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Abstract

Most studies concerning the foraging ecology of marine vertebrates are limited to breeding adults, although other life
history stages might comprise half the total population. For penguins, little is known about juvenile dispersal, a period
when individuals may be susceptible to increased mortality given their naı̈ve foraging behaviour. Therefore, we used
satellite telemetry to study king penguin fledglings (n = 18) from two sites in the Southwest Atlantic in December 2007. The
two sites differed with respect to climate and proximity to the Antarctic Polar Front (APF), a key oceanographic feature
generally thought to be important for king penguin foraging success. Accordingly, birds from both sites foraged
predominantly in the vicinity of the APF. Eight king penguins were tracked for periods greater than 120 days; seven of these
(three from the Falkland Islands and four from South Georgia) migrated into the Pacific. Only one bird from the Falkland
Islands moved into the Indian Ocean, visiting the northern limit of the winter pack-ice. Three others from the Falkland
Islands migrated to the eastern coast of Tierra del Fuego before travelling south. Derived tracking parameters describing
their migratory behaviour showed no significant differences between sites. Nevertheless, generalized linear habitat
modelling revealed that juveniles from the Falkland Islands spent more time in comparatively shallow waters with low sea
surface temperature, sea surface height and chlorophyll variability. Birds from South Georgia spent more time in deeper
waters with low sea surface temperature and sea surface height, but high concentrations of chlorophyll. Our results indicate
that inexperienced king penguins, irrespective of the location of their natal site in relation to the position of the APF,
develop their foraging skills progressively over time, including specific adaptations to the environment around their
prospective breeding site.
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Introduction

Integrated knowledge on the spatial distribution of long-lived

animals, including all life history stages, are of paramount

importance to fully understand their movements and distribution

in view of potential population trends, threats and the subsequent

implementation of appropriate conservation measures. Almost all

information currently available for meso-predators such as sea

turtles [1], tunas [2] or seabirds [3] are generally both spatially and

temporally patchy with coverage often limited to a small part of

the population; e.g. usually adults or breeding animals [2,4]. In

particular, there is generally a widespread lack of information on

immature animals [5], even though this demographic category can

represent up to half of the total population of some long-lived

meso-predator species (e.g. [6]). Moreover, juveniles with their

naı̈ve behaviour may have higher susceptibility to increased

mortality associated with variability in their environment [7,8]

and/or lack of genetic fitness.

After fledging, young animals generally forage and disperse on

their own using a portfolio of learned and/or genetically pre-

determined behaviours [9,10,11]. During this period, in which

naı̈ve animals acquire the skills of efficient locomotion and

foraging [10,12,13], they may not only have high mortality rates

through natural causes [14], but they may also be more susceptible

to human-induced threats. The most critical stage, often with a

high risk of mortality, usually occurs during the first year when

juveniles can disperse over relatively long distances (compared

with breeding season foraging trips made by adults) and across

completely unknown ocean areas while having to acquire effective

foraging skills [15]. The behaviour of seabirds during this period of

their early life is almost unknown because of the difficulty of

tracking their movements over long periods, especially in the

pelagic marine environment [16]. Thus, little if any information is

available on this critical period when young individuals disperse

from their natal colony [17]. Among Southern Ocean seabirds,

only shy (Thalassarche cauta) [18], Amsterdam (Diomedea amsterda-

mensis) [19] and wandering (D. exulans) albatrosses [7,10], emperor
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(Aptenodytes forsteri) [16,20,21,22], gentoo (Pygoscelis papua) [23] and

Adélie (P. adeliae) penguins [24] have been tracked as fledging

juveniles. Surprisingly, in view of the number of studies performed

on emperor penguin juveniles and the two smaller penguin species,

nothing is known about the dispersal of juvenile king penguins

(A. patagonicus).

