability in the SZ (p,0.001), BDP (p = 0.009) and BDNP

(p = 0.003) groups compared to controls; however, the SA group

did not differ statistically from HC (p = 0.136). There was also a

significant effect of Group on WF (H(4) = 15.64, p = 0.004), which

compares variability for each group across different durations.

Follow-up Mann-Whitney tests showed the same pattern of

significantly increased variability in the SZ (p,0.001), BDP

(p = 0.013), and BDNP (p = 0.007) groups compared to HC; the

SA group was not statistically different from controls (p = 0.058).

Clinical symptom measures, IQ, and planned correlations
At the time of testing, mean YMRS and MADRS ratings for the

bipolar disorder groups were not significantly different (p.0.05).

Within the entire bipolar group, the YMRS and MADRS were

not significantly correlated with the bisection point, DL, or DF.

Likewise, PANSS scores for the schizophrenia spectrum groups

(SZ and SA) were not significantly different on total score, nor

were the positive, negative, and general symptom dimensions

significantly different (all p.0.05). PANSS positive, negative,

general, and total scores were not significantly correlated with any

of the primary dependent variables (all p.0.05).

WASI IQ showed main effect of Group, F(4) = 16.48, with post-

hoc test indicating that significant differences existed between

controls and BDP, SZ, and SA (all p,0.013) but not BDNP

(p = 0.07). All WASI IQ group means were well within the normal

range, however (see Table 1). Within-group correlations of IQ

with bisection point, DL, and WF were not significant (all ,0.05).

Discussion

The hypothesis of this study was that schizophrenia, schizoaf-

fective disorder, and bipolar disorder with psychotic features (but

not bipolar disorder without psychosis), would show increased

temporal variability compared to healthy controls. Results

partially supported this hypothesis. The results indicated increased

temporal variability on both the DL (difference limen) and WF

(Weber Fraction) in schizophrenia and in bipolar disorder. Two
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Figure 1. Psychometric response curves for each group composed of the proportion of long responses as a function of signal
duration. Smaller insets to the right show each clinical group individually as compared to the control group.
doi:10.1371/journal.pone.0097964.g001

Figure 2. Means and standard deviations for each group for the bisection point (left panel), difference limen, (center panel) and
Weber Fraction (right panel). No differences existed between groups on bisection point, although for all groups the perceived bisection point
occurred earlier than the mathematical bisection point. SZ, BDP, and BDNP had increased temporal variability on both the difference limen and the
Weber Fraction compared to controls. The SA group was not significantly different from controls.
doi:10.1371/journal.pone.0097964.g002
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unexpected results emerged. First, increased variability was

apparent in the BD group irrespective of whether a history of

psychotic features was present. Second, the schizoaffective group

was not statistically different from controls on either variability

measure. These results indicate that factors other than the simple

presence or absence of psychotic features contribute to timing

variability. Furthermore, the fact that the schizophrenia group

showed the largest increase in variability but the schizoaffective

group did not have significantly increased variability compared to

controls suggests that temporal perception is relatively more

preserved in this phenotype.

In recent years evidence has accumulated that psychosis is a

defining feature that contributes to cognitive impairment, crosses

diagnostic boundaries to encompass schizophrenia spectrum and

psychotic affective disorders, and differentiates psychotic from

nonpsychotic bipolar disorder [24,36]. It has also been reported

that individuals with schizoaffective disorder have more cognitive

impairment and poorer functional outcomes compared to bipolar

disorder without psychotic features [37]. The current results found

significantly increased variability in timing in bipolar disorder

whether psychosis was present or not, which, along with the

absence of significantly increased variability in schizoaffective

disorder, suggests a more nuanced view of the relative contribu-

tions of psychotic versus affective symptoms to brain mechanisms

underlying temporal processing, which has been argued to be an

important substrate of neurocognitive functioning [19].

The lack of between group differences in bisection point is

important because it strongly suggests that perceptual factors were

likely the primary factor contributing to the observed differences in

timing variability. This inference derives from the fact that,

because temporal bisection requires the comparison of two tones,

alterations in clock speed would cause the relative perceptions of

the duration of the two comparison tones to be rescaled according

to each individual’s internal clock. Hence, clock speed differences

alone should not affect the location of the bisection point. If the

bisection point were different across groups it would suggest that

cognitive factors could have influenced results. For example, if

memory of anchor durations were impaired, the temporal

relationships of anchor-probe comparisons would be distorted

and bisection point would be shifted. This similarity of bisection

points across groups suggests that perceptual alterations were the

primary factor contributing to increased variability in bipolar

disorder and schizophrenia.

