
High-Quality NMR Structure of Human Anti-Apoptotic
Protein Domain Mcl-1(171-327) for Cancer Drug Design
Gaohua Liu1.¤, Leszek Poppe2., Ken Aoki3, Harvey Yamane3, Jeffrey Lewis3, Thomas Szyperski1*

1 Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, United States of America, 2 Molecular Structure, Amgen, Thousand Oaks, California,

United States of America, 3 Protein Science, Amgen, Thousand Oaks, California, United States of America

Abstract

A high-quality NMR solution structure is presented for protein hMcl-1(171–327) which comprises residues 171–327 of the
human anti-apoptotic protein Mcl-1 (hMcl-1). Since this construct contains the three Bcl-2 homology (BH) sequence motifs
which participate in forming a binding site for inhibitors of hMcl-1, it is deemed to be crucial for structure-based design of
novel anti-cancer drugs blocking the Mcl1 related anti-apoptotic pathway. While the coordinates of an NMR solution
structure for a corresponding construct of the mouse homologue (mMcl-1) are publicly available, our structure is the first
atomic resolution structure reported for the ‘apo form’ of the human protein. Comparison of the two structures reveals that
hMcl-1(171–327) exhibits a somewhat wider ligand/inhibitor binding groove as well as a different charge distribution within
the BH3 binding groove. These findings strongly suggest that the availability of the human structure is of critical importance
to support future design of cancer drugs.
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Introduction

The malfunctioning of cellular apoptosis [1] is a major hallmark

of cancer. The regulation of apoptosis depends on the family of

Bcl-2 proteins which contain one or several Bcl-2 homology (BH)

sequence motifs. Based on their function and the similarity of their

respective BH sequence motifs, these proteins can be grouped into

three classes [2],[3]: (i) multi-domain pro-apoptotic proteins such

as Bax and Bak, (ii) anti-apoptotic (i.e., pro-survival) proteins such

as Mcl-1, Bcl-1, Bcl-xL, Bcl-w and Bfl-1/A1, all of which exhibit a

similar architecture as Bax and Bak, and (iii) several pro-apoptotic

proteins comprising only a single BH3 sequence motif such as Bid,

Bad, Bim, Puma, Noxa, Hrk, Bmf, and Nbk/Bik (‘BH3-only’

proteins). The BH3 motif of class (iii) proteins forms an

amphipathic a-helix which interacts specifically with a hydropho-

bic pocket formed in both pro-apoptotic class (i), and anti-

apoptotic class (ii) proteins with participation of their respective

BH motifs [2],[3]. Inhibition of the resulting protein-protein

complex formation offers a promising strategy to treat cancer. For

example, the small molecule Bcl-2 antagonist ABT-737 [4] inhibits

anti-apoptotic class (ii) proteins Bcl-xL, Bcl-w and Bcl-1, and a

congener [5] that can be orally administered is currently in clinical

trials.

The anti-apoptotic, pro-survival 350-residue protein Mcl-1

(‘myeloid cell leukemia-1’) [2] is primarily anchored in the outer

mitochondrial membrane by a C-terminal trans-membrane

domain and contains three BH sequence domains: BH3 (residues

209–223), BH1 (252–272) and BH2 (residues 304–319) [2]. Mcl-1

inhibits death receptor-induced apoptosis by selectively binding to

truncated Bid (tBid) [6] and can sequester endogenous Bak to

block Bak-mediated cell death. Moreover, Mcl-1 interacts with

several BH3-only proteins (Bim, Bid and Puma, Noxa and Bak).

Hence, Mcl-1 plays an early role in response to signals directing

either cell survival or cell death [2] and has been shown to be up-

regulated in numerous malignant tumors. Approaches abrogating

the Mcl-1’s anti-aptototic function either by reducing its abun-

dance or by inactivating its functional BH3-binding groove show

great promise for the cancer treatment [2],[4],[6],[7]. Here we

present the high-quality NMR solution structure of polypeptide

segment 171–327 of human Mcl-1 (hMcl-1) which comprises the

three BH motifs deemed to be crucial for structure based drug

design.