King penguins have a circumpolar distribution [25,26] and

breed on islands located within 400 km of the Antarctic Polar

Front (APF). At the APF, cold and nutrient-rich Antarctic waters

sink beneath the relatively warmer subantarctic waters, while

associated zones of mixing and upwelling create a zone very high

in marine productivity [27]. Studies on the king penguin foraging

areas during different times of the year have shown that during

summer adult birds forage mainly within the vicinity of the APF,

irrespective of whether the APF is located north or south of the

breeding site ([28,29,30,31,32], but see also [33]). However, in

winter birds forage mostly south of the APF in Antarctic waters,

sometimes as far as the northern limit of the pack ice

[29,31,32,34]. This change in foraging area is reflected in a shift

in diet: in summer penguins feed predominantly on myctophid fish

and to a lesser extent on squid; however, the latter component

becomes more important in winter times [35,36]. The only

exception from this behaviour has been observed in the Falkland

Islands, where in summer birds forage towards the sub-Antarctic

Front and in autumn in the vicinity of the APF. In winter,

Falkland Island birds forage to the north of the breeding site along

the slope of the Patagonian Shelf, which has been attributed to a

behavioural adaptation to exploit the highly productive waters in

the area [32].

Of the global population of over 1.5 million king penguin

breeding pairs [26], about 450,000 breed at South Georgia,

making this site the major breeding site in the Atlantic sector of the

Southern Ocean [37]. With the exception of isolated cases of egg-

laying recorded at other localities [38,39], the only other breeding

site in the area is the Falkland Islands, where a small population of

about 720 breeding pairs, recently fledging ca. 500 chicks annually

[40,41], has become established over the past 50 years. Although

South Georgia is located only 300 km further south than the

Falkland Islands, both breeding sites are located at the distribu-

tional limits of king penguins, because the APF turns north as it

crosses the northern Scotia Ridge, resulting in the Falkland Islands

being located up to 400 km north and South Georgia being

located up to 300 km south of this prominent oceanographic

boundary.

The aim of this study was to examine the post-fledging dispersal

of juvenile king penguins in the South Atlantic using satellite

telemetry. Juvenile king penguins were tracked simultaneously

from South Georgia and the Falkland Islands to address the

following questions: 1) How do juvenile king penguins disperse

during their first year at sea with regard to the position of the APF?

2) Do they disperse potentially following a genetically pre-

determined behaviour, or do they disperse randomly over the

open ocean? 3) Do they use a different habitat from that of adults?

4) Do juveniles from the two breeding sites differ in their foraging

habitats? 5) What are the key environmental parameters

influencing their distribution?

Materials and Methods

Ethics Statements
This study was approved by the Falkland Islands Government

(R 09/2007) and the Government of South Georgia and the South

Sandwich Islands and complied with the legal requirements in the

United Kingdom. The king penguin colony in the Falkland Islands

is located on private land (Johnson’s Harbour Farm); permission

was given by the owners Osmund and Olive Smith (today: Jan

Cheek, Stanley, Falkland Islands). King penguins are not

endangered (classified as ‘Least concern’ in the current IUCN

red list) but are protected under the ‘Conservation of Wildlife and

Nature Bill 1999’ in the Falkland Islands and under the South

Georgia Environmental Management Plan in South Georgia [26].

The procedures used in this study were scrutinised and approved

by the Animal Ethics Committee of the British Antarctic Survey.

The greatest care was taken to minimize stress while handling

animals, which lasted less than 20 min in all cases.

Study Site and Device Attachment
Fieldwork was conducted in the king penguin breeding colonies

located at Volunteer Beach (51u299S, 57u509W), Falkland Islands,

and at St. Andrews Bay (54u279S, 36u119W), South Georgia, on 11

December 2007 and 13/14 December 2007, respectively. King

penguin fledglings were randomly selected at each site (Falkland

Islands n = 10, South Georgia n = 8) After their capture, penguins

were weighed (South Georgia only; mean body mass 9.561.2 kg)

before satellite transmitters were attached using black waterproof

tape (Tesa, Beiersdorf AG, Hamburg, Germany) and glue,

adapted from the methods described by [42]. Devices were

hydrodynamically shaped in order to minimise drag [43,44] and

centered on the middle of the back in order not to compromise the

penguins’ balance [45] or create excessive hydrodynamic drag.

The devices were finally covered with a layer of quick epoxy

(Loctite 3430, Loctite Deutschland GmbH, München, Germany)

to prevent the birds from removing the tape with their beaks. All

birds were assigned names chosen by the individual funding

sponsors.

