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Abstract

Experimental efforts to characterize the human microbiota often use bacterial strains that were chosen for historical rather
than biological reasons. Here, we report an analysis of 380 whole-genome shotgun samples from 100 subjects from the NIH
Human Microbiome Project. By mapping their reads to 1,751 reference genome sequences and analyzing the resulting
relative strain abundance in each sample we present metrics and visualizations that can help identify strains of interest for
experimentalists. We also show that approximately 14 strains of 10 species account for 80% of the mapped reads from a
typical stool sample, indicating that the function of a community may not be irreducibly complex. Some of these strains
account for .20% of the sequence reads in a subset of samples but are absent in others, a dichotomy that could underlie
biological differences among subjects. These data should serve as an important strain selection resource for the community
of researchers who take experimental approaches to studying the human microbiota.
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Introduction

A growing number of research groups use wet lab experimental

approaches to study bacterial strains from the human microbiota

[1–5]. Many of the most commonly studied strains have been

selected for historical rather than biological reasons, raising the

possibility that substantial research effort is being devoted to

organisms that are neither associated with disease, nor widely or

variably distributed in the human population.

Several approaches have been used to enumerate the compo-

sition of bacterial communities. These include 16 S rRNA

sequencing [6–12]; methods that utilize protein-coding markers

[13]; single-copy, single-marker complements to 16 S such as rpoB

[14]; and interspace typing [15] and shotgun metagenomic

sequencing [16], [17], [9], [10], [18], [8], [19], [20].

However, so far no global overview of abundance on the species

or strain level has been presented, making it difficult for

experimental groups to select strains to study on the basis of

abundance data in human subjects. In this study we took

advantage of the subset of the samples for which whole-genome

shotgun (WGS) metagenomic sequencing was performed, provid-

ing an opportunity to determine at the lowest taxonomic level

which bacterial strains are broadly distributed among healthy

subjects and which ones vary widely from one subject to the next.

To study the pattern of strain distribution in the human

microbiota and to create a resource to guide strain selection for

experimental characterization, we systematically mapped reads

from 380 WGS sequencing samples from the Human Microbiome

Project (HMP) [9,10] to complete or draft sequences from 1,751

reference genomes selected by the HMP; 844 of the reference

genomes recruited reads from our data set. Our samples, which

came from 100 healthy subjects, cover six major sample sites: stool

(representing the lower gastrointestinal tract), tongue dorsum

(upper surface of the tongue), buccal mucosa (cheek), supragingival

plaque (tooth biofilm above the gum line), posterior fornix (the

larger recess of the vagina, behind the cervix), and anterior nares

(nostrils) as these are the sites with the most samples available.

Species of the human microbiota have been studied for decades,

and the model species have been chosen based on culturability and

genetic tractability, among other characteristics. However, our

analysis of whole-genome shotgun metagenomic data from the

Human Microbiome Project [9], [21], suggests that the most

abundant strains in the microbiome of healthy individuals are

highly understudied, suggesting a needed shift in selecting the

laboratory strains used for experimental studies of the human

microbiota.

Results and Discussion

The methodology and its limitations
Several methodologies have been developed for the phyloge-

netic assignment of whole-genome shotgun metagenomic sequence
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data. These include clade-specific markers to unambiguously

assign reads to microbial clades [18], a sequence compositional

classifier based on the structured output paradigm [22], a hybrid,

rank-specific classifier based on BLAST and Naı̈ve Bayes [23], and

a method that combines a NGS aligner with an optimized

mapping strategy, appropriate parameters and the removal of

genomes with high similarity from the database of reference

genomes [24]. Our analysis took advantage of the last of these

techniques, which has been evaluated previously and was used to

taxonomically classify 22.4 billion 100 bp microbial Illumina reads

(after subtraction of the human reads) originating from 380

samples from 6 body sites; this method has a very low percentage

of incorrectly classified reads (33% at the strain level and just

0.0003% at the species level) [24]. The WGS metagenomic reads

were aligned to a reference genome database containing 1,751

bacterial genomes representing 1,253 species [24]. Overall, 57% of

the reads could be mapped to a reference genome, ranging from

33% for the anterior nares to 77% for the posterior fornix.

