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Abstract

The 39 UTRs of eukaryotic genes participate in a variety of post-transcriptional (and some transcriptional) regulatory
interactions. Some of these interactions are well characterised, but an undetermined number remain to be discovered.
While some regulatory sequences in 39 UTRs may be conserved over long evolutionary time scales, others may have only
ephemeral functional significance as regulatory profiles respond to changing selective pressures. Here we propose a
sensitive segmentation methodology for investigating patterns of composition and conservation in 39 UTRs based on
comparison of closely related species. We describe encodings of pairwise and three-way alignments integrating information
about conservation, GC content and transition/transversion ratios and apply the method to three closely related Drosophila
species: D. melanogaster, D. simulans and D. yakuba. Incorporating multiple data types greatly increased the number of
segment classes identified compared to similar methods based on conservation or GC content alone. We propose that the
number of segments and number of types of segment identified by the method can be used as proxies for functional
complexity. Our main finding is that the number of segments and segment classes identified in 39 UTRs is greater than in
the same length of protein-coding sequence, suggesting greater functional complexity in 39 UTRs. There is thus a need for
sustained and extensive efforts by bioinformaticians to delineate functional elements in this important genomic fraction. C
code, data and results are available upon request.
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Introduction

The fundamental role played by non-protein-coding functional

DNA and RNA in cellular processes is no longer contentious.

Various lines of evidence have contributed to recognition of its

importance. Ever since it became possible to compare two

mammalian genomes, it has been clear that far more is conserved

than just the protein-coding component [1]. In mammals,

unsurprisingly since the encoded proteome is relatively stable, it

has been determined that non-coding elements are the predom-

inant source of evolutionary innovation [2], much of which is due

to variation in the regulatory architecture [3]. In the human

genome, genetic association studies have identified numerous

disease-associated genetic variants in non-protein-coding regions

[4–6]. The ENCODE project, which aims to catalogue all

components of the human genome, has found evidence that at

least *80% of the human genome is functional, where a

functional element is defined as ‘‘a discrete genome segment that

encodes a defined product (for example, protein or non-coding

RNA) or displays a reproducible biochemical signature (for

example, protein binding, or a specific chromatin structure)’’ [7].

Moreover, the ENCODE study identifies that *60% of the

genome is included in at least one long (w200 bases) RNA

transcript. The ENCODE definition of function, and the 80%

estimate, have been sharply criticised [8,9] but this debate does not

obscure a broad consensus that the functional component of the

genome far exceeds the *1:2% that codes for proteins. It is also

becoming increasingly clear that genome-wide transcription is

regulated and profoundly complex [10].

The 39 UTRs of protein-coding genes are a likely source of as

yet uncharacterised functional non-protein-coding elements, be-

cause this genomic fraction is not only transcribed but also

associated with known functional elements (the corresponding

genes). There is growing awareness of the crucial importance of 39

UTRs in post-transcriptional regulation of protein expression (for

example [11]). Mutations in 39 UTRs have been shown to play a

crucial role in human health and disease, perhaps as much as that

of coding sequences [12]. Our own interest in 39 UTRs stems from

previous work in which we found that a highly conserved

component of Drosophila genomes was highly enriched in

fragments of sequence from 39 UTRs [13].

A recent review [14] catalogues a wide range of functional

elements in 39 UTRs. One motif found in 39 UTRs is the

polyadenylation signal with consensus sequence AAUAAA. This

signal occurs approximately 10–30 nucleotides upstream of the site

at which a pre-mRNA is cleaved prior to polyadenylation, and acts

as a protein binding site around which a complex multi-protein

assembly forms. A number of other motifs are also known to
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participate in the process of polyadenylation. More than half of

human genes contain alternative polyadenylation sites, resulting in

isoforms that differ only in the length of the 39 UTR. Individual

isoforms are also differentially expressed in different cell types and

developmental stages. This has important consequences for post-

transcriptional regulation, as isoforms with shorter 39 UTRs tend

to be more stable, partly because the shorter isoforms may exclude

binding sites for microRNAs. Such binding sites are another

common functional element in 39 UTRs, and in fact most miRNA

binding sites are located in 39 UTRs.

Other key regulatory sequences found in 39 UTRs include: AU-

rich elements and GU-rich elements, to which proteins involved in

mRNA degradation bind; a CU-rich element known as the

differentiation control element (DICE) to which proteins that

inhibit translation initiation bind; other CU-rich elements bound

by proteins including polypyrimidine-tract binding protein (PTB),

which modulates a variety of mRNA processes including splicing

and polyadenylation; CA-rich elements to which proteins that

stabilise mRNAs bind; and motifs that form stem-loop structures

recognised by specialised regulatory proteins. Repetitive motifs

within 39 UTRs have previously been demonstrated to direct the

cellular localisation of mRNA transcripts [15]. Andken et al. [15]

identify computationally a CAG repeated motif common to many

mammalian genes which localise to the dendrites of neurons, and

validate experimentally in two specific cases that the correct

localisation is dependent on the presence of this motif. Numerous

other functional binding sites in 39 UTRs are known. The

database UTRsite maintains a list of experimentally validated

functional motifs in UTRs [16].

In this paper, we assess the complexity of 39 UTRs relative to

that of protein-coding sequences, by comparing the extent to

which segmental substructures can be detected within these two

genomic fractions based on sequence composition and conserva-

tion. We argue that the degree of segmental substructure is a useful

proxy for functional complexity. We find that segmental sub-

structures in 39 UTRs are shorter on average, more numerous and

more varied in type than in protein-coding sequence. Annotation

of function in 39 UTRs will therefore not be complete until it is

rather more detailed than the annotation of protein domains in

protein-coding sequences. We therefore echo [17] in calling for

bioinformaticians to turn their attention to annotation of this

important genomic fraction.

Our methodology involves comparing closely related species,

which may seem unusual given that functional signatures are more

clearly distinguishable from background patterns at greater

evolutionary distances. However, we suspect that full elucidation

of the functional component of 39 UTRs may require comparison

of closely related species, in addition to conventional comparisons

of more distantly related species. Furthermore, it may require

consideration of additional data not based on species comparisons,

and perhaps unique to individual species. The reason for this is

that some functional components of genomes may be ephemeral,

that is, may persist in genomes only briefly relative to evolutionary

time-scales, perhaps so briefly as to be unique to one extant

species.

The existence of such ephemeral functional elements is an

inevitable consequence of genetic drift. In finite populations,

beneficial mutations are not guaranteed to become fixed, and

those that do may subsequently be eliminated in the lottery of

genetic drift, particularly if the advantage conferred is slight.

Recently evolved functional elements whose integration into the

system is not yet optimal are perhaps more vulnerable to random

extinction, despite the selective pressures that favour their survival.