The KiwiSat 202 satellite transmitters used had maximum

dimensions of 80635627 mm and weighed approximately 60 g,

equivalent to about 0.6% of the mean penguin body mass. The

flexible antenna of each device was 185 mm long and had a

diameter of 2 mm: it originated with an angle of 60u at the rear of

the device to further reduce drag [46]. To reduce the energy

requirements of the satellite transmitters, devices were pro-

grammed to transmit with a repetition period of 60 s and with a

duty cycle of 4 hours on/20 hours off. Devices were powered by

26AA cells, providing a maximum life span of 240 days. All

transmitters were switched on at 01:00 GMT ( = local time +3

hours at the Falkland Islands, and local time +2 hours at South

Georgia), because penguins are optically orientated predators and

thus more likely to be less active at night [47], thereby increasing

the likelihood of successful transmissions while the penguin was

resting at the sea surface.

Positional data obtained from Argos (CLS, Toulouse, France)

were classified according to the quality of the positional fix,

with location classes 0, 1, 2 and 3 representing accuracies of

.1 km, ,1 km, ,350 m and ,150 m, respectively [48]. Only

the most accurate position obtained from each duty cycle for each

penguin was processed as the ‘daily position’ (98.6% of which were

accurate to within 1 km or better). Based on these filtered

positions, the following migratory parameters were calculated:

Maximum distance to the colony ( = furthest distance to the

natal site during the tracking period), minimum distance covered

( = sum of distances between consecutive positions), mean and

maximum daily distance covered.

Habitat Modelling
Presence/absence modelling requires the definition of a grid of

spatial units in which the presence or absence of the species is

recorded. We applied different methodological approaches to
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identify different marine habitats used by king penguin at multiple

spatial scales; analyses were carried out within the R environment

[49]. The spatial grid, where tracking locations and environmental

data were overlaid, was based on the geographic limits of the

tracking data (from 10uW to 110uW and from 40uS to 75uS). The

0.04u cell size (4 km2–84062400 cells) was chosen according to the

available oceanographic data (Table 1) and the accuracy of the

tracking devices. We used a hierarchical modelling approach to

identify those environmental parameters (see details in Table 1)

that most accurately reflected the seascape and foraging habitats of

king penguins. Prior to modelling, all environmental variables

were standardized [50]. Strongly ‘correlated’ (|rs| .0.5) variables

were identified by estimating all pair-wise Spearman rank

correlation coefficients.

Only positional data obtained between 1 January 2008 and 31

March 2008 were used for GLM modelling, because before this

period the different locations of the breeding sites and subse-

quently the immediate surrounding oceanography may have

influenced the analysis. The onset of this period was chosen to

allow birds to move, following their departure, sufficiently far from

the colony to avoid this influence (based on a mean daily distance

of 45 km per day; see Table 2). Also, due to the cessation of some

satellite transmitters, the number of data obtained after this period

were not sufficient to be applied in a GLM model. In total we

obtained 640 cells with presence of king penguins from South

Georgia and 579 with presence of king penguins from the Falkland

Islands. To obtain binomial response variables we followed the

method developed by [51] and generated the same number of

pseudo-absences as presences. To this end, we followed several

rules to ensure that the pseudo-absences were located inside the

surveyed areas but not in areas that are known to be suitable areas

for penguins (we masked the surrounding of each presence data,

using a moving window of 363 grid cells). We also generated 100

further sets of pseudo-absence for model construction and

validation. We fitted generalized lineal models (GLMs; [52]) using

as response variable the presence/absence of king penguins in a 4-

km2 cell using binomial errors and a logit link. To take into

account the variability of the study area, we decided to use a

resampling scheme to obtain a balanced sample [53,54], randomly

choosing the same number of cells with presence and with pseudo-

absence. We reserved a random sample of 30% of cells with

presence and 30% of cells with absence for model cross-validation

and used the remaining 70% for model fitting. This procedure was

repeated 100 times. In each repetition the cells with presence were

the same (but a new cross-validation sample with replacement was

obtained), while cells with absence were sampled without

replacement. Variables for the models were selected from the

initial set by a backward-forward stepwise procedure starting from

a full model that included all potential variables. The Akaikes

Information Criterion (AIC) was used to retain a term and select

between candidate models [55]. We considered as competing

models those for which the differences between AIC and the AIC

of the best candidate model (the one with the smallest AIC) was Di

#2 [56]. For those models we also calculated the AIC weight wi,

(the relative model likelihood), which assesses how much the model

is supported by the data, relative to the set of competing models.

Model Validation
Each time a data-set was generated, 70% of the data was used to

build a model and the remaining 30% was reserved to validate it.