With respect to mechanisms underlying the observed increases

in variability, it is generally accepted that the frontal cortex, basal

ganglia, and cerebellum are integrally involved in time perception,

with a consensus emerging that different timescales utilize different

neural circuits [38,39]. A recent meta-analysis of 41 functional

neuroimaging studies of perceptual and motor timing used a

robust activation likelihood estimation algorithm and found strong

support for the theory that sub-second and supra-second durations

depend on somewhat distinct neural networks, with the former

more likely to recruit subcortical structures such as the basal

ganglia and cerebellum and the latter more likely to activate

cortical structures such as the supplementary motor area and

prefrontal cortex; moreover, activation of the cerebellum was

consistent across motor and perceptual timing tasks [40]. The

conclusions from that meta-analysis support the proposal that the

cerebellum serves as a timekeeper for brief durations [41]. The

finding that the cerebellum is activated predominantly during sub-

second tasks is consistent with other suggestions that this structure

may be critical for the encoding of sub-second time intervals

[38,39].

The foregoing evidence fits well with the influential cognitive

dysmetria theory of schizophrenia put forward by Nancy

Andreasen [19] which highlights the potentially important role

of the cerebellum by suggesting that disturbances in temporal

processing stemming from dysfunction of the cerebellar node of

the cortico-cerebellar-thalamic-cortical circuit may provide a

unitary model of schizophrenia that could produce the diverse

symptoms of schizophrenia ranging from hallucinations to

cognitive impairment. This model has been suggested with

schizophrenia specifically in mind, and a growing literature

supports cerebellar abnormalities in this disorder. For example,

postmortem and imaging studies report reduced volume of the CB

in chronic [42–45], neuroleptic-naı̈ve [46], adolescent [47], first-

episode [46,48,49], and childhood-onset [50] SZ, as well as

reduced bilateral hemispheric volume in first-episode SZ [51].

Postmortem studies also have found reduced size and density of

Purkinje cells in SZ [52–54]. In addition, functional neuroimaging

studies have reported abnormal CB blood flow at rest [55–57],

and during cognitive tasks [58–60] in SZ patients.

Importantly, it should also be noted that the cerebellum is also

increasingly implicated in bipolar disorder, including findings of

neurotransmitter alterations [61,62], and reduced white [63] and

gray [64] matter. Moreover, lesions to the cerebellum can cause

disturbances in mood including mania, depression, and mood

lability [65]. Finally, our group has documented abnormalities in

bipolar disorder on several tasks for which the cerebellum is

critical including classical delay eyeblink conditioning [66], paced

finger tapping [28], and postural sway [67]. This evidence

supports a possible role for the cerebellum in bipolar disorder

and suggests that dysfunctional cerebellar circuitry may contribute

to timing deficits observed in the present study.

Strengths of the current study include relatively large sample

sizes and the inclusion of 4 clinical diagnostic categories with

differing degrees of psychotic versus affective symptoms. We found

no relationships of timing variability to mood symptoms in bipolar

disorder or PANSS ratings in schizophrenia spectrum disorders.

However, with respect to clinical symptoms at the time of testing, a

weakness of our study is the lack of concurrent psychosis and mood

state information. Specifically, bipolar disorder patients had

YMRS and MADRS information available that provided an

index of their current mania and depression symptoms, respec-

tively; schizophrenia and schizoaffective individuals had PANSS

data available which assessed their current psychosis-related

symptoms. However, a mixture of psychotic and mood symptoms

of differing magnitudes affect these disorders, so we were unable to

completely assess the contributions of these symptom domains

within each group.

Overall, the reported results suggest that psychotic and mood

symptoms contribute to increased timing variability and that

performance differences on timing tasks for these disorders can be

attributed to perceptual, or ‘‘clock’’ alterations rather than

differences in memory performance, as indicated by the lack of

between groups differences on bisection point. Timing abnormal-

ities in the range reported here are consistent with abnormalities in

circuits in which the cerebellum participates, although multiple

brain regions are likely to be involved. In future work, complete

information about the presence or absence of manic, depressive,

and psychotic symptoms across these diagnostic groups could

provide important information about the relative contributions of

each of these symptom domains to timing variability. However,

the lack of correlations between timing variability and the ratings

that were available suggest that more enduring traits and patterns

of symptoms over time, rather than transient symptoms, are more

likely to be associated with temporal processing abnormalities.
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