Such functional turnover is certain to occur in evolving genomes,

but the proportion of the human and other genomes currently

under ephemeral constraints is not known.

Evidence possibly indicative of ephemeral constraints was

uncovered by the ENCODE pilot project [18], which found that

not all bases within experimentally defined functional genomic

regions show evidence of constraint, and that many functional

elements are seemingly unconstrained across mammalian evolu-

tion. The authors of that paper proposed that the genome contains

a large pool of ‘‘neutral elements that are biochemically active but

provide no specific benefit to the organism’’ [18]. We consider that

explanation contradictory, since it is intended to address the

observation that functional elements are seemingly unconstrained,

and function implies a benefit to the organism. A more natural

conclusion is that a significant proportion of the human genome is

subject to ephemeral functional constraints, visible to comparative

genomics studies only for closely related species, if at all. More

recent ENCODE publications support this latter interpretation,

for example finding that elements without detectable mammalian

constraint do show evidence of negative selection in primates [7].

Evidence of large-scale turnover of transcription factor binding

sites (TFBSs) has been found in Drosophila. Moses et al. [19]

identified numerous known regulatory binding sites in D.

melanogaster that were not present in closely related species,

including D. simulans. There is also mounting evidence that

binding of transcription factors (TFs) to seemingly non-functional

‘decoy’ TFBSs has subtle effects on the regulation of target gene

expression [20,21]. Low information content decoy TFBSs are

frequently created and destroyed by point mutations and are likely

candidates for functional elements under ephemeral constraints.

Similarly, post-transcriptional binding sites in 39 UTRs are mostly

low information content sequences that are potentially subject to

rapid turnover.

In this paper, we present a sensitive methodology for

investigating patterns of conservation and sequence composition

in pairwise and three-way alignments of closely related species.

Segmentation models are well suited to detecting subtle variations

in sequences, and have a long history of use in bioinformatics [22].

In such models, it is assumed that the sequence (usually, but not

limited to, DNA) can be partitioned into a series of segments, each

with some degree of internal homogeneity. The challenge is to find

the positions that delineate the segments (known as change-points).

Bayesian models are attractive in these circumstances as they are

apt for modelling complex hierarchies, and also provide a natural

framework to model uncertainty. The seminal paper for such

models is [23], and the approach has recently been developed and

extended [13,24–26]. Our Bayesian model and associated Markov

chain Monte Carlo (MCMC) sampler were developed for the

segmentation of sequences derived from pairwise and multiple

alignments.

In earlier work [13], three main classes of conservation level

were identified in Drosophila, corresponding to slowly evolving,

rapidly evolving and intermediate segments. A more recent

analysis involved generalizing the Bayesian segmentation tech-

nique to identify patterns of conservation variation in multiple

sequence alignments [26]. The method was able to distinguish

multiple classes of evolutionary rate; 7 in an alignment of four

mammals (including humans) and 9 for an alignment of four

drosopholids. The classes were indicative of different degrees of

selection acting in a segmented pattern over the genome, the scale

of which was much finer than could be attributed to local

variations in the neutral mutation rate. These findings indicated a

significant problem with the conventionally assumed dichotomy of

conservation level (conserved or not) used in many previous

analyses based on evolutionary rates [1,18,27–30]. They also
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highlighted the importance of sophisticated analyses capable of

detecting sub-classes of evolutionary rates, for investigating the

vastly complex landscape of evolution. A recent simulation study

by the authors [31] demonstrated that this technique does not

detect superfluous modes, confirming the above conclusions.

Despite the success of the segmentation approach, it is clear that

conservation data alone will not provide sufficient power to detect

unique functional signatures. This point is particularly relevant in

the analysis of closely related species, where distinctions in

conservation level are likely to be fine and difficult to detect. We

therefore generalise the segmentation approach for sequences

formed from characters of an arbitrary alphabet, making it well

suited to incorporate other sequence characteristics that are also

suggestive of function. We consider the problem of integrating

multiple data types, with the aim of identifying classes on a finer

scale than previously. This issue is explored briefly in [13], and

raised as area which requires further study. Here we segment and

classify the 39 UTR sequence of D. melanogaster based on three data

types: conservation relative to one or two other species (based on

alignment matches and mismatches), GC content, and transition/

transversion rates. We illustrate the methodology for the three

pairwise, and one 3-way alignment of D. melanogaster, D. simulans

and D. yakuba 39 UTR sequences. The classes thus identified

represent a resource for the future discovery of novel functional

elements in Drosophila. We also examined several of our identified

classes and investigated the extent to which they display properties

consistent with function, and explore potential functional roles of

motifs identified to be enriched within the different classes.

Results, Discussion and Conclusions

We applied our segmentation method to the 3-way alignment

and three possible pairwise alignments of 39 UTRs among the

species D. melanogaster, D. simulans and D. yakuba. We also applied

the method to four different types of control sequence. To

compare the segmentation patterns detected in 39 UTRs to those

of known functional sequences, we segmented a randomly selected

portion of the alignment of D. melanogaster to D. simulans protein-

coding sequences, of the same length as the 39 UTR alignment for

that species pair. The requirement that this coding alignment be

the same length is necessary because the number of segment

classes identified is sensitive to the length of the input sequence. In

general, more classes can be detected with a longer input

sequence. This process was repeated three times with different

coding sequences, to ensure that the results were reproducible. In

order to demonstrate the advantage of incorporating multiple data

types into an 8-character representation, we segmented a binary

representation of conservation (matches/mismatches) in the D.

melanogaster versus D. simulans 39 UTR alignment. Similarly, we

segmented a binary representation of GC content in D. melanogaster

39 UTRs. Lastly, we segmented an artificially generated control

sequence with only one class of segments. The artificial sequence

was generated using the same overall character frequencies, and to

be the same length as the D. melanogaster versus D. simulans 39 UTR

alignment.

Model Selection
At present our segmentation algorithm requires the user to

specify the number of segment classes T . Separate segmentations

were therefore performed for each value of T in the range 1–20.

Two different procedures were then applied to select the number

of classes for each alignment; investigating Deviance Information

Criterion V (DICV) values (Procedure 1) and investigating the

stability of the classes (Procedure 2). Figure 1 shows plots of the

model selection criterion (DICV) versus T for the segmentations of

four 8-character alignment representations. Based on these plots,

using Procedure 1, we selected the 12-class model for the D.

melanogaster and D. simulans 39 UTR alignment (Figure 1A), the 10-

class model for the D. melanogaster and D. yakuba 39 UTR alignment

(Figure 1C), the 12-class model for the D. simulans and D. yakuba 39

UTR alignment (Figure 1D), and the 14-class model for the 3-way

39 UTR alignment (Figure S1).

Using Procedure 2, we selected the 15-class model for the D.

melanogaster versus D. simulans alignment, the 16-class model for the

D. melanogaster versus D. yakuba alignment, the 15-class model for

the D. simulans versus D. yakuba alignment, and the 15-class model

for the 3-way alignment. The numbers of classes selected for each

sequence by each procedure are summarised in Table 1. In

general, Procedure 1 selects a model with fewer classes than

Procedure 2.