The area-under-the-curve (AUC) of the receiver operating

characteristic (ROC) plot was computed for each of the 100

replicate models with each set of validation data to estimate its

predictive power through cross-validation [57]. The AUC ranges

from 0 (when model discrimination is not better than random) to 1

(perfect discriminatory ability, [58]). Predictive models are

considered usable if AUC$0.7 [59].

Mapping Predictions
We used the most parsimonious model to build a predictive map

of current juvenile king penguin distribution in the Southern

Ocean. To produce this map, we used the option in IDRISI Taiga

[60] to export variables as a data matrix, applied the predict.gam

procedure to make predictions on the new data matrix, and then

exported the predicted values at the scale of the response back to

IDRISI to produce a probability map.

Results

Dispersal of Juveniles
Apart from some individual variability described below, no

general differences in the migratory behaviour of birds from either

site were apparent. This applied also to the various migratory

parameters calculated (Table 2). Overall, 18 king penguin

juveniles were tracked for a total of 2,111 days, those from the

Falkland Islands for 1066 days (n = 10) and those from South

Georgia for 1045 days (n = 8). The mean tracking period was

117658 days (range: 49–261 days) with no significant differences

between birds from the Falkland Islands (107667 days) and South

Georgia (131645 days). The maximum distance to the colony

Table 1. Candidate environmental variables used for habitat modelling.

Explanatory variables Satellite Range (min-max) Description

Bathymetry (BAT, m) ETOPO 0–7958 Coastal versus pelagic domains

BAT gradient (BAT.G3, %) ETOPO 0–100 Presence of topographic features

Chlorophyll a (CHLa, mg m23) Aqua/MODIS 0–24.91 Productivity

CHLa gradient (CHLa.G3, %) Aqua/MODIS 0–100 Frontal systems

Sea Surface Temperature (SST, uC) Aqua/MODIS 0–21.32 Temperature of the ocean’s surface

SST gradient (SST.G3, %) Aqua/MODIS 0–100 Frontal systems

Sea Surface Height (SSH, cm) AVISO 46.30–51.29 Mean sea level variation

SSH gradient (SSH.G3, %) AVISO 0–100 Frontal systems

Dynamic variables were available on a monthly basis. As the variables differed in their spatial resolutions, they were aggregated to match a standard grid with cell size
of 0.04u. Spatial gradients were estimated as their proportional change (PC) within a surrounding 363 cell (0.75u60.75u) grid using a moving window as follows:
PC = ((maximum value – minimum value)6100)/(maximum value).
doi:10.1371/journal.pone.0097164.t001
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varied between 668 km and 4,783 km for penguins from the

Falkland Islands and between 661 km and 3,445 km for birds

from South Georgia. The minimum distance covered showed no

significant differences. The mean daily distance covered was also

similar, with 45625 km in both cases (Falkland Islands

45624 km; South Georgia: 45625 km). However, all birds,

whether from the Falkland Islands or South Georgia, exhibited

high levels of variability in the daily distances travelled. The

majority of daily positions occurred within 10 km of the previous

position; however, some were more than 100 km distant from the

preceding position. Thus, birds sometimes travelled considerable

distances from their previous position, and they subsequently

occupied different water masses.

During the first 20 days of deployment, seven birds from the

Falkland Islands travelled directly south to the APF, while three

birds (Gus, Iona and Leo) remained over the Falklands Plateau

(Figure 1). In contrast, all birds from South Georgia showed a

consistent pattern of behaviour and travelled directly north to the

APF (Figure 1). After approximately 18 days after the deployment

of tags, the birds from South Georgia switched to a different

pattern of behaviour, which was consistent with that of the birds

from the Falkland Islands.

Following this initial dispersal, the majority of birds from both

study sites remained for varying time periods in the APF located

half-way between the Falkland Islands and South Georgia, before

seven of the eight birds tracked for periods for as much as 4

months migrated west into the Pacific Ocean until transmission

ceased (Figure 1). Only one bird from the Falklands, Youngster,

headed east and travelled into the Indian Ocean. During this

movement, the bird turned south twice until reaching the edge of

the winter pack ice before turning north and later east again

(Figure 1). During the first trip south the bird arrived at the ice

edge on 7 July and stayed for one week, the second time it arrived

on 8 August but transmission ceased on 28 August.