The ‘top random’ mapping strategy of the aligner (in the case of

multiple equally high scoring top hits the aligner randomly reports

one hit used to map sequencing reads [24]) has two important

drawbacks, both of which arise from the uneven taxonomic

distribution of reference strains in the reference genome database

(i.e., some clades have more sequenced strains than others). First, it

has difficulty distinguishing closely related strains of the same

species, since reads that map to highly conserved genomic regions

are assigned randomly to one of the strains. Second, species with a

single strain in the reference database appear more abundant on

the strain level than species with multiple strains, since reads are

often divided among strains in the latter case. To make the limited

but important effect of these drawbacks easy to understand, we ran

two of our analyses at the species level in addition to the strain

level to facilitate a direct comparison (Figures S5, Figure S6 and

Table S2). An obvious limitation of using reference genomes is that

the actual strains present in the subjects will often differ from the

reference strain. However, the reads will be recruited to the closest

genome in the database and the reference genomes have been

chosen to be representative of the human microbiome [21], [9,10].

The reference strains will thus be a great starting point for

experimentalists.

The abundance of the reference strains in each sample was

estimated by calculating the product of its breadth (defined as the

percent of covered bases over the length of the reference genome)

and depth (defined as sum of depths of each covered base divided

by the length of the genome) of coverage (Figure 1, Figure S1,

Table S1 and Table S4) [8]. Our metric was chosen to represent

the probability of a genomic fragment to be sequenced in a

sample. The abundance of a strain was divided by the total

abundance of that sample to obtain the relative abundance of each

strain in each sample. We represent these data as a series of heat

maps showing the calculated relative abundance of each reference

strain in the samples from our set (Figures S2, S3, S4 and S5). To

inspect whether the coverage maps generated by this method show

a reasonably even depth across most of the genome, we visually

inspected three coverage maps for each of the 30 strains discussed

below: one each for the samples in which the strain has the

maximum, minimum, and median breadth of coverage (Figure

S1B). While the map for the minimum coverage samples is often

sparse, the maps for the median coverage samples generally

appear even.

It is important to emphasize that the breadth of coverage is

never 100% (the highest we found was 99.63%), because we are

mapping the reads to reference strains whose genome sequences

will differ from that of the organism in the sample and serve as a

related (but not identical) stand-in in our analyses. Because we do

not report strains with a depth of coverage below 1%, the reported

relative abundance will differ by at most two orders of magnitude.

However, reference strains with a low breadth but high depth of

coverage most likely represent genomic fragments that are missing

from the reference strains that otherwise best match the actual

strains present in the sample and can lead to an overestimate of the

number of total strains present in a sample. Conversely, the

relative abundance of strains with a high depth and breadth of

coverage will likely be underestimated. The number of strains in a

sample can also be underestimated. For example, two strains that

differ from each other but are both most similar to one strain in

the reference genome database will be counted as one strain with

the combined abundance of the both strains that are actual

present.

The HMP dataset consists of 18 sample sites, but most of them

comprise only a handful of subjects and have been excluded from

our analysis. While the analyses described below cover six sample

sites that have a minimum of 33 subjects, we have centered our

discussion around the stool since, to date, experimental efforts on

the human microbiota have focused predominantly on the gut

community.

Whole-genome shotgun data reveal strain-level details
obscured by 16 S analysis

Several groups have reported on the agreement of metagenomic

and 16 S data [25], [18], [26]. However, the additional

information provided by the whole-genome shotgun (WGS) data

as compared to the 16 S data (Figure S7A–G, Table S3) as it

pertains to the composition of strains in a sample has not yet been

explored quantitatively. Does WGS allow us to determine which

specific strains are present in a sample or is this composition so

invariable as that it can be deduced from 16 S data? To answer

this question, we calculated an average rank order of strain

abundance for each 16 S operational taxonomic unit (OTU) in the

WGS data and quantified the degree of difference between the

observed rank order and the average rank order (Figures 2 and

S7H–L). For most genera such as Bacteroides, the rank order of

strains within the genus is highly variable among samples,

suggesting that a WGS analysis provides much additional

information beyond what can be deduced from the 16 S data.

For example, 16 of the stool samples have Bacteroides stercoris ATCC

43183 as the most abundant strain in the genus, while another 10

have Bacteroides vulgatus PC510 as the most abundant strain. These

two strains share a core set of 2585 genes, while 1192 are unique

to B. stercoris ATCC 43183 and 1371 are unique to B. vulgatus

PC510 (as compared using the Integral Microbial Genome (IMG)

Platform (http://img.jgi.doe.gov/) [27]). Communities dominated

by different species of Bacteroides may therefore exhibit functional

differences, so the ability to distinguish them using WGS data will

likely prove important.

