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Abstract

Identifying communities or clusters in networked systems has received much attention across the physical and social
sciences. Most of this work focuses on single layer or one-mode networks, including social networks between people or
hyperlinks between websites. Multilayer or multi-mode networks, such as affiliation networks linking people to
organizations, receive much less attention in this literature. Common strategies for discovering the community structure
of multi-mode networks identify the communities of each mode simultaneously. Here I show that this combined approach
is ineffective at discovering community structures when there are an unequal number of communities between the modes
of a multi-mode network. I propose a dual-projection alternative for detecting communities in multi-mode networks that
overcomes this shortcoming. The evaluation of synthetic networks with known community structures reveals that the dual-
projection approach outperforms the combined approach when there are a different number of communities in the various
modes. At the same time, results show that the dual-projection approach is as effective as the combined strategy when the
number of communities is the same between the modes.
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Introduction

Discovering the community structure of bipartite networks often

entails either examining the community structure of one of the

modes of the network, or determining the community structure of

both modes simultaneously using a ‘combined’ approach. The

former has been shown to result in a loss of substantial structural

information [1], which in turn results in a loss of analysts’ ability to

uncover the function and topology of the network as a whole. The

latter may be inefficient at recovering the community structure of

both modes because relations between nodes in one mode are

inferred based on indirect ties through the second mode, and the

computations for nodes in one of the modes are affected by the

nodes in the other mode. As such, the present paper advocates a

dual-projection approach to uncovering the community structure

of bipartite networks.

Some instances of bipartite graphs include affiliation networks

which link people to committees [2], or Petri nets which are used

in computer science designs of concurrent systems [3]. The dual-

projection approach to community detection in such bipartite

networks entails analyzing the community structure of each mode

independently and then combining the community solutions in a

manner that maximizes within-community ties [4–6]. For

example, an affiliation network may be transformed into a

person-to-persons network defined by shared committee member-

ship, and a committee-to-committees network defined by shared

members [2]. Then any of the many one-mode community

detection algorithms [7–8] can be leveraged to determine the

community structure of each network, and these community

solutions can be combined to identify the overall community

structure of the entire bipartite network. In particular, this method

should outperform the combined approach when the community

structures differ between the modes of bipartite networks.

One situation in which the community structures differ between

the modes of bipartite networks occurs when there are a different

number of communities between the modes. This situation

highlights the differences between the combined approach and

the dual-projection approach. When using the dual-projection

approach, community relevant computations for one mode are not

contingent on the structure of the other mode in the same way that

they are when using the combined approach. To validate this

claim, this paper presents results from network simulations of

bipartite networks with different community structures between

the modes of the networks. Simulation results indeed support the

contention that the dual-projection approach outperforms the

combined approach. Below the two approaches are described in

more detail. Then, the results from two simulations are reported.

The paper concludes with some implications of this work and

some potential extensions to consider in the future.

Communities in Bipartite Networks

The community structure of a bipartite network may be

discovered by a variety of means [5–6,9–12]. As noted above,

commonly the community structure of only one of the modes is

analyzed, so the bipartite network is projected into a one-mode

network. Suppose we have a binary bipartite network B linking

artists to teams [13]. The off-diagonal entries in the product BBT

tells us how many teams are shared by each pair of artists, while

the diagonal tells us the number of teams to which each artist

belongs. This may be analyzed as an unweighted binary

projection, or as a weighted projection. The weighted projection
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approach has been shown to yield superior results [5], but

analyzing only one of the modes results in a non-negligible loss of

structural information [1].

On the other hand, the community structure of both modes

may be of interest. In this case, the community structure of both

modes may be discovered simultaneously [6,9] in a ‘combined’

analysis. One simple approach to doing so is to construct a block

off-diagonal meta-matrix [14,15] which entails the bipartite graph

and its transpose. Such a network has the following form

0i|i Bi|j

BT
j|i 0j|j

" #

where 0i|j is an all-zero matrix with i rows and j columns. This

structure enables standard one-mode community detection algo-

rithms to provide a solution for both of the modes of a bipartite

network simultaneously.

An alternative to the combined approach is to apply the recent

dual-projection approach [1]. To do so, take the weighted

projection of both modes of a bipartite network, analyze the

community structure of both modes separately, and then combine

the community partitions in a fashion that maximizes within-

community ties. Using the artist-to-teams network, for example,

compute the community structure of artists using BBT , then

compute the community structure of teams using BT B, and then

maximize over one of the bipartite modularity extensions [5–6] to

the standard one-mode modularity [4]. This approach also has the

benefit of being amenable to all of the standard one-mode

community detection algorithms, meaning that no new algorithms

or software applications are required for its use. Below I discuss

why this strategy is preferred to the combined approach that is

discussed above.