Comparison to Control Sequences
Table 1 indicates that twelve to fourteen segment classes with

distinct character frequencies can be distinguished in each of the

three coding sequence alignments, using Procedure 1 or Procedure

2. The DICV values used for Procedure 1 and one of the three

coding sequence alignments are shown in Figure 1B. It is not

surprising that such a large number of classes can be detected in

coding sequence, given that it consists of numerous sub-units

(protein domains) subject to a variety of structural and functional

constraints. What is perhaps surprising is that a similar number of

classes can be detected in 39 UTRs, and in fact Procedure 2

consistently identifies a greater number of classes in 39 UTRs. The

implication is that 39 UTRs contain numerous sub-units subject to

an even greater variety of structural and functional constraints

than coding sequence. This is in line with the continuing focus in

genomics on the significant regulatory and evolutionary role of

non-coding sequences, particularly in regard to the regulation of

gene expression. Further evidence that 39 UTRs may have more

complex sub-structures than coding sequences is shown in Table 2.

The number of change-points estimated in 39 UTRs is nearly five
times that estimated for coding sequence, and consequently the

average segment length in 39 UTRs is about one fifth that in

coding sequence. Many of these change-points may correspond to

the boundaries of functional elements. The values shown in

Table 2 were obtained using models selected by Procedure 2, but

the same conclusions were reached using models selected by

Procedure 1.

Both model selection procedures identified a significantly larger

number of segment classes than our previous studies using binary

sequence representations of pairwise alignments [13,25]. Figures 2

and 3 demonstrate why this is the case. The figures show, for the

two model selection procedures and the four 8-character

alignments, the estimated GC content versus conservation level

(proportion of matches) for the classes identified. These are time

series plots over the MCMC sample, so the size of the ‘blobs’ is an

indication of uncertainty. It is clear from these plots that the use of

multiple data types has enabled a greater number of classes to be

distinguished, because projection onto either of the ‘GC content’

or ‘conservation’ axes would make many of these classes

indistinguishable. The same information for the 3-way alignment

of 39 UTRs is shown in Figure S2.

To further clarify this point, we compared the number of classes

found using the 8-character representation to the number

obtained using the binary sequence representing the conservation

of D. melanogaster relative to D. simulans 39 UTRs (see Table 1).

Similarly, we also determined the number of classes found using

the binary sequence representing GC content of D. melanogaster 39
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UTRs. Figure 4 shows the DICV values with T = 1–10 for the

segmentation of each of the binary representations. Based on these

plots, using Procedure 1, the 4-class model was selected for GC

content (Figure 4A), and the 2-class model was selected for

conservation (Figure 4B). Using Procedure 2, the 2-class model

was selected for GC content, and the 3-class model was selected

for conservation. It is clear that the numerous classes identified

using the 8-character representation cannot be resolved using

either GC content or conservation in isolation.

The final control sequence was artificially generated and was

designed to have only one class of segments. Figure S3 shows

DICV values for segmentation of this control sequence with T~

1–5. Note that Procedure 1 correctly selects the 1-class model, thus

supporting the use of DICV values for model selection. Figure S4

shows the time-series plot of conservation level versus sample

number for segmentations of the artificially generated control

sequence with T~1 and T~2. Figure S4A shows the 1-class

model is stable, whereas Figure S4B shows that one of the two

classes has a widely varying conservation level. This unstable class

also had a very low mixture proportion and thus the 1-class model

was again selected for the control sequence using Procedure 2.

This confirms results of our previous study [31] demonstrating that

models selected using DICV do not typically contain superfluous

modes, and are generally conservative in the number of

components identified.

Consistency of Segment Classes
In this study, we have used two different model selection

procedures to decide how many distinct segment classes can be

identified, with Procedure 1 being generally more conservative

Figure 1. DICV values for segmentation of four alignments. DICV values obtained using a varying number of classes, for four input sequences
derived from A) D. melanogaster versus D. simulans 39 UTR alignment, B) D. melanogaster versus D. simulans first coding sequence (Coding 1)
alignment, C) D. melanogaster versus D. yakuba 39 UTR alignment and D) D. simulans versus D. yakuba 39 UTR alignment.
doi:10.1371/journal.pone.0097336.g001
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than Procedure 2, in that it favours fewer classes. The question

naturally arises whether the selected number of classes T radically

alters the classification, or whether the segment classes are

consistent in the sense that increasing T merely results in some

classes resolving into two or more subclasses. A similar question

arises concerning the consistency of classes identified in the three

pairwise alignments and the 3-way alignment. Given that each

Drosophila species is involved in two pairwise alignments, one

wonders whether comparable classifications result in all three

cases.

First, we compared the models chosen by the two model

selection procedures, investigating specifically the D. melanogaster

versus D. simulans 39 UTR alignment. Nine of the classes identified

in the 12-class model map directly to individual classes in the 15-

class model. The remaining 3 classes from the 12-class model

mapped to weighted averages of two classes each from the 15-class

model, indicating that the primary difference between the 12-class

and 15-class models was the splitting of three classes into two sub-

classes each. The results of the mapping are summarised in Table

S1: characteristics considered include mixture proportions, con-

servation levels, GC content and transition/transversion ratio.

Many of the segment classes contain, in the corresponding D.

melanogaster regions, characteristic tandem repeat sequences

detected as highly significant motifs using MEME (see Methods

section ‘Class Profiling’), the significance of which are discussed

further in the following section. To further investigate the

consistency of the 12- and 15-class models, we investigated

whether the same characteristic tandem repeats were identified in

corresponding classes. In the 12-class model, ten motifs were

identified within six classes; within the ten motifs there were six

distinct types of motif. In the 15-class model, eleven motifs were

identified within eight classes; within the eleven motifs there were

six distinct types of motif. Similar motif types to each of the six

distinct motif types from the 12-class model were identified in the

15-class model, and in general the motif types found to be

common to both models were found in the corresponding classes

as identified by the previously mentioned mapping (Table S1). The

15-class model identified two additional motif types not identified

in the 12-class model. For this reason, and given that difference

between the 12 and 15-class models is only the splitting of three

classes, our further analysis of detected motifs focuses on models

identified by Procedure 2. A more detailed summary of these

results is provided in Tables S2 and S3.