Interestingly, for a few genera such as Clostridium, the rank order

of strain abundance varies little from sample to sample, suggesting

that the Clostridium community composition may be unusually

invariant (Figure 2). For these genera, our WGS data provide little

additional information since the rank order of strain abundance

could be estimated accurately from 16 S data by assuming that it

matches the average.

Strains with an unusually variable distribution pattern
One striking result of our analysis is the detection of strains with

unusual patterns of distribution, which could make these

organisms intriguing candidates for future experimental study.

Here, we focus on strains whose levels are unusually variable

Species Prevalence in the Human Microbiome
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across our sample set. We used two methods to identify these

strains: the first involved constructing a coefficient of variation

distribution and identifying its outliers (Figure S8A), and the

second sought to find strains whose rank order of abundance

across the samples was bimodal (see methods). Any effect such a

strain has on host physiology would be prominent in some people

and nearly absent in others; thus, strains with highly variable

distribution patterns could reveal bases for microbiota-linked

variability in the human population (Figures 3, S8B and S9A–B).

We find that 12 of the 81 stool samples have a high abundance

of Prevotella copri DSM 18205. While the distribution pattern of

Prevotella was already known to be variable since the high

abundance of Prevotella defines one of the recently described

‘enterotypes’ [28], our data show strikingly that the reference

genome of Prevotella copri DSM 18205 recruits sequence reads from

the WGS data in strong preference to the other 18 reference

genomes of Prevotella represented in our database, suggesting that

P. copri DSM 18205 is an ideal starting point for experiments

seeking to characterize its properties within the gut community.

Other reference strains with highly variable patterns of distribution

come from a broad range of phyla, including members of the

Bacteroidetes (Bacteroides caccae ATCC 43185, Parabacteroides merdae

ATCC 43184) and Firmicutes (Dialister invisus DSM 15470,

Eubacterium siraeum DSM 15702) as well as the Actinobacterium

Collinsella aerofaciens ATCC 25986, the Verrucomicrobium Akker-

mansia muciniphila ATCC BAA-835, and the Proteobacterium

Burkholderiales bacterium 1_1_47.

The minimal microbiome and body site diversity
An emerging area of inquiry involves reductionist approaches to

studying the function of the microbiota: how many strains are

required to construct a minimal microbiome with key attributes of

a more complex community [29]? This question is important for

many experimental studies of the human microbiota, including

those that use germ-free mice to probe the interplay among the

microbiota, the host, and the diet [4,30–32].

As a first step toward answering this question, we calculated the

number of strains, in decreasing rank order of abundance, that

together comprise 80% of the mapped reads from a sample

(Figure 4A–C). Surprisingly, 14 strains account for 80% of the

mapped reads in the average gut community, while for the oral

communities of the cheek, tongue, and teeth, 12, 16 and 18 strains

are needed respectively. As expected, the number is lower for

samples from the anterior nares and posterior fornix (4). Among

communities from the same body site, the 80% are sometimes few

and sometimes many: in stool, samples range from a minimum of

5 to a maximum of 25 strains making up the 80% and in

supragingival plaque, the range is 4–30 (Figure 5). Even in a

community as complex as the gut, just 5 strains account for 50% of

the reads in a typical sample (Figure 4C). If the analysis is

performed at the species level instead of the strain level, the

numbers are even more striking: 7.3 species account for 80% of

the mapped reads in the average stool sample, and just 2.8 species

account for 50% (Figure S6).

Figure 1. Read recruitment for strain-level abundance inference. Read recruitment of two genomes: one that is highly abundant and one
with an average abundance. Each peak represents the average coverage for a 1000 bp bin both in color and length (on a log scale). (A) The breadth
and depth of sequencing coverage for Prevotella copri DSM 18205 in stool sample SRS017307. For this sample the reads cover 75.3% of the genome
with an average coverage of 1006.2 resulting in a relative abundance of 67% in this sample (Figure S2: Stool). The genome of P. copri DSM 18205 is a
draft comprising 27 contigs with an unknown order (ordered randomly in this figure). (B) The breadth and depth of sequencing coverage for
Bacteroides thetaiotaomicron VPI-5482 in stool sample SRS019397. B. thetaiotaomicron VPI-5842 has an average depth of 7.6 for 73.6% of the genome,
resulting in a relative abundance of 0.5% in this sample (Figure S2: Stool).
doi:10.1371/journal.pone.0097279.g001
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To determine the degree of variation among samples in their