The combined approach to identifying communities in

networked systems has two related shortcomings. First, all

information about the community structure pertaining to one of

the modes is indirect. This follows from the simple fact that direct

ties between nodes within one of the modes cannot occur within

bipartite networks. Second, the community-related computations

for the allocation of nodes in one of the modes are affected by the

community-related computations for the nodes in the other mode,

and this is particularly problematic when the community structure

differs between modes. Using the classic Girvan and Newman

betweenness-based community detection algorithm [16], for

example, all of the geodesics for the nodes in one of the modes

require indirect ties through nodes in the other mode when the

community structure is discovered using the combined approach.

The same is true of other methods such as spectral partitioning

[17] or extremal optimization [18]. To validate use of the dual-

projection approach relative to the combined approach, below the

results of simulated networks with an unequal number of

communities between the modes are analyzed using both

approaches.

Test of the Method

To test the performance of the dual-projection approach relative

to the combined approach I have applied both of them to a large set

of synthetic graphs. An R script is available on the author’s website

to replicate the results of the simulations reported in this paper

(http://sites.google.com/site/melamedpubssupplementalfiles/). In

both cases the community structure was analyzed by maximizing

modularity using the walktrap algorithm [19], which places nodes

into communities based on neighborhood similarity from short

random walks (of 4 steps) and has been shown to be particularly

effective at recovering the community structure of large networks.

The synthetic bipartite graphs had a density of .125 [16] and within-

community ties occurred with a probability of .9. Varying the

probability of within-community ties was found to make no

substantive impacts on the results of the simulations. Further, the

degree distribution for the nodes in the first mode was constrained to

be fixed, but the degree of the nodes in the second was not.

Two aspects of the synthetic graphs were manipulated. First,

whether there was an unequal number of communities in the two

modes was manipulated. Half of the graphs had three commu-

nities in the first mode and two in the second. To accomplish this,

the first mode was divided into three equally-sized subsections. In

the first subsection, within-community ties occurred within the first

half of the nodes in the second mode. In the second subsection,

within-community ties occurred within the middle third of the

nodes in the second mode. Finally, in the third subsection, within-

community ties occurred within the second half of the nodes in the

second mode. This structure ensured that the most efficient

allocation of nodes to non-overlapping communities entailed three

communities in the first mode, and two in the second. The other

half of the graphs had three equal-sized communities in both of the

modes. This manipulation ensures that any increase in effective-

ness for the dual-projection approach when there is an unequal

number of communities does not come with a concomitant

decrease in effectiveness when there is an equal number of

communities in the two modes. Second, the size of the synthetic

graphs was manipulated. Half of the networks were of dimensions

606120 and the other half were of dimensions 60061200. This

manipulation ensures that the results are robust to network size

since many social networks are typically relatively small, while

many physical networks are relatively large.

For the small networks, I relied on 1,000 realizations of each of

the networks with equal and unequal community partitions. For

the large networks, I relied on 100 realizations of the networks

with equal and unequal community partitions. The large density

of the large networks was set to .025. Each simulated network was

analyzed using the combined and the dual-projection approach,

and the normalized mutual information [20] between the known

partition and the discovered partition was retained. Results rely on

the average normalized mutual information across all of the

simulated networks.

Figure 1a presents the results for the smaller networks. When

the number of communities is unequal, it is evident that the dual-

projection approach outperforms the combined approach (.81 and

.57, respectively). At the same time, when the number of

communities is equal, there is no difference in the effectiveness

of the approaches (both .99). Figure 1b presents the results for the

larger networks. When the number of communities is unequal, the

discrepancy between the dual-projection approach and the

combined approach gets larger: the dual-projection approach is

clearly preferred (.97 and .22, respectively). Again, when the

number of communities is equal, there is no difference between the

approaches (both .99). These results suggest that the dual-

projection approach should be preferred to the combined

approach: it is more effective when the community structure

differs between modes of a bipartite graph, but is just as effective

when the community structure between the modes is the same.

While the above results show support for the use of the dual-

projection approach when there are an unequal number of

communities between the modes in a bipartite network, the two

modes differed by only one community. To validate the method

when the two modes have a greater disparity in the number of

communities, I conducted a second simulation. Relying on the
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same network size and probability of within-community ties, I

generated networks with two communities in the first mode and

ten in the second. To accomplish this, the nodes in the first mode

were divided into twenty equally-sized subsections. In the first

subsection, within-community ties occurred within the first tenth

of the nodes in the second mode. In the second subsection, within-

community ties occurred within the second tenth of the nodes in

the second mode. The third subsection of nodes in the first mode

linked the first two subsections by overlapping a thirtieth of the

nodes in the second mode with the first and second tenths of the

nodes in the second mode. Each of the remaining subsections in

the first mode were allocated similarly, except that there was no

overlap in the second mode between the tenth and eleventh

subsections from the first mode, which ensured that a two

community solution to the first mode was the optimal partition.