Secondly, we compared the classes identified in the different

alignments. Figures 2 and 3 provide an initial indication that the

classes detected in the three 2-way alignments of 39 UTRs are

fairly consistent. Figures 3C and 3D in particular, corresponding

respectively to alignments of D. melanogaster versus D. yakuba and D.

simulans versus D. yakuba, are strikingly similar, and many of the

classes detected in one alignment can immediately be placed in

Table 1. Models selected using two procedures.

Alignment Component Encoding Procedure 1 Procedure 2

Dme vs Dsi UTR 8-char 12 15

Dme vs Dya UTR 8-char 10 16

Dsi vs Dya UTR 8-char 12 15

Dme, Dsi, Dya UTR 32-char 14 15

Dme vs Dsi Coding 1 8-char 12 12

Dme vs Dsi Coding 2 8-char 12 12

Dme vs Dsi Coding 3 8-char 14 14

Dme vs Dsi UTR GC alone
(binary)

4 2

Dme vs Dsi UTR Conservation
alone (binary)

2 3

Dme: D. melanogaster; Dsi: D. simulans; Dya: D. yakuba; Procedure 1: Models selected based on DICV values; Procedure 2: Models selected by investigating stability of
classes; Coding 1, 2, 3: three different coding sequences.
doi:10.1371/journal.pone.0097336.t001

Table 2. Segmentation characteristics of models selected by Procedure 2.

Alignment Component Length Nfixed k L

Dme vs. Dsi UTR 2678635 9112 50001 54

Dme vs. Dya UTR 2486711 8622 53051 47

Dsi vs. Dya UTR 2481568 8607 51547 48

Dme, Dsi, Dya UTR 2247759 8260 54523 41

Dme vs. Dsi Coding 1 2680987 6760 11086 242

Dme vs. Dsi Coding 2 2681121 6626 10190 263

Dme vs. Dsi Coding 3 2681284 6463 9982 268

Length: number of alignment columns in the component; Nfixed: number of fixed change-points, corresponding to the boundaries of alignment blocks; k: posterior
average number of change-points; L: posterior average length of segments. Note the length of the coding sequence is equal to that of the 39 UTRs for the same species
pair, once the number of fixed change-points (corresponding to the ends of alignment blocks) is added to the length.
doi:10.1371/journal.pone.0097336.t002
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correspondence with classes detected in the other. Figure 3A,

corresponding to the alignment of D. melanogaster versus D. simulans

also shows the same pattern, but corresponding classes appear

compressed towards the right of the figure relative to their

counterparts in Figures 3C and 3D. This is no doubt due to the

shorter evolutionary distance between D. melanogaster and D.

simulans, leading to generally higher conservation levels in most

classes. By contrast, the classes shown in Figure 3B, representing

the coding sequences alignment, exhibit a pattern distinct from the

other three, and it does not appear possible to identify class

correspondences.

Further evidence of consistency among the three 2-way 39 UTR

alignments is shown in Table 3. Based on mixture proportions,

conservation levels, GC content and transition/transversion ratios,

twelve classes were directly comparable among the three 2-way

alignments (although the correspondence is more convincing in

some cases than in others). There were four cases in which classes

were comparable in only two of three alignments, and there were

only two cases in which a class was unable to be matched with a

class from another alignment. The correspondence between

classes identified for different alignments is even more clear when

individual character frequencies are compared (Table S5). We also

compared the significant motifs detected in the D. melanogaster

versus D. simulans classes (Table S3) to those detected in the D.

melanogaster versus D. yakuba alignment (Table S4). In most cases,

classes that correspond in Table 3 were found to contain the same

or similar characteristic tandem repeat sequences (Table S5).

The pattern shown in the plot of GC content versus

conservation for the 3-way alignment (Figure S1), upon visual

inspection, does not display an obvious similarity to the 2-way

alignment plots. However, all but two of the classes can be mapped

to classes from the 2-way alignments by considering the frequency

of the individual characters within the segment classes (Table S6).

While the encodings used for 2-way and 3-way alignments are

different, a conserved A or T is represented by the character ‘a’ in

both encodings, and a conserved G or C is represented

respectively by the characters ‘f’ and ‘v’ in the 2-way and 3-way

alignments; thus these characters were used in the comparison of

the classes between 2-way and 3-way alignments.

Exploring Class Content
That such a large number of clearly distinguishable segments

and segment classes can be identified in the 39 UTRs of

Drosophila genes is indicative of a surprisingly intricate compo-

sitional and mutational complexity. We hypothesize that this

complexity results from a wide variety of structural and functional

constraints, and we speculate about some of these constraints in

this section. We focus on classes from the 15-class model of the D.

melanogaster versus D. simulans 39 UTR alignment that contain

characteristic tandem repeat sequences identified by MEME as

Figure 2. GC content versus conservation level for models selected by Procedure 1. GC content (in the first named species of each pair)
versus the proportion of alignment matches, for each model selected by Procedure 1. The different colours represent different classes, and each class
is plotted for the post burn-in samples; A) 12-class model for the D. melanogaster versus D. simulans 39 UTR alignment, B) 12-class model for the D.
melanogaster versus D. simulans first coding sequence (Coding 1) alignment, C) 10-class model for the D. melanogaster versus D. yakuba 39 UTR
alignment and D) 12-class model for the D. simulans versus D. yakuba 39 UTR alignment. This is a crude diagnostic used to determine if the model has
converged in distribution and also indicates how well separated the classes are.
doi:10.1371/journal.pone.0097336.g002
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highly significant, and which are enriched in elements from the

UTRdb, and PicTar annotation databases (see Methods section

‘Class profiling’).

One important concern regarding repetitive motifs is to ensure

that they are not in some way artifacts of sequence composition.

To test this, we artificially generated 100 control classes for each

class from the 15-class segmentation of the D. melanogaster versus D.

Figure 3. GC content versus conservation level for models selected by Procedure 2. GC content (in the first named species of each pair)
versus the proportion of alignment matches, for each model selected by Procedure 2. The different colours represent different classes, and each class
is plotted for the post burn-in samples; A) 15-class model for the D. melanogaster versus D. simulans 39 UTR alignment, B) 12-class model for the D.
melanogaster versus D. simulans first coding sequence (Coding 1) alignment, C) 16-class model for the D. melanogaster versus D. yakuba 39 UTR
alignment and D) 15-class model for the D. simulans versus D. yakuba 39 UTR alignment.
doi:10.1371/journal.pone.0097336.g003

Figure 4. DICV values for segmentation of binary sequences. DICV values versus the number of classes (1–10) for segmentation of: A) the
binary representation of GC content in D. melanogaster 39 UTRs, and B) the binary representation of conservation in the D. melanogaster versus D.
simulans 39 UTR alignment.
doi:10.1371/journal.pone.0097336.g004
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Table 3. Model comparisons.