Environmental Parameters Influencing Juvenile Dispersal
The most parsimonious model for the probability of occurrence

of king penguins from the Falkland Islands included the variables:

Bathymetry, sea surface temperature, bathymetric gradient, sea

surface height and chlorophyll a gradient (Table 3, Figure 2). This

model indicated that king penguins from the Falkland Islands used

relatively shallow areas of bathymetry and low bathymetric

variability, low sea surface temperature and sea surface height

and low chlorophyll a variability (Figure 3a). The most parsimo-

nious model for the probability of occurrence of king penguins

from South Georgia included the variables: Chlorophyll a,

bathymetry, sea surface temperature, sea surface height and

bathymetric gradient (Table 3). The best model showed chloro-

phyll a, bathymetry and bathymetric gradient had the strongest

positive effect, and sea surface temperature and sea surface height

a negative effect on the presence of king penguins from South

Georgia. Therefore, this result suggests that king penguins from

South Georgia selected relatively deeper waters with high

concentrations of chlorophyll a, greater bathymetric variability

and low sea surface temperature and sea surface height (Figure 3b).

Model Validation and Predictive Cartography
Predictive models fitted the data well, with a mean AUC of

0.8060.02 for the king penguins from the Falkland Islands and

0.7660.01 for the birds from South Georgia, which indicated that

selected models were robust and considered potentially useful for

predicting the distribution of juvenile king penguins within the

ranges of predictor variables. The predictive map of the

distribution of juvenile king penguins in the Southern Ocean,

Figure 1. Satellite tracks obtained from juvenile king penguins from (a) the Falkland Islands and (b) South Georgia. Breeding sites
are marked by a yellow asterisk. Track colours represent a monthly time scale, with positions in pink (December 2007), blue (January 2008),
yellow-green (February), orange (March), golden (April), red (May), olive (June), violet (July) and green (August 2008). The black line indicates the
approximate position of the Antarctic Polar Front. White lines in (a) indicate the edge of the winter pack ice at the date given.
doi:10.1371/journal.pone.0097164.g001
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taking into account all the effects contained in the best general

model is shown in Figure 4. While birds from both study sites have

a high probability of occurring within waters south of the APF,

there are slight differences in that juveniles from the Falkland

Islands additionally have a high probability of occurring over the

Patagonian Shelf between the Falkland Islands and the South

American continent, while for South Georgia birds the probability

of occurring between the natal colony and the APF to the north

was higher than for Falkland Islands birds.

Discussion

To our knowledge, this is the first study to investigate the post-

natal dispersal of juvenile king penguins. Furthermore, spatial

differences in the migratory behaviour were evaluated by

Figure 2. Mean partial effects (solid line) and standard error of the partial effect (broken lines) for the variables retained in the final
generalized lineal model (GLM) of the probability of occurrence of king penguins from (a) the Falklands Islands and (b) South
Georgia. Parameters are shown in the order of the stepwise selection by the GLM (Table 3).
doi:10.1371/journal.pone.0097164.g002
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Figure 3. Distribution of king penguins from (a) the Falklands Island and (b) South Georgia in the southern oceans between 1
January and 31 March 2008. Values represent the probability of finding king penguins in a 4-km cell predicted by the best model (Table 3). Areas
in black correspond to regions without predictions or outside the model’s environmental space. Daily positions of king penguins are indicated by
circles.
doi:10.1371/journal.pone.0097164.g003
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simultaneously tracking birds from two breeding sites, which are

subject to different climatic and oceanographic conditions.