highly abundant strains, we constructed a heat map of strain

abundance for the top 80% of mapped reads for each sample in

the gut community (Figure 6); other communities are shown in

Figure S9C–G. Strikingly, communities dominated by the same

genus can differ quite dramatically at the species level. For

example, two common configurations of Bacteroides-rich samples

are dominated by B. ovatus or B. vulgatus, while rarer configurations

feature B. eggerthii, B. cellulosilyticus, B. fragilis, or B. dorei as the most

abundant strain (Figure 7). Notably, for a typical pair of Bacteroides

species, one-third of the genes in each genome will be unique.

Given the heterogeneity of Bacteroides species, a B. vulgatus-

dominated community may well be as phenotypically different

from a B. ovatus-dominated community as either one is from a

Prevotella-dominated community. Since enterotypes are most

usefully defined as communities with important phenotypic

differences, our results indicate that there may be more

enterotypes than are currently recognized, especially within

Bacteroides-dominated communities.

Some strains are commonly found among the top 80%. For

example, Bacteroides vulgatus ATCC 8482 was in the top 80% of

76.5% of stool samples [33], while four different strains – Veillonella

dispar ATCC 17748, Streptococcus parasanguinis ATCC 15912,

Streptococcus salivarius SK126, and Prevotella melaninogenica ATCC

25845 – were in the top 80% of 100%, 95.8%, 87.3% and 90.1%

of tongue dorsum samples, respectively (Figure S9H). Other strains

such as Dialister invisus DSM 15470 and Bacteroides finegoldii DSM

17565 are present less commonly, but when present, can dominate

a community. Indeed, it appears surprisingly common to have a

unique configuration of strains in the top 80%; more than a dozen

Figure 2. Samples that look similar by 16 S can be very different at the species level. For each 16 S operational taxonomic unit (OTU), we
calculated an average rank order of strain abundance in the WGS data and quantified the degree of concordance between the observed rank order in
each sample and the average rank order (Kendall’s coefficient of concordance, W). Kendall’s W ranges from 0 (no agreement) to 1 (full agreement).
The heat map shows Kendall’s W for each OTU in each sample, and results are hierarchically clustered using Spearman rank correlation with average
linkage. The overall concordance of all the samples is shown in the far right column. For most genera such as Bacteroides, the rank order of strains
within the genus is highly variable among samples, suggesting that our WGS analysis provides much additional information beyond what can be
deduced from the 16 S data. Genera with a high, statistically significant Kendall’s W (.0.8) are colored red. For these 5 of the 38 total genera, 16 S
data can be used to infer the rank order of abundance of strains within the genus. For the remaining genera, WGS data is essential to determine
which are the dominant strains in each sample.
doi:10.1371/journal.pone.0097279.g002

Figure 3. A subset of strains have unusually variable numbers across stool samples. Strains that are considered variable by the rainbow
and/or bimodality metrics are ordered by their relative abundance across the sample set. Rainbow strains are outliers (1.56 higher than the
interquartile range) in their coefficient of variation across all samples (Figure S8A). Bimodal strains are defined as strains that contain two groups of at
least 5 samples that vary less than 2 orders of magnitude in their abundance within the group, but over 3 orders of magnitude between the two
groups. One strain, Acidaminococcus sp. D21, is considered variable by both metrics in stool.
doi:10.1371/journal.pone.0097279.g003
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diverse strains account for .20% of the abundance of just one

(Bacteroides plebeius DSM 17135, Eubacterium siraeum DSM 15702,

Bacteroides finegoldii DSM 17565, Ruminococcus torques ATCC 27756,

Butyrivibrio crossotus DSM 2876, and Bacteroides sp. 4_3_47FAA), two

(Eubacterium rectale ATCC 33656, Bacteroides cellulosilyticus DSM

14838, Dialister invisus DSM 15470 and Faecalibacterium prausnitzii

M21/2) or three (Alistipes putredinis DSM 17216, Bacteroides caccae

ATCC 43185, and Parabacteroides merdae ATCC 43184) out of the

81 samples. In other words, 23 out of 81 samples are dominated by

13 different strains, while the remaining 58 samples have a more

even spread of strain abundances, where no one strain is present at

.20% abundance.