Alignment Class MP Conservation GC content T/T

Dme vs Dsi 0 15.9% 99% 38% 1.18

Dme vs Dya 1 11.8% 98% 36% 0.96

Dsi vs Dya 1 13.5% 98% 37% 0.97

Dme vs Dsi 1 14.3% 99% 28% 0.80

Dme vs Dya 15 13.8% 96% 28% 0.82

Dsi vs Dya 7 13.6% 95% 29% 0.88

Dme vs Dsi 2 2.0% 86% 47% 0.94

Dme vs Dyaa 7 2.0% 72% 40% 1.03

Dsi vs Dya 2 2.3% 72% 39% 1.00

Dme vs Dsi 3 2.3% 99% 18% 0.50

Dme vs Dya 8 8.5% 99% 24% 0.95

Dsi vs Dya 0 11.0% 99% 25% 0.81

Dme vs Dsi 4 17.1% 96% 30% 0.91

Dme vs Dya 4 7.5% 81% 30% 0.88

Dme vs Dsi 5 2.9% 83% 25% 0.73

Dme vs Dya 13 1.6% 58% 26% 0.71

Dsi vs Dya 11 1.6% 65% 24% 0.71

Dme vs Dsi 6 7.7% 92% 24% 0.67

Dme vs Dya 14 3.9% 89% 22% 0.67

Dsi vs Dya 8 6.9% 89% 25% 0.73

Dme vs Dsi 7 0.3% 58% 60% 0.91

Dme vs Dya 3 0.8% 60% 57% 0.78

Dsi vs Dya 3 0.7% 60% 59% 0.87

Dme vs Dsi 8 8.0% 90% 33% 0.98

Dme vs Dya 10 11.1% 90% 32% 0.92

Dsi vs Dya 12 9.5% 86% 36% 1.03

Dme vs Dsi 9 3.0% 97% 60% 1.48

Dme vs Dya 12 2.3% 95% 60% 1.30

Dsi vs Dya 4 2.2% 95% 61% 1.24

Dme vs Dsi 10 8.2% 98% 51% 1.45

Dme vs Dya 0 4.1% 98% 51% 1.34

Dsi vs Dya 10 4.3% 98% 52% 1.24

Dme vs Dsi 12 11.0% 95% 42% 1.07

Dme vs Dya 11 11.7% 94% 40% 1.11

Dsi vs Dya 5 12.8% 93% 41% 1.08

Dme vs Dsi 13 5.9% 95% 54% 1.32

Dme vs Dya 2 7.9% 93% 53% 1.33

Dsi vs Dya 6 7.8% 93% 53% 1.35

Dme vs Dsi 14 0.7% 44% 34% 0.70

Dsi vs Dya 14 0.5% 52% 34% 0.83

Dme vs Dya 5 3.2% 74% 25% 0.75

Dsi vs Dya 9 6.4% 78% 27% 0.81

Dme vs Dya 6 2.5% 84% 56% 0.95

Dsi vs Dya 13 6.8% 85% 52% 1.06

Comparison of the three models selected by Procedure 2, for each pairwise alignment of 39 UTRs. MP: mixture proportions; T/T: Transition/Transversion ratio. Class 11 of
Dme vs Dsi (MP: 0.7%, Conservation: 56%, GC content: 17% and T/T: 0.5) and the class 9 of Dme vs Dya (MP: 7.5%, Conservation: 85%, GC content: 45% and T/T: 1.1)
alignments did not match with other models.
doi:10.1371/journal.pone.0097336.t003
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simulans alignment which had significant motifs detected (Classes 0,

1, 3, 7, 9, 10, 12, 13; 800 in total). Each control class was

generated independently such that the number and lengths of the

segments corresponded exactly with one of the observed classes,

and such that the frequency of bases was the same as observed in

that corresponding class. Each of the control classes was run

through MEME. No significant motifs were detected in any of

these 800 control classes.

Class 1 had the equal highest proportion of conserved bases

(*99%) and a relatively low GC content (*28%). MEME

identified two motifs within Class 1 segments: an AT repeat motif

common to 171 of 1491 Class 1 segments (E-value: 4.00E-36), and

a polyA motif common to 136 segments (E-value: 3.70E-43,

Figure 5A). The polyA motif consensus sequence matched the

Polyadenylation Signal (PAS, UTRsite motif: U0043), according

to the software UTRscan: a program for identifying known UTR

regulatory motifs within a given sequence [16]. Class 1 segments

were also found to be enriched in the PAS annotation in the

UTRdb database (observed: 866, expected: 360, associated p-

value: negligible). Given that poladenylation of the 39 end of

mRNAs is near ubiquitous in eukaryotes, it is perhaps unsurprising

that our segmentation of 39UTRs, based on sequence composition

and conservation, identified a class of segments enriched in PASs.

Cytoplasmic polyadenylation can occur for mRNAs which have

been tranlastionally repressed, for example maternally inherited

mRNAs which are activated on fertilization [14]. Class 6 segments

were found to be enriched in the Cytoplasmic Polyadenylation

Element (CPE, UTRsite motif: U0006; observed: 9, expected: 4,

associated p-value: 3.26E-9). The median length of 39 UTRs

which contained Class 6 segments was 262 bases (IQR = 480), the

shortest of all 15 segment classes, this is perhaps indicative of the

inverse relationship between 39 UTR length and mRNA stability,

given that mRNAs requiring cytoplasmic polyadenylation are also

required to be stable [14].

Along with Class 1, Class 0 also had the equal highest

proportion of conserved bases (*99%), differing on GC content

(*38%). A CAA tri-nucletide repeat motif was identified in Class

0 segments (E-value: 3.0E-34). Both Class 0 and 1 were found to

be enriched in multiple miRNA targets, as predicted by PicTar

[32]. miRNA targets represent a class of elements found in 39

UTRs which are important in gene regulation, miRNAs (in

cooperation with a protein complex) bind 6–8 mer sites in mRNAs

promoting the degradation of the bound mRNA [33] PicTar

predictions are partly based on sequence conservation so it is

somewhat unsurprising that there is significant overlap between

our highly conserved segments classes and PicTar predictions.

Class 9 had the equal highest GC content of the classes (*60%),

a relatively high proportion of conserved bases (*97%), the

longest segments (median = 142 bases, IQR = 138), the highest

transition/transversion ratio (1.48) and a bias towards the coding

end of 39 UTRs, with a median distance to the coding sequence of

21.5 bases (IQR = 240). Class 10 was notable for a relatively high

GC content (*51%), relatively high conservation (*98%), and a

relatively high transition/transversion ratio (1.45). Relatively high

GC content, high conservation and positional bias are all

independently indicative of enrichment in functional elements.