Potential Impact of Devices
A tracking period of up to 261 days and a horizontal

displacement of up to c. 12,000 km represents the longest tracking

duration for king penguins yet recorded in the literature and

potentially even one of the longest when compared with studies on

other non-flying, air-breathing marine vertebrates. While it is well

accepted that the attachment of external devices, especially those

having an antenna, can greatly influence the foraging performance

and ultimately survival of marine predators [44,46], we assume,

for a number of reasons, that the behaviour of the birds studied

was not seriously affected by these small and hydrodynamic

devices. The cessation of transmissions after longer deployment

periods is unlikely to have been caused by device technical failure

and those that occurred during the initial period of tracking most

probably happened because of device attachment failure, or

because the birds perished, either because of starvation or

predation. Afterwards, the cessation of transmissions most

probably happened because of battery exhaustion. Minimum

first-year survival for juvenile king penguins has been estimated to

range between 40% and 50% [61], and it might reasonably be

assumed that mortality rates of inexperienced birds are highest in

the first weeks after leaving the colony. This situation could then

account for our early failures; our results showed that 50% of

instrumented birds were still tracked after 100 days. Further, the

same methodology that we used has successfully been applied for

periods greater than 3 months on a variety of smaller penguin

species such as rockhopper (Eudyptes chrysocome) and magellanic

(Spheniscus magellanicus) penguins [62,63,64,65]. We therefore

assume that the equipment of juvenile king penguins with small

satellite transmitters did not severely impact upon the birds’

behaviour and survival.

Habitat use and Colony Differences
The foraging range of adult king penguins during the breeding

season is one of the most extensively studied among marine air-

breathing vertebrates (review in [26]). Research has shown that

adult king penguins are dependent on frontal zone features,

irrespective of their breeding site and its relative position in

relation to these features. In summer, they forage predominantly

within the vicinity of the APF and, at some breeding sites, to a

lesser extent, further north at the Sub-Antarctic front (Falkland

Islands: [32,66]; South Georgia: [30,32,67,68]; Crozet Islands:

[28,29,31,32,69]; Kerguelen Islands: [32,70]; Heard Island: [71],

but see also [33]; Macquarie Island [33,72]) or further south at the

Southern Antarctic Circumpolar Front (South Georgia: [73]).

Myctophid fish are abundant in the APF [74] and constitute the

major prey of king penguins [35,75]. In autumn and winter,

however, adults provisioning chicks forage mainly further south in

Antarctic waters between the APF and the northern pack-ice edge

[34,69,71]; squid are also more important in the diet of king

penguins during this time of the year [35,36]. The only exception

from this pattern is for adult king penguin breeding on the

Falkland Islands, where in winter they make use of the slope of the

Patagonian Shelf as far north as 38uS [32].

Our results indicate that juvenile birds only exhibited this

foraging pattern during the initial phase of the tracking period, just

after they left their natal colonies. For example, all birds from

South Georgia, like adult breeding birds, moved northwards

towards the APF. In contrast, three out of the ten birds studied

from the Falkland Islands dispersed over the Patagonian Shelf

between the Falkland Islands and the South American continent,

presumably relying on different food items over the comparatively

shallow shelf waters. The same area is also a favoured foraging

habitat for rockhopper penguins from western colonies in the

Falkland Islands [76] and from Staten Island, located off the

southeastern tip of South America [63], as well as for magellanic

penguins from Martillo Island in the Beagle Channel [65] during

different times of the year. These differing migratory strategies

may indicate that at least some juveniles from the Falkland Islands

reacted to the different environmental conditions around the

Falkland Islands and made use of the highly productive

Patagonian Shelf area off the coast of Tierra del Fuego, which is

also likely to be reflected in different prey items taken.

By early January at the latest, all birds had moved further south

and dispersed within the vicinity of the APF, located half-way

between the Falklands and South Georgia. Afterwards, juveniles

remained close to the APF but moved further east and west. Thus,

there was only a temporary overlap in the foraging areas used by

adults and juveniles during the initial tracking period. As the

season progressed into winter, their foraging areas may have

overlapped again, but not necessarily only with adults from their

site of origin. For example, in July and August Youngster used an

area close to the pack-ice-edge which is also potentially frequented

by birds from colonies located in the Indian Ocean [31,34]. At the

northern limit of the expanding winter pack ice, productivity is

Table 3. GLM models obtained by stepwise selection of habitat variables influencing king penguins from the Falkland Islands and
South Georgia.