Results and Discussion

A high-quality NMR structure of hMcl-1(171–327) was

obtained (Table 1) and the coordinates were deposited in the

PDB [8] (accession code 2mhs). The structure comprises seven a-

helices a1-a7 (residues 173–191, 204–235, 240–253, 262–280,

284–301, 303–308 and 311–319) arranged to form the character-

istic ‘Bcl-2 core’ structure [9] (Figure 1). The helices are locally

and globally well-defined, while the C-terminus (residues 320–327)

and the loops connecting, respectively, helices a1 and a2, helices

a3 and a4, and helices a4 and a5 are flexibly disordered. The
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central helix a4 is surrounded by the other six helices, with a1, a2,

a3 and a5 packed around one side, and a6 and a7 packed against

its N-terminus. Helices a2, a3, a4 and a7 participate in forming

the BH3 binding groove. The electrostatic protein surface

potential is positive at both ends of the BH3 binding groove

(due to the presence of Arg 233, Lys 234, Arg 248 and Arg 263)

and negative at the side of helix a3 side (due to Asp 256) (Figure 2).

This shows that the charge distribution in the BH3 binding groove

of hMcl-1(171–327) differs distinctly from other anti-apoptotic

proteins [10].

Including our hMcl-1(171–327) structure, twenty atomic

resolution structures containing different Mcl-1 constructs are

currently deposited in the PDB. In addition to the two ‘apo’

proteins hMcl-1(171–327) and mouse mMcl-1(152–308) [10]

[PDB accession code 1wsx, 89% sequence identity with the

human protein], the structures for nineteen protein-ligand

complexes were deposited (Table 2) [9],[11–18]. Clearly, the

large number of available structures reflects the outstanding

interest in Mcl-1 as a target for the development of new cancer

drugs. Superposition of the a-helices reveals, as expected, close

structural similarity for all Mcl-1 proteins structures (Figure 3): the

root mean square deviation (rmsd) values range from 1.05 to

1.54 Å relative to hMcl1-1(171–327) (Table 2). However, com-

parison of the two apo protein structures of hMcl-1(171–327) and

mMcl-1(152–308) with the complex structures shows that the

binding pocket is widened upon complex formation (Table 2): the

distances between the Ca-atoms of residues His 224 in helix a2

(His 205 in mMcl-1) and His 252 (His 233 in mMcl-1) at the C-

terminus of helix a3 are, respectively, ,16 Å and ,14 Å in hMcl-

1(171–327) and mMcl-1(152–308), and ,18–21 Å in the

complexes.

The fact that the human apo protein exhibits a somewhat wider

binding groove than the mouse homologue (Table 2) can be, at

least partially, ascribed to the side chain of Leu 246 in the human

protein which is not buried as deeply as the corresponding Phe

side chain in the mouse protein. Furthermore, when comparing

the human and the mouse protein, differences are observed for the

charge distributions in the BH3-binding groove (Figure 2): the

human protein is negatively charged on the side of helix a3, while

the corresponding surface of mouse protein is positively charged.

This difference arises from Ser 255 corresponding to Lys 236 in

the mouse protein. Remarkably, hMcl-1(171–327) is structurally

more similar to the hMcl1(171–327)-hBim BH3 complex (Figure 3)

than to apo mMcl-1(152–308) (Table 2).

Taken together, structural comparisons show that, in spite of the

89% sequence identity between human and mouse protein, the

availability of the human hMcl-1(171–327) structure can be

expected to be of critical importance for supporting future design

of cancer drugs.

Materials and Methods

NMR Sample Preparation
Preliminary studies showed that hMcl-1(171–327) (UniProtKB/

Swiss-Prot ID Q07820/MCL1_HUMAN) is not stable in solution.

However, the mutant Cys 286 R Ser is stable for several weeks at

concentrations ,0.7 mM, and both wild-type and mutant bind

the Bim-BH3 peptide with the same affinity (Kd , 60 pM) in a

Biacore assay. Hence, we solved the NMR structure of hMcl-

1(171–327) Cys 286 R Ser referred to as hMcl-1(171–327) in this

publication.

hMcl-1(171–327) was cloned, expressed, refolded and purified

following standard protocols to produce a uniformly 13C, 15N-

labeled protein sample [19]. Briefly, the gene was cloned into a

pET21d (Novagen) derivative yielding plasmid pSR482-21.1. The

resulting construct contains seven nonnative residues at the C-

Figure 1. NMR structure of hMcl-1(171–327). (A) Backbone of the
20 CYANA conformers representing the solution structure of hMcl-
1(171–327) after superposition of backbone N, Ca and C’ atoms of the a-
helices for minimal rmsd. The three BH sequence motifs are colored in
green (BH3), red (BH1) and blue (BH2), respectively. (B) Ribbon drawing
of the lowest energy conformer of hMcl-1(171–327). a-helices a1-a7 are
labeled and colored differently, and the N- and C-termini are labeled as
‘‘N’ ’’ and ‘‘C’ ’’. The figures were generated using the programs
MOLMOL [36] and PYMOL [37].
doi:10.1371/journal.pone.0096521.g001