MEME identified a CAG tri-nucleotide repeat motif (Figure 5B) in

both segment classes, common to 124 of the 298 Class 9 segments

and 114 of the 1023 Class 10 segments (E-values, respectively:

5.30E-138, 1.60E-21). TOMTOM identified matches in both the

‘‘All vertebrates’’ and the ‘‘All Drosophila’’ database for both

motifs. In the ‘‘All Drosophila’’ database, both CAG repeat motifs

matched the binding site of odd, a Drosophila zinc-finger protein.

The CAG-repeat motif resembles a repeated E-box: a basic helix-

loop-helix (bHLH) binding site with consensus sequence

(CANNTG). The matches in the ‘‘All Vertebrates’’ database were

both to proteins with bHLH DNA-bonding domains; the Class 9

motif matched the mouse Ascl2 primary binding site (E-value:

2.17E-5), and the Class 10 motif matched the mouse Tcf12

binding site (E-value: 2.47E-5). bHLH protein structures are

common to DNA binding proteins involved in transcriptional

regulation in all eukaryotes [34]. In Drosophila, twist, acheate-

Figure 5. Motifs identified by MEME. Sequence LOGOs for four of the motifs identified by MEME in the 15-class model for the D. melanogaster
versus D. simulans 39 UTR alignment: A) a polyA motif identified in Class 1, B) a CAG repeat motif identified in Class 9, C) a CA repeat motif identified
in Class 12, D) a TCC repeat motif identified in Class 9.
doi:10.1371/journal.pone.0097336.g005
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scute, D-mef2 and daughterless are examples of bHLH proteins

with well documented regulatory roles that bind E-Box like

regulatory elements in order to regulate target gene expression

[35,36]. Furthermore, there are at least 56 known genes in

Drosophila coding for proteins with the bHLH DNA binding

domain [37].

A CA di-nucletide repeat motif was identified in Class 12,

common to 35 of 849 segments (E-value: 3.80E-12, Figure 5C). A

possible function for such sites is the documented CA-rich

elements (CAREs) which are known to interact with heterogenous

nuclear ribonucleoprotein L in order to stabilise mRNAs [14]. In

addition, TOMTOM identified matches to three Drosophila zinc-

finger protein binding sites in the ‘‘All Drosophila’’ database:

klumpfuss, stripe and fruitless (E-values, respectively: 9.43E-3,

2.70E-2, 3.02E-2). TOMTOM also identified matches in the ‘‘All

Vertebrates’’ database to the human zinc-finger protein RREB1

and the mouse zinc-finger protein EGR2 binding sites (E-values,

respectively: 1.31E-2, 2.55E-2). While many of motifs identified by

MEME have similarities with TFBSs, we note that regulatory

elements in 39 UTRs are primarily thought to operate post-

transcriptionally and hence to interact with proteins (and miRNAs)

that bind RNA, not DNA. The CA-dinucleotide repeat motif was

one of two motifs from the 15 class segmentation of the D.

melanogaster versus D. simulans 39UTR alignment in which

TOMTOM identified matches in the ‘‘RNA-binding motifs’’

database. (Recognising a deficiency in knowledge of RNA-binding

motifs, the ‘‘RNA-binding motif’’ database was generated by a

large-scale experiment for determining binding motifs of known

RNA-binding proteins [38]. Synthetic RNA molecules were

generated for all possible sequences of length 7, 8 and 9

nucleotides, binding affinity to each motif was measured for 193

unique RNA-binding proteins - 141 with no previously known

motif - including 61 from Drosophila.) RNA-binding proteins are

known to play a crucial role in gene expression, including roles in

splicing, polyadenylation and controlling mRNA stability. One of

the most well characterised RNA-binding proteins is the

Drosophila Sxl, well known for its role in the complex Drosophila

sex determination mechanism [39]. Classes 4, 5, and 6 were

enriched in the Sxl binding motif (Table S8). The CA repeat motif

matched eleven different RNA-binding motifs in the database, five

of which were for Drosophila proteins. Thus it has been shown

there are Drosophila proteins which will bind the sequences

generating the CA repeat motif. The second motif with a match in

the ‘‘RNA-binding motif’’ database is a TCC tri-nucleotide repeat

motif, common to 96 of 298 Class 9 segments (E-value: 3.70E-5,

Figure 5D). The TCC repeat motif matched the binding site of the

human RNA-binding protein SRSF1, a splicing factor.

The positions of segments from each segment class for the

segmentation models chosen by Procedure 2 are available in BED

format as part of supplementary materials (File S1, S2, S3). A full

summary of the motifs identified can be found in Tables S2, S3

and S4, and a full summary of the enrichment of PicTar and

UTRdb annotations can be found in Tables S7 and S8. As

discussed, several of these repetitive motifs resemble binding sites

of common regulatory proteins. While it is possible that TFBSs

located within 39 UTRs could act as enhancer elements [40], in

general 39 UTRs are not considered to play a significant role in

transcription activation. It is more likely that these motifs

participate in post-transcriptional regulatory interactions with

RNA-binding proteins and miRNAs. However, we note in passing

that many zinc-finger proteins are capable of binding RNA in

addition to DNA, and transcription factors that bind both DNA

and mRNAs are known (for example [41]).

Conclusions
A pairwise alignment can be encoded as an 8-character

sequence containing information about sequence conservation,

GC content and transition/transversion ratios. A similar approach

can be used to encode a three-way alignment as a 32-character

sequence. Such sequences can then be segmented and the

segments classified according to character frequencies. Here and

elsewhere [31] we have shown that DICV provides a method for

selecting the number of classes that is conservative in the sense that

it does not generally favour models with superfluous classes. We

have also proposed a second, less conservative, model selection

procedure. Using these encodings, it is possible to distinguish

segment classes that could not be resolved on the basis of sequence

similarity or GC content considered in isolation. We have

therefore proposed the method as suitable for analysing pairwise

alignments of closely related species.

An unexpectedly large number of clearly distinguishable

segment classes were identified in pairwise and three-way

alignments of 39 UTRs for the species D. melanogaster, D. simulans,

and D. yakuba. The number of classes found is comparable to and

possibly exceeds the number identified in equal length alignments

of protein-coding sequences. The estimated number of change-

points in 39 UTRs exceeds the corresponding estimate for protein-

coding sequences by a factor of five. This is suggestive of intricate

functional complexity in Drosophila 39 UTRs, far exceeding that

of protein-coding sequences. Similar classes were identified in all

three pairwise alignments, suggesting similar constraints are

maintained in all three species.