Code GLM Models AIC D AIC AUC ± SE

King penguins from the Falkland Islands

1 2BAT 2SST 2BAT.G3 2SSH 2CHLA.G3 548.06 0.00 0.80±0.02

2 2BAT 2SST 2SSH 2CHLA.G3 549.18 1.12

King penguins from South Georgia

3 +CHLA +BAT 2SST +BAT.G3 2SSH 600.34 0.00 0.76±0.01

4 +CHLA +BAT 2SST 2SSH 601.35 1.01

5 +CHLA 2SST –SSH 601.40 1.06

Parameters are shown in the order of importance, derived from the stepwise selection. In addition, the plus or minus signs preceding the parameters indicate whether
there is a positive or negative effect. For each competing model, the Akaike Information Criterion (AIC) and the difference between the AIC of the current model and the
most-parsimonious model (DAIC) are given. The most parsimonious model for each case are marked in bold and mean area-under-the-curve (AUC) values computed for
100 replicate parameterizations of the models. All 100 replicates had AUC$0.7.
doi:10.1371/journal.pone.0097164.t003
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Figure 4. Predicted distribution of juvenile king penguins from (a) the Falklands Islands and (b) South Georgia in the southern
oceans between 1 January and 31 March 2008. Values represent the probability of finding king penguins in a 4-km2 cell predicted by the best
model (Table 3) and are categorized into three classes (low: ,0.33, medium: 0.33–0.66, high: .0.66) to facilitate interpretation. Areas in black
correspond to regions without predictions or those outside the model’s environmental space.
doi:10.1371/journal.pone.0097164.g004
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enhanced [77] and the myctophid fish Electrona antarctica and

Gymnoscopelus braueri are abundant in the upper 500 m of the water

column [78], thereby providing a suitable food resource to

foraging king penguins and other marine predators such as, for

example, juvenile emperor penguins [22]. Furthermore, and as

mentioned earlier, squid may also play a major role as potential

food for penguins at this time [35,36,79].

Thus, it appears that spatial segregation between juveniles and

adults, which has been found in other seabird and marine

mammal species in the Southern Ocean [7,8,22,23,80] limits the

level of competition between younger birds and more experienced

adults foraging in the vicinity of their breeding colony after the

initial dispersal, thereby reducing intra-specific competition for

food. However, once birds have begun to gain experience and the

season progresses, the winter foraging areas in the vicinity of the

APF and further south have not only to be shared with adults, but

also with a number of other seabirds and marine mammals (e.g.

[81]).

Remarkably, with the exception of Youngster, all birds tracked

migrated in a westerly direction, against the direction of the

prevailing current. These movements against the prevailing

currents have also been observed in a pre-moult chinstrap penguin

(Pygoscelis antarctica) [82] and a rockhopper penguin during winter

[63], whereas during the breeding season rockhopper and

magellanic penguins from the Falkland Islands were assumed to

use the prevailing currents to reduce energy expenditure during

foraging [83,84]. The reasons for the movement against the

prevailing currents remain purely speculative, but could be

explained by olfactory cues to find areas of high productivity, as

has been shown in several procelariiform seabirds and two species

of penguins [85]. Furthermore, it remains unknown as to whether

the birds maintained this direction and circumnavigated the

Antarctic continent during their first year at sea, or whether they

turned at some stage and headed back towards their region of

origin, which has, for example, been observed in juvenile emperor

penguins [22]. As birds do not necessarily return to their home

colony to moult, juveniles can spend several years exploring the

Southern Ocean. Usually, king penguins return to their natal

colony upon reaching sexual maturity at the age of 5–6 years

[25,26], but in some instances they start breeding elsewhere. For

example, a chick from South Georgia banded as a fledgling began

to breed in the Falkland Islands about six years later ([86], Pütz,

pers.obs.). Similarly, a chick from the same banding study at

Husvik on South Georgia, was found breeding at the St Andrews

Bay colony some 12 years later (Trathan, pers.obs.).

While the foraging areas in general were, apart from the initial

phase, quite similar for juveniles from both study sites, some

differences were apparent when applying the GLM model. Of

course it cannot be ruled out that genetically predetermined

adaptations in their foraging behaviour exist, but our results

indicate that behavioural adaptations linked to their breeding site

are developed over time, presumably supported by foraging in

association with congeners and other species, which has been

shown to be the case in juvenile brown boobies [87]. As this is

likely to involve mostly non-breeding birds from different age

classes, foraging in flocks presumably enables birds to ‘learn’ about

prospective feeding places. In wandering albatrosses, the foraging

behaviour of immatures was shown to be partly innate and partly

learned over time, until the birds had acquired the foraging skills

needed to breed successfully [10]. Our results indicate that a

comparable development of foraging skills over time, including

specific adaptations to environmental conditions, may also apply

to king penguins. This is further substantiated by the fact that king

penguins have been shown to adjust their diving behaviour with

increasing age, thereby reducing their energy expenditure during

foraging dives [88].
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