Figure 2. Electrostatic surface potentials. (A) For human hMcl-1(171–327) in the orientation shown in Figure 1 (left) and after rotation by 180u
about the vertical axis (right). Surface colors (blue for positively charged; red for negatively charged) indicated the electrostatic potential calculated
by using PYMOL [37] and its default vacuum electrostatics protocol. (B) Same as in (A) but for mouse mMcl-1(152–308).
doi:10.1371/journal.pone.0096521.g002

NMR Structure of Mcl-1(171-327)
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terminus (LHHHHHH) to facilitate protein purification. Esche-

richia Coli BL21 (DE3) pMGK cells, a codon enhanced strain, were

transformed with pMcl1-21.1, and cultured in MJ9 minimal

medium [20] containing (15NH4)2SO4 and U-13C-glucose as sole

nitrogen and carbon sources. Double-washed inclusion bodies

containing hMcl-1(171–327) were solubilized in 8 M buffered

guanidine hydrochloride (VWR) containing 5 mM DTT, slowly

diluted into nine volumes of 20 mM Tris-HCl, 250 mM NaCl,

0.5 M urea, 10% glycerol, pH 7.4, and refolded within 72 hours

at 4uC. hMcl-1(171–327) was purified using a Talon affinity resin

(Clontech) applied to a HiTrap SP High Performance column (GE

Healthcare). The final yield of purified U-13C, 15N protein (. 98%

homogeneous by SDS-PAGE; 20.3 kDa by MALDI-TOF mass

spectrometry) was ,25 mg/L. In addition, a U-15N and 5%

biosynthetically directed fractionally 13C-labeled sample [21] was

generated for stereo-specific assignment of isopropyl methyl

groups. NMR samples were prepared at 0.7 mM protein

concentration. An isotropic overall rotational correlation time of

,10 ns was inferred from 15N spin relaxation times indicating that

hMcl-1(171–327) is monomeric in solution.

NMR spectroscopy
NMR spectra were recorded at 25uC. Five G-matrix Fourier

transform (GFT) NMR experiments [22],[23] and a simultaneous

3D 15N/13Caliphatic/13Caromatic-resolved NOESY [24],[25] spec-

trum (mixing time 60 ms; measurement time: 48 hours) were

acquired on a Varian INOVA 750 MHz spectrometer equipped

with a conventional probe. 2D constant-time [13C,1H]-HSQC

spectra (18 hours) were recorded for the 5% biosynthetically

directed fractionally 13C-labeled sample on a Varian INOVA

600 MHz spectrometer equipped with a cryogenic probe as was

described [21],[26]. Spectra were processed and analyzed using

the programs NMRPipe [27] and XEASY [28].

Sequence specific backbone (HN, Ha, N, Ca) and Hb/Cb

resonance assignments were obtained by using (4,3)D HNNCabCa

(63 hours)/(4,3)D CabCa(CO)NHN (62 hours), and (4,3)D Hab-

Cab (CO)NHN (69 hours) [23] along with the program AUTO-

ASSIGN [29]. More peripheral side chain chemical shifts were

assigned with aliphatic (4,3)D HCCH (87 hours) [23] and 3D
15N/13Caliphatic/13Caromatic-resolved [1H,1H]-NOESY [24],[25].

Table 1. Statistics of hMcl-1(171–327) NMR Structure.

Completeness of stereo-specific assignments [%]a

aCH2 of Gly 55 (6/11)

bCH2 38 (27/71)

Val and Leu methyl groups 100 (27/27)

Conformationally restricting distance constraints

Intra-residue [i = j] 1052

Sequential [|i-j| = 1] 1062

Medium range [1 , |i-j| , 5] 1197

Long range [|i-j| $ 5] 1058

Total 4369

Didedral angle constraints

Q 113

y 113

Number of constraints per residue (170–327) 29.1

Number of long range constraints per residue (170–327) 6.7

CYANA target function [Å2] 0.8860.12

Number of distance constraints violations per CYANA conformer

0.2–0.5 Å 0

. 0.5 Å 0

Number of dihedral-angle constraint violations per CYANA
conformer

. 5u 0

Average rmsd to the mean CNS coordinates [Å]