Several of the segment classes we identified were highly

enriched in low information content sequences. Although care

must be taken to ensure that such motifs are not artifactual, we

have used rigorous controls to demonstrate that is not the case

here. Moreover, many of the known regulatory sequences in 39

UTRs have precisely this low information character. We speculate

that such regulatory sequences may be frequently created and

destroyed in 39 UTRs, resulting in rapid turnover of functional

elements, individual variation in regulatory profiles, and ephem-

eral conservation. We further speculate that some extended low

information content regions of 39 UTRs may be functional only in

the sense that they regularly produce and lose binding sites, thus

facilitating changes in regulatory profiles in response to changing

selective pressures. A full elucidation of functional elements in 39

UTRs may therefore require comparisons of closely related

species, as well as examination of non-comparative indicators of

function.

Materials and Methods

Data Transformation
A three-way multiple sequence alignment (MSA) of D.

melanogaster, D. simulans and D. yakuba genes was obtained from

http://genomics.princeton.edu/AndolfattoLab/w501_genome.

html (see also (Hu et al. 2013)). The data is made available by the

Andolfatto Lab, and incorporates a second generation assembly of

the D. simulans genome performed in 2012. Annotations of the D.

melanogaster genome are also provided, and were used to separate

the alignments into genic sections, in particular coding regions and

39 UTRs. The three-way MSA was analysed as three pairwise

sequence alignments of D. melanogaster to D. simulans, D. melanogaster

to D. yakuba, and D. simulans to D. yakuba.

We used an 8-character sequence representation

(A~fa,b,c,d,e,f,g,hg) of the pairwise alignments, in which each

character in the sequence corresponds to a non-directional mono-

nucleotide alignment combination:
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Species 1: ATATATATCGCGCGCG

Species 2: ATCGGCTAATCGGCTA

Symbol: a a b b c c d d e e f f g g h h.

Insertions and deletions relative to D. melanogaster are excluded

from the representation of the alignment.

For each of the three pairwise alignments, the 8-character

sequences for the 39 UTRs of each gene on chromosome arms 2R,

2L, 3R, 3L were concatenated into a single sequence. Each 39

UTR segment was separated from the next by a # symbol. The D.

melanogaster versus D. simulans alignment of protein-coding

sequences was constructed in a similar manner, with each exon

separated by a # symbol. Three randomly selected subsequences

were then selected, each the same length as the D. melanogaster

versus D. simulans 39 UTR sequence. This was done by choosing a

uniform random starting position and then an end position such

that that the lengths were the same.

The 3-way alignment of D. melanogaster, D. simulans and D.

yakuba was converted to a 32-character sequence representation

(B = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,U,V,W,X,Y,Z}).

Species 1: AAAAAAAAAAAAAAAACCCCCCCCCCCCCCCC

Species 2: AAAACCCCGGGGTTTTAAAACCCCGGGGTTTT

Species 3: ACGTACGTACGTACGTACGTACGTACGTACGT

Symbol: a b c d e f g h i j k l m n o p q r s t u v w x y z U V W X Y Z

The alignment columns with complementary bases were

encoded using the same characters. For example:

Species 1 ‘A’, Species 2 ‘A’, Species 3 ‘A’ = Species 1 ‘T’,

Species 2 ‘T’, Species 3 ‘T’ = ’a’

Species 1 ‘A’, Species 2 ’A’, Species 3 ’C’ = Species 1 ’T’,

Species 2 ’T’, Species 3 ‘G’ = ‘b’.

Two binary sequence representations were also constructed: a

binary representation of the GC content in D. melanogaster 39 UTRs

(1 for ‘G’ or ‘C’, and 0 for ‘A’ or ‘T’) and a binary representation

of conservation in the D. melanogaster versus D. simulans 39 UTR

alignment (1 for a match, 0 for a mismatch). Both binary

sequences involved concatenation in a similar manner as for the 8-

character sequences. Note that the binary representations can be

recovered from the 8-char representation of the D. melanogaster

versus D. simulans 39 UTR alignment (as discussed under the

heading ‘Assessing Convergence’ below).

Change-point Modeling
We constructed a Bayesian multiple change point model for the

sequences described above. The model is described in detail for

binary sequences in previous papers [13,24,25] and for larger

alphabets in [26,31]. In summary, this approach estimates

positions in the sequence that delineate homogenous segments

(known as change-points), the number of which is unknown. The

# symbol is considered as a fixed change-point. Each segment is

drawn from a multinomial distribution with parameters drawn

from one of T Dirichlet distributions with uniformly sampled

probabilities. As the number of classes T is not known a priori,

independent runs with values of T from 1 to 20 were performed.

We used an efficient varying-dimensional MCMC technique for

simulating from the posterior distribution for the number of

change-points, k, and segment parameters for different numbers of

classes. Each model was run for 20,000 iterations and then tested

for convergence.

To test our model selection procedures, we also constructed an

8-character control sequence. The sequence was generated such

that it was the same length as the D. melanogaster versus D. simulans

39 UTR alignment, with fixed change-points in the same positions.

Each segment had parameter h~(ha,hb,hc,hd ,he,he,hg,hh) drawn

from the same Dirichlet distribution (T~1), based on the

character frequencies of the D. melanogaster versus D. simulans 39

UTR alignment.

Assessing Convergence
To assess convergence of the MCMC sampler in 8-character

sequence representation, the mean proportion of no mutations

(alignment matches: represented by input symbols ‘a’ and ‘f’) was

calculated for each iteration of the sampler:

E½hcons�~
hazhfP

j[A hj

This was plotted against the GC proportions (represented by

characters ‘e’, ‘f’, ‘g’ and ‘h’), again calculated for each iteration of

the sampler:

E½hGC �~
hezhf zhgzhhP

j[A hj

Such plots show a striking trend during the ‘burn-in’ phase of

MCMC, at the end of which is a dense ‘blob’ indicating that

convergence has occurred. Figures 2 and 3 are examples of such

plots, but show only the post-burn-in phase.

For 32-character representation, similar information is given by

symbols ‘a’ and ‘v’ for alignment matches and by symbols ‘q’, ‘r’,

‘s’, ‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’ and ‘Z’ for GC

proportion in species 1 (Figure S2).

Model Selection
Our current segmentation model assumes that the number of

classes (T ) is known; in reality this is not the case. We used two

procedures to select the number of classes, after fitting the model

for a range of T . In both procedures, a model containing classes

considered to be empty (low mixture proportions) was considered

to be an over-fitted model and thus a model with a fewer number

of classes would be selected in which the main criterion was still

fulfilled (see [42] for a discussion of this approach to model

selection).

Procedure 1: Investigating DICV. Deviance Information

Criterion (DIC) is a criterion for model selection related to the

better known Akaike Information Criterion (AIC) and Bayesian (or

Schwarz) Information Criterion (BIC). Here we use type V DIC,

which we investigate as a model selection criterion for sequence

segmentation in [31]. DICV is defined:

DICV~PvzD(h)

where D(h)~{2| average of log-likelihood over the set of

segmentations sampled by MCMC and Pv~1=2| variance of

log-likelihood over the set of samples.