A strain’s abundance is not the ideal proxy for its importance;

low-abundance members of a community can play key and very

diverse roles in community function and host biology [34,35].

Indeed, we could find strains that had a consistently low

abundance across most of the sample set, indicating that they

might play an important role in community function despite their

low numbers (Figure S10A–C).

Nevertheless, it is reasonable to assume that the highly

abundant strains are key players in community function. The fact

that 14 strains can account for 80% of the reads in a sample (a

proxy for cell density) suggests that the function of a gut or an oral

community may not be irreducibly complex, and that experimen-

tal approaches involving synthetic communities of limited size will

be highly instructive in discovering interspecies interactions

important for community robustness and function [36–38].

Figure 4. 14 strains account for 80% of the cells in a typical stool sample. (A) The distribution of all the calculated relative abundances for
each strain in each stool sample. The color and height of the bars represents the number of values that fall within this abundance bin. (B) Cumulative
relative abundance of strains. This line graph shows for the 6 body sites how many strains on average it takes to constitute a percentage of the total
abundance in a sample, ranging from 5% to 95%. The error bars represent the standard deviation. On average 125, 235, 115, 168, 373 and 376 strains
are needed for 100% abundance in the anterior nares, buccal mucosa, posterior fornix, stool, supragingival plaque and tongue dorsum respectively.
(C) The distribution of the number of strains needed for 80% abundance in the different body sites. Note that these distributions are similar to the
distributions of diversity metrics (Figure S9A–B). The median is indicated by a horizontal line in the box (covering the 25th until the 75th percentile),
and the diamond represents the average. The whiskers of the box are the lowest and highest observations of number of strains needed for 80%
abundance.
doi:10.1371/journal.pone.0097279.g004

Species Prevalence in the Human Microbiome

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e97279



The most broadly distributed species have not been the
focus of experimental study

A primary goal of the HMP is to enumerate the ‘normal’ human

microbiota in a way that enables future studies of the key reference

species, each of which are publicly available from the BEI

repository (http://www.beiresources.org). To generate a crude

estimate of how well the most broadly distributed species in our

samples have been studied, we searched the PubMed database for

the number of references that list the genus and species names of

each strain in the title or abstract (Figure 8B). Surprisingly, of the

100 most abundant species, only 11 have more than 1000

publications; 64 have 100 or fewer publications. 44 of these 64

make up .1% of an average body site community (Figure 8B),

including 13 common species from the gut. These numbers are

remarkably small in comparison to the number of publications for

common pathogens (Staphylococcus aureus, 73,134; Pseudomonas

aeruginosa, 43,883) and model organisms (Bacillus subtilis, 20,362;

Escherichia coli, 292,086). Importantly, the most well-studied species

in this set had their genomes sequenced prior to the start of the

HMP reference genome sequencing effort in 2007 [39], and in

each case the number of publications rose quickly thereafter. Our

heat maps of strain and species abundance will be a useful resource

for guiding experimentalists to the key reference organisms for

Figure 5. Stool samples can be dominated by a wide variety of bacterial species, including numerous Bacteroides species. The
contribution of individual strains to samples that contain the minimum (5), maximum (24) and median (14) number of strains required for 80%
abundance.
doi:10.1371/journal.pone.0097279.g005
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future study, including those with an unusually broad or variable

distribution in the human population.

Materials and Methods

Data processing
The samples used in this study were part of the HMP project

and were collected as previously described [40]. At the time of our

analysis only 380 samples were available for the 6 body sites.

Sequencing and analytical processing of the 16 S RNA and whole

genome shotgun metagenomic data was done as previously

described [9,10]. Alignments to the reference genomes were made

using a random top-hit strategy which involves reporting only a

single, best hit per query, and in the case of a query having

multiple equally strong best hits (i.e. mapping quality 0; [41]), one

of those hits was chosen at random. The method also includes

optimized parameters enabling accurate taxonomic assignments of

WGS reads and a detection cutoff of 1% breadth and 0.016depth

of coverage [24]. The database of reference genomes used for

taxonomic classification of the WGS reads has undergone a

process of removing highly redundant bacterial strains [24]. In

summary, i) the complete and draft genomes were categorized on

a species level, resulting in categories that range from single strains

to many strains per species; ii) For pairs of genomes with over 90%

similarity on a genome-wide level based on genome-wide similarity

at a pair-wise level, the genome that is longer and provides the

most unique sequence was kept; iii) in the case of a large numbers

of strains, a slightly relaxed homology (as low as 83%) was used

and iv) bacterial strains that were collected from humans as part of

the HMP were retained without being subject to redundancy

removal, because these strains were deemed informative to profile

human-associated microbiomes.