A-helices,b backbone heavy atoms N, Ca, C’ 0.4260.05

A-helices,b all heavy atoms 0.8860.07

Residues 172–312, backbone heavy atoms N, Ca, C’ 0.6560.13

all residues, all heavy atoms 1.0560.10

PROCHECK [38] G-factors raw score

(Q and y/all dihedral angles)c 0.34/0.22

PROCHECK [38] G-factor Z - score

(Q and y/all dihedral angles)c 1.65/1.30

MOLPROBITY[39] clash score (raw/Z - score)c 20.88/22.06

AutoQF R/P/F/DP scores [40] (%) 96/97/96/81

Ramachandran plot summaryc

most favorable regions 92.7

additionally allowed regions 7.3

generously allowed regions 0.0

disallowed regions 0.0

aRelated to pairs with non-degenerate chemical shift.
bRegular secondary element: a-helical residues 173–191, 204–235, 240–253,
262–280, 284–301, 303–308 and 311–319.
cOrdered residues: 172–192,194–198, 204–235, 238–255, 262–321 with dihedral
angle order parameters S(Q) and S(y) . 0.90. Z-scores were computed relative
to corresponding structure quality measures for high resolution X-ray crystal
structures [42].
doi:10.1371/journal.pone.0096521.t001

Figure 3. Superposition of selected Mcl-1 structures. (A)
Structures of hMcl-1(171–327) (green) and mMcl-1(152–308) (cyan,
PDB accession code 1wsx) after superposition of the backbone N, Ca

and C’ atoms of the a-helices for minimal rmsd. (B) Ribbon drawing
(zoomed into (A)) showing the different binding groove widths of
human (green) and mouse (cyan) protein. The distances between the
Ca-atoms of residues His 224 in helix a2 (His 205 in mMcl-1) and His 252
(His 233 in mMcl-1) at the C-terminus of helix a3 are highlighted: ,16 Å
in hMcl-1(171–327) and ,14 Å mMcl-1(152–308) (C) Superposition as in
(A) of hMcl-1(171–327) (green) and mMcl-1(152–308) (cyan, 1wsx), and
six selected Mcl-1 complex structures (see also Table 2): human Mcl-1
complexed with Bim BH3 (magenta, 2nla); chimeric rat-human rMcl-
1(171–208)hMcl-1(209–327) complexed with mouse mNoxaB BH3
(yellow, 2rod); mouse mMcl-1(152–308) complexed with mouse NoxaA
BH3 (pink, 2roc); mouse mMcl-1(152–308) complexed with mouse Puma
BH3 (grey, 2jm6); mouse mMcl-1(152–308) complexed with mouse
NoxaB BH3 (purple, 2rod); chimeric rat-human mMcl-1(171–208)hMcl-
1(209–327) complexed with human Bim BH3 (orange, 2nl9); chimeric
rat-human mMcl-1(171–208)hMcl-1(209–327) complexed with human
Bim BH3(L62A, F68A) (light green, 3d7v).The figures were prepared with
the programs MOLMOL [36] and PYMOL [37].
doi:10.1371/journal.pone.0096521.g003

NMR Structure of Mcl-1(171-327)
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Overall, assignments were obtained for 96% of backbone and
1Hb/13Cb resonances and for 93% of the side chain resonances

which are assignable with the NMR experiments listed above

(excluding the N-terminal NH3
+, Pro 15N, 13C’ preceding prolyl

residues, Lys NH3
+, Arg NH2, OH, side chain 13C’ and aromatic

13Cc). Furthermore, 100%/100% of Val and Leu isopropyl

moieties with non-degenerate proton chemical shifts were stereo-

specifically assigned (Table 1). Chemical shifts were deposited in

the BioMagResBank [30] (accession code 19654). 1H–1H upper

distance limit constraints for structure calculations were obtained

from NOESY (Table 1). In addition, backbone dihedral angle

constraints were derived from chemical shifts using the program

TALOS [31] for residues located in well-defined secondary

structure elements (Table 1). The programs CYANA [32],[33]

and AUTOSTRUCTURE [34] were used in parallel to assign

long-range NOEs [24]. The final structure calculations were

Table 2. Rmsd values for comparison of the NMR structure of hMcl-1(171–327) with the structures of mouse mMcl-1(152–308) and
Mcl-1complexes.a