Models with smaller DICV are preferred; however, it often

happens that there is no clear minimum. In general we select the

value of T which corresponds to the first local minimum of DICV.

However, a subjective judgement is used when it appears obvious

that the DICV values continue to decrease significantly with larger

values of T . For a detailed discussion of using information

criterion to select the number of classes, see [31].

Procedure 2: Investigating the stability of classes. In this

procedure the model selected was the model with the largest
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number of classes in which each class was considered stable.

Stability of classes was assessed based on time-series plots of

conservation levels and GC content versus sample number. Classes

which were highly variable in either GC content or conservation

level were deemed unstable (again this involved a subjective

judgement). As previously mentioned, the mixture proportions of

the classes was used as a second criteria to assess the selected

model, and a model with a smaller number of classes was selected

if any of the classes were deemed empty.

Class Profiling
The positions of segments in each of the segment classes in each

of models chosen by Procedure 2 were recorded in BED format

(BED files submitted with supplementary material), with genomic

coordinates relative to the D. melanogaster genome (release R5.33).

The D. melanogaster sequence corresponding to each segment for

each of the segment classes was also extracted in fasta format. We

defined segments as belonging to a particular class as contiguous

runs of at least eight sequence positions at which the posterior

probability of belonging to the given class is w0:5. The use of the

threshold (w0:5) is discussed in [13], and is demonstrated to be an

effective compromise between false negative and false positive

allocation of positions to segment classes.

MEME motif identification. MEME [43] was used to

search for motifs shared by segments from the profiled classes. We

allowed the option of zero or one motif per sequence in all queries,

with a maximum motif size of 20 base pairs and for the reverse

complement of each sequence to be considered. For each motif

identified by MEME with an E-value v0:05, TOMTOM [44]

(web interface: http://meme.nbcr.net/meme/cgi-bin/tomtom.

cgi) was then used to search for similar motifs in each of four

motif databases: ‘‘All Drosophila’’; ‘‘JASPAR-insects’’; ‘‘All

Vertebrates’’; ‘‘RNA-binding motifs’’ (descriptions of the motif

databases are found at the web interface). Motifs reported by

TOMTOM with an E-value v0:05 were considered significantly

similar.

Annotation enrichment. Drosophila 39 UTR annotations

were obtained from UTRdb [16] and PicTar output [32], then

segment classes were tested for enrichment in each of the

annotation types. The Drosophila subset of the UTRdb dataset

of annotations (UTRef) was obtained from http://ebi.edu.au/ftp/

databases/UTR/data/. All Drosophila annotation in UTRef are

based on pattern similarity identified using the tool UTRscan.

PicTar is a program for predicting miRNA binding sites from

multiple species alignments, sites predicted in Drosophila were

obtained from http://dorina.mdc-berlin.de/rbp_browser/dm3.

html.

The positions of annotations in D. melanogaster were compared

with the positions of each of the segment classes of the 15-class

model of the D. melanogaster versus D. simulans 39 UTR alignment.

For each annotation type we test whether there is evidence for

enrichment of that annotation type in our segment classes. For the

null hypothesis of no enrichment, the expected number of

annotations in each segment class is based on the proportion of

the D. melanogaster sequence covered by each segment class. The

bagFFT algorithm [45] (web interface: http://www.cs.cornell.

edu/w8/,niranjan/llr.html) was used to calculate p-values for an

exact multinomial goodness-of-fit test. Annotation types with p-

value v0:05, after Bonferroni correction for multiple testing, are

considered significant. Only annotation types with more than one

match in the segment classes are considered for testing. For

annotation types with significant p-values, classes containing more

occurrences of that type than expected are considered enriched in

that element.

Supporting Information

Figure S1 DICV values for segmentation of 3-way
alignment. DICV values obtained using 1–20 segment classes

for D. melanogaster, D. simulans and D. yakuba 39 UTR alignment.

The 14-class model was selected as minimum DICV has occurred

at class 14.

(TIFF)

Figure S2 GC content versus conservation level for
models selected for 3-way alignment. GC content of D.

melanogaster versus the proportion of alignment matches, for each

model selected for the 3-way 39 UTR alignment. A) 14-class model

selected by Procedure 1 and B) 15-class model selected by

Procedure 2. The different colours represent different classes, and

each class is plotted for the post burn-in samples. This plot was

used to access the convergence of the selected models.

(TIF)

Figure S3 DICV values for the control sequence. DICV

values were obtained for an artificially generated sequence having

only one class of segments. The minimum DICV has occurred at

1-class; therefore justifies models selected by Procedure 1.

(TIFF)

Figure S4 Conservation level vs sample number for
control sequences. Figure shows time-series plots of conserva-

tion level versus sample number for segmentations of artificially

generated control sequence with A) 1 segment class and B) 2

segment classes.

(TIF)

Table S1 Model comparisons - Procedure 1 versus
Procedure 2. Comparing characteristics of the two models

selected by Procedure 1 and Procedure 2 (12-class model and 15-

class model respectively) for 39 UTR alignment of D. melanogaster

versus D. simulans.

(XLSX)

Table S2 Types of motif identified in 12-class model of
D. melanogaster vs D. simulans alignment. Types of motif

identified in D. melanogaster versus D. simulans 12-class model

selected by Procedure 1.

(XLSX)

Table S3 Types of motif identified in 15-class model of
D. melanogaster versus D. simulans alignment. Types of

motif identified in D. melanogaster versus D. simulans 15-class model

selected by Procedure 2.

(XLSX)

Table S4 Types of motif identified in 16-class model of
D. melanogaster versus D. yakuba alignment. Types of

motif identified in D. melanogaster versus D. yakuba 16-class model

selected by Procedure 2.

(XLSX)

Table S5 Class comparisons of 39 UTR pairwise
alignments. Comparison of change-point character frequencies

in each of the classes identified by Procedure 2 for each pairwise

alignment of D. melanogaster (D. mel), D. simulans (D. sim), and D.

yakuba (D. yak) 39 UTRs. Classes from different models with

similar character frequencies are grouped together.

(XLSX)

Table S6 Class comparisons of 39 UTR pairwise and 3-
way alignments.

(XLSX)
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Table S7 Enrichment of PicTar miRNA targets in
segment classes.

(XLSX)

Table S8 Enrichment of UTRdb motifs in segment
classes.

(XLSX)

File S1 Positions of segments for the 15-class model of
D. melanogaster versus D. simulans alignment.

(BED)

File S2 Positions of segments for the 16-class model of
D. melanogaster versus D. yakuba alignment.

(BED)

File S3 Positions of segments for the 15-class model of
3-way D. melanogaster, D. simulans, D. yakuba align-
ment.
(BED)
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