Figure 6. The distribution of strain abundances for the top 80% of each stool sample. To emphasize the differences in prevalence of the
most abundant strains, strains are only shown if they make up 1% or more of the stool sample.
doi:10.1371/journal.pone.0097279.g006
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The breadth (defined as the percentage of covered bases over

the length of the reference genome) and depth (defined as the sum

of the depths of each covered base divided by the length of the

genome) of coverage were calculated based on all alignments of

each genome represented in the database using RefCov (http://

gmt.genome.wustl.edu/gmt-refcov). To allow for the different

number of input base pairs per sample and normalize across

samples, the depth of coverage was normalized per 100 million

base pair. In short, the average depth of coverage per reference

genome was calculated using Refcov by taking the sum of the

lengths of all the reads that align to that reference, divided by the

total length of that reference. Because a single genome can span

many references, the average coverage value was aggregated on a

per genome basis. To obtain the normalized value, the total

number of bases that mapped to the genome was divided by 100

million and applied to the average depth values as a modifier.

All data was analyzed using custom Python, R and Processing

scripts and visualized using Processing (http://processing.org) and

the ggplot2 R library (graphs, box plots and histograms) [42].

Matrix clustering was performed using Cluster [43] and visualized

using TreeView [44].

Calculating relative abundance based on whole genome
shotgun metagenomic data

The abundance of each strain in each sample was estimated by

calculating the product of its breadth and depth of coverage. The

abundance of a strain was divided by the total abundance of that

sample to obtain the relative abundance of each strain in each

sample. Species-level estimates were calculated by taking the sum

of the relative abundance of all the strains of a species in a sample.

Whole-genome shotgun data reveal strain-level details
obscured by 16 S analysis

For each genus that was represented by 3 or more strains in the

whole genome shotgun data, Kendall’s coefficient of concordance

(W) [45] was calculated using the vegan R package. Kendall’s W

was used to determine the agreement of samples on the rank order

of the strains in the genus with the average rank order of strains in

the genus for all the samples. Genera with a significantly high (p,

0.01 after multiple testing correction) Kendall’s W (.0.8) were

considered to be in agreement on the ordering of the strains in the

genus.

Figure 7. Six samples that are dominated by six different strains of Bacteroides. The contribution of 33 Bacteroides strains to the abundance
of six samples are displayed in a bar chart. The six dominating Bacteriodes strains are Bacteroides ovatus ATCC 8483, Bacteroides cellulosilyticus DSM
14838, Bacteroides dorei DSM 17855, Bacteroides fragilis YCH46, Bacteroides eggerthii DSM 20697 and Bacteroides vulgatus PC510. Only strains with at
least 1% relative abundance are plotted.
doi:10.1371/journal.pone.0097279.g007
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Strains with an unusually variable distribution pattern
Two metrics were used to identify strains that are highly

variable among samples: Rainbow strains were defined by

calculating the coefficient of variation of the relative abundance

across all samples and identifying the strains that are outliers (1.5

times higher than the interquartile range) (Figure S8A). Bimodal

strains contain two groups of at least 5 samples that vary over 3

orders of magnitude between the two groups, but vary less than 2

orders of magnitude in their abundance within the group.

Top 80% by numbers
To determine the number of strains that are sufficient to

accumulate a certain percentage of total abundance in a sample,

the strains were ordered by their abundance and summed until the

total constitutes a percentage of the total abundance in the sample.

The number of strains was calculated for each sample and each

body site allowing for the calculation of the mean and the standard

deviation for each target abundance by percentage.

PubMed analysis
PubMed data was obtained in April 2012. The PubMed

database (http://www.ncbi.nlm.nih.gov/pubmed) was queried for

the number of articles with the species name (no strain information

was used) in either the title or the abstract using the [title/abstract]

search tag. To identify the first publication with the species name

in the abstract or title, the date of publication [DP] search tag was

used with a decade as the date range.