The simulated networks, as described above, were

again analyzed using both the combined and dual-projection

approaches. One thousand small networks and 100 large networks

were analyzed. Figure 2 presents the results. Again, the dual-

projection approach outperforms the combined approach. The

difference in the small networks is relatively small (.69 and .61,

respectively), but the sample is quite large. As was observed in the

first simulation, in the large networks the discrepancy becomes

quite a bit larger (.85 and .45, respectively). Thus the dual-

projection approach remains preferred with more unequal

community structures between the modes of a bipartite network.

Conclusions

This paper illustrated that the dual-projection approach to

detecting communities in bipartite networks should be preferred to

the combined approach. In particular, sub-optimal community

solutions may be identified when using the combined approach. As

such, the results are more likely to misidentify sub-structures of

Figure 1. Average normalized mutual information between known and discovered community partitions. Each pair of graphs
illustrates the average NMI for the combined approach and the dual-projection approach. The error bars refer to one standard deviation.
doi:10.1371/journal.pone.0097823.g001
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bipartite networks, which in turn, may yield mistakes about the

function and topology of the network. With respect to the dual-

projection approach, all of the standard one-mode algorithms for

community detection can be applied to discover the community

structure of bipartite networks. That is to say, the increased

accuracy of the dual-projection approach does not come with a

corresponding loss of generality. Of particular relevance, the dual-

projection approach has been shown to outperform the combined

approach to detecting communities in bipartite networks when the

community structure differs between modes of the network.

While it was assumed for the sake of simplicity up to this point

that all of the nodes in graphs should be partitioned into unique

communities, the dual-projection approach does not require this

assumption. The dual-projection approach to partitioning bipar-

tite graphs is particularly flexible and can be applied in

conjunction with the evolving literatures on overlapping and

hierarchical community structures [21–28]. Depending on the

substance of the research question, it may be the case that one of

the modes should be partitioned into non-overlapping communi-

ties, while the other mode should incorporate overlapping

communities. For example, in a network of committee assignments

it may be reasonable to assume that people may be allocated into

overlapping communities while committees may not because they

are often developed to account for discrete phenomenon. Likewise,

one of the modes may entail hierarchical communities, while the

other entails overlapping communities.

Another factor that has been ignored up to this point is that

many networked systems have more than two modes. Some

literature deals with community structures in such networks [9,29].

The dual-projection approach can easily be generalized to k-

partite graphs. The main insight here is that for any k, there are k

choose two bipartite graphs that can be analyzed using the dual-

projection approach. Of course, analysts can assume any form of

community structure associated with the various modes embedded

within the larger k-partite graphs.

In summary, it has been illustrated that the dual-projection

approach to community detection in bipartite graphs is preferred

to the combined approach. The dual-projection approach

determines the community structure of each mode of bipartite

networks separately while the combined approach determines

them simultaneously. Results from the analysis of synthetic

networks showed that the dual-projection approach outperforms

the combined approach when the number of communities in the

two modes of bipartite networks are unequal. At the same time,

the dual-projection approach performs just as well when the

number of communities in the two modes is equal. The dual-

projection approach to community identification is flexible and

warrants further investigation.
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5. Guimerà R, Sales-Pardo M, Amaral LAN (2007) Module identification in

bipartite and directed networks. Physical Review E 76: 036102.

6. Barber MJ (2007) Modularity and community detection in bipartite networks.

Physical Review E 76: 066102.

7. Porter MA, Onnela J-P, Mucha PJ (2009) Communities in networks. Notices of

the AMS 56: 1082–1097.

8. Fortunato S (2010) Community detection in graphs. Physics Reports 486: 75–

174.

9. Melamed D, Breiger RL, West AJ (2013) Community structure in multi-mode

networks: Applying an eigenspectrum approach. Connections 33: 18–23.

Figure 2. Average normalized mutual information between known and discovered community partitions. The pair of graphs illustrates
the average NMI for the combined approach and the dual-projection approach. All networks had two communities in the first mode and ten in the
second. The error bars refer to one standard deviation.
doi:10.1371/journal.pone.0097823.g002

Community Structures in Bipartite Networks

PLOS ONE | www.plosone.org 4 May 2014 | Volume 9 | Issue 5 | e97823



10. Zhang P, Wang J, Li X, Li M, Di Z, et al. (2008) Clustering coefficient and

community structure of bipartite networks. Physica A: Statistical Mechanics and

its Applications 387: 6869–6875.

11. Zhan W, Zhang Z, Guan J, Zhou S (2011) Evolutionary method for finding

communities in bipartite networks. Physical Review E 83: 066120.

12. Freeman LC (2003) Finding social groups: A meta-analysis of the southern

women data. Dynamic social network modeling and analysis: 39–97.
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