Supporting Information

Figure S1 Genome coverage plots. (A) Genome coverage for

the 30 strains mentioned in the text visualized in a boxplot. The box

indicates the 25th–75th percentile, and the median coverage is indicated

by a horizontal line in the box. The diamond represents the average

and the outliers are visualized using dots. The whiskers of the box are

the lowest and highest observation of coverage. (B) Read recruitment to

the genomes of all the 30 strains mentioned in the text. For each strain,

we show a coverage map for three subjects: the stool samples with the

maximum, minimum and median coverage. Each peak represents the

average coverage for a 100 bp bin both in color and length (on a log

scale). All genomes are draft sequences, and consist of 3 contigs

(Akkermansia muciniphila ATCC BAA-835, Bacteroides vulgatus ATCC 8482

and Eubacterium rectale ATCC 33656) to 1575 contigs (Bacteroides

cellulosilyticus DSM 14838). Here, the contigs from draft genome

sequences are ordered by their average coverage (from high to low) as

determined from the sample with the maximum coverage.

(PDF)

Figure S2 Heat map of clustered strain abundance in
individual body sites. These figures show a heat map

representation of the relative abundance of each strain (y-axis)

for each sample (x-axis) for the 6 body sites individually as

determined by depth X breadth of coverage (see Methods). The

abundances are hierarchically clustered using Spearman rank

correlation with average linkage.

(PDF)

Figure 8. Some of the most abundant strains in the human microbiota are poorly studied. (A) Publications in PubMed versus abundance.
The number of publications in PubMed [Abstract/Title] for each species (until April 2012) is plotted against the average abundance of each species.
The year that the species first appeared in the abstract or title of an article in the PubMed database is indicated by the size of the circle. The color of
the circle indicates the body site where the species is most abundant. (B) Expanded view of Publications in PubMed versus abundance. An expanded
view of the lower-right corner of the scatterplot showing the species that have a high average relative abundance (top 100) but a low publication
count (#100).
doi:10.1371/journal.pone.0097279.g008
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Figure S3 Heat maps of ordered strain abundance for
all body sites combined. A heat map representation of the

relative abundance of each strain (y-axis) for each sample (x-axis)

for the 6 body sites combined as determined by depth X breadth

of coverage (see Methods). The abundances are hierarchically

clustered using Spearman rank correlation with average linkage.

(PDF)

Figure S4 Heat maps of ordered strain abundance. Heat

map visualization of the relative abundances with the samples

ordered by the relative abundance for each strain. Species are

listed alphabetically.

(PDF)

Figure S5 Heat maps of ordered species abundance.
Heat map representation of the relative abundance of each species

ordered by the relative abundance for each species (for each

sample the abundances of strains within a species were summed to

calculate the species total). Species are listed alphabetically.

(PDF)

Figure S6 Top species by abundance. This line graph

shows how many species on average it takes to constitute a

percentage of the total abundance in a sample, ranging from 5%

to 95%. Strains were summed to calculate the total for each

species, and the error bars represent the standard deviation. On

average, 74, 154, 90, 92, 277 and 255 species are needed for 100%

in the anterior nares, buccal mucosa, posterior fornix, stool,

supragingival plaque and tongue dorsum, respectively.

(PDF)

Figure S7 16 S heat maps and comparison with WGS
data. (A–G) These figures show a heat map representation of the

relative abundance of each genus (y-axis) for each sample (x-axis)

for six body sites, both individually (A–F) and together (G), as

determined by 16 S sequence data. The abundances are

hierarchically clustered using Spearman rank correlation with

average linkage. (H–L) For each genus that was represented by 3

or more species in the whole genome shotgun data, the rank order

for each sample was determined and compared to the average

rank order of the genus using Kendall’s W. The correlations are

hierarchically clustered using Spearman rank correlation with

average linkage. The overall concordance of all the samples is

shown in the far right column. Genera with a high, statistically

significant Kendall’s W (.0.8) are colored red.

(PDF)

Figure S8 Variability in strain abundance across sam-
ples. (A) Distribution of the coefficient of variation (CV) for each

strain across the samples for each individual body site. The

distribution shows that the variation of the abundances of individual

strains is the lowest in tongue dorsum and the highest in the

posterior fornix (based on the median), while the distribution is the

widest for the stool. The median diversity is indicated by a

horizontal line in the box (covering the 25th until the 75th

percentile), the diamond represents the average and the outliers are

visualized using dots. The whiskers of the box are the lowest and

highest observation of variation. The points that make up the

distribution are plotted in the color of the body site. The points

beyond the whiskers are considered outliers and define the rainbow

strains (see methods). (B) Strains that show an unusually variable

pattern across multiple samples based on two metrics. The samples

are ordered by their relative abundance to show the variable

distribution. The strains are color coded to indicate the metric by

which they are considered to be unusually variable (red for rainbow

strains, blue for bimodal strains, and purple for both metrics).

(PDF)

Figure S9 Strain diversity and top 80% by abundance.
(A–B) Sample diversity (alpha diversity) visualized in a boxplot

using the Simpson index (A) and the Shannon index (B) for each

body site. The median diversity is indicated by a horizontal line in

the box (covering the 25th until the 75th percentile), the diamond

represents the average and the outliers are visualized using dots.

The whiskers of the box are the lowest and highest observation of

diversity. The Simpson index equals the probability that two

strains taken at random from the data set are the same. A high

Simpson index equals low diversity. Here the more common 1—

Simpson Index is plotted. The Shannon index quantifies the

uncertainty (entropy) in predicting the identity of a strain taken at

random from the data set. A low Shannon index indicates low

strain diversity. The Shannon index was calculated with e as the

base of the logarithm. Low diversity can be caused either by a

small number of total strains in the data set or by strain

domination of the body site. High diversity indicates either a

large number of total strains in the data set or a very even

distribution of abundance of strains. (C–G) Heat map visualization

of the distribution of abundances of the species that are part of the

top 80% in at least one sample in the five remaining body sites (see

Figure 6 for stool): (C) anterior nares, (D) buccal mucosa, (E)

posterior fornix, (F) supragingival plaque and (G) tongue dorsum.

Only abundances of 1% or more are visualized to emphasize the

differences in prevalence of the most abundant strains. The values

are hierarchically clustered using Spearman rank correlation with

average linkage. (H) Strain participation in the top 80%. For all

the strains that are in the top 80% in at least one sample in a body

site the participation over all the samples is given as a percentage

for each body site. The heat map of participation percentages is

hierarchically clustered using Spearman rank correlation with

average linkage.

(PDF)

Figure S10 Stable low abundance strains. To find the

strains that are present stably at low abundance, strains were

identified that differed by only two orders of magnitude over 90%

of the subjects (including subjects where the strain was not present)

for each of the six body sites. The upper limit of the relative

abundance is 0.01% (A), 0.1% (B) and 1% (C), each excluding the

strains found for the preceding condition. No stable low

abundance strains were identified for anterior nares and posterior

fornix. The stable low abundance strains that were identified are

visualized in a heat map of the relative abundances with the

subjects ordered by the relative abundance for each strain.

(PDF)

Table S1 Relative abundance of reference strains for all
body sites (WGS). The abundance of each reference strain in

each sample was estimated by calculating the product of its

breadth and depth of coverage. The abundance of a strain was

divided by the total abundance of that sample to obtain the

relative abundance of each strain in each sample. The relative

abundance is presented as a percentage.

(XLSX)

Table S2 Relative abundance of species for all body
sites (WGS). Species-level estimates were calculated by taking

the sum of the relative abundance of all the strains of a species in a

sample. The relative abundance is presented as a percentage.

(XLSX)

Table S3 Relative abundance of generas for all body
sites (16 S). The 16 S data was generated as previously

described [9,10]. The abundance of an OTU was divided by the

total abundance of that sample to obtain the relative abundance of
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each OTU in each sample. The relative abundance is presented as

a percentage.

(XLSX)

Table S4 Breadth and depth of coverage of reference
strains for all body sites (WGS). The breadth and depth of

coverage used to estimate the abundance of each reference strain

in each sample. The breadth (defined as the percentage of covered

bases over the length of the reference genome) and depth (defined

as the sum of the depths of each covered base divided by the length

of the genome) of coverage were calculated based on all

alignments of each genome represented in the database using

RefCov (http://gmt.genome.wustl.edu/gmt-refcov). The breadth

of coverage is presented as a percentage.

(XLSX)
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