Mcl-1 structures
172–193, 203–
321b a1–a7c 209–321b a2–a4d a2–a7d dCA224,252

d

mMcl-1e 1.6060.09 1.5260.06 1.6160.10 1.2160.07 1.5360.06 13.2–14.6

hMcl-1-hBimf 1.7660.10 1.4160.06 1.8760.11 1.5260.09 1.5360.09 19.9

rMcl-1-hMcl-1-mNoxaBg 1.4660.12 1.0560.08 1.5360.14 1.0060.10 1.0860.09 19.9

mMcl-1-mNoxaA h 1.5260.11 1.1660.07 1.5960.13 1.1160.11 1.1860.08 18.8–20.2

mMcl-1-mPumai 1.5760.09 1.3060.08 1.5960.11 1.2460.11 1.3060.09 18.3–19.9

mMcl-1-mNoxaBj 1.4660.09 1.1360.05 1.5360.11 1.1260.08 1.1860.06 18.3–19.6

rMcl-1-hMcl-1-hBimk 1.7560.09 1.4460.06 1.8660.11 1.5860.09 1.5660.07 19.9

rMcl-1-hMcl-1-hBim(L62A, F78A) l 1.8060.09 1.4460.06 1.9060.11 1.5360.08 1.5560.07 19.8

hMcl1-hBidBH3J 1.8460.15 1.5460.09 1.5760.20 1.3060.15 1.3060.12 20.8–21.4

hMcl1-hBIMBH3k 1.3860.16 1.0660.07 1.4360.18 0.9360.10 1.0960.09 19.4

hMcl1-BimL12Yl 1.7560.13 1.5060.08 1.8560.15 1.4860.12 1.5960.09 20.2

hMcl1-BimBH3 2dAm 1.7560.13 1.5060.08 1.8460.14 1.4660.12 1.5760.09 19.7

hMcl1-BimBH3 F4aEn 1.7560.13 1.4760.08 1.8460.15 1.4460.08 1.5560.08 19.9

hMcl1 -B7o 1.7360.14 1.4660.08 1.8360.11 1.4260.11 1.5460.08 19.6–19.9

hMcl1–hMcl1BH3p 1.4760.16 1.2160.09 1.4860.18 1.0860.15 1.2460.11 20.3

hMcl1-BaxBH3q 1.6960.12 1.4660.08 1.7960.13 1.4360.12 1.5460.09 19.4

mMcl1-NoxaBH3r 1.4360.16 1.2060.10 1.4860.17 1.1060.13 1.2360.11 19.1

hMcl1-compound53s 1.4560.12 1.2260.08 1.4860.14 1.1960.10 1.2860.08 18.7

hMcl1-compound60t 1.4560.13 1.2260.08 1.4760.12 1.1260.09 1.2560.08 17.9–19.6

hMcl1-BH3u 1.5160.16 1.2260.09 1.5760.18 1.0660.12 1.2760.10 20.3

aAverage pairwise rmsd values (Å) were calculated for backbone heavy atoms N, Ca, and C’ between the 20 conformers of Mcl-1(171–327) and corresponding
polypeptide segments in the other structures. The distances dCA (in Å) between the Ca-atoms of residues His 224 in helix a2 (His 205 in mMcl-1) and His 252 (His 233 in
mMcl-1) at the C-terminus of helix a3 are provided as a measure for the width of the BH3 binding groove.
bResidue numbers are for hMcl-1(171–327); residues 194–202 were excluded since one structure (2nl9k) does not contain the corresponding residues; residues 172–193
and 203–321 correspond to residues 153–174 and 184–302 in mMcl-1, and residues 209–321 correspond to residues 190–302 in mMcl-1.
cHelices a1–a7 in hMcl-1 comprise residues 173–191, 204–235, 240–253, 262–280, 284–301, 303–308 and 311–319; the corresponding residues in mMcl-1 are: 155–172,
185–216, 221–234, 243–261, 265–282, 284–289 and 292–300.
dHelices a2–a7 in hMcl-1 and residues 204–208 (numbers in hMcl-1) were excluded
eMouse mMcl-1(152–308), PDB accession code 1wsx (the mean NMR coordinates were used) [10].
fHuman hMcl-1 complexed with human hBim BH3, 2pqk [11].
gChimiric rat-human rMcl-1(171–208)hMcl-1(209–327) complexed with mouse mNoxaB BH3, 2nla [9].
hMouse mMcl-1 complexed with mouse mNoxaA BH3, 2rod [12].
iMouse mMcl-1 complexed with mouse mPuma BH3, 2roc [12].
jMouse mMcl-1 complexed with mouse mNoxaB BH3, 2jm6 [9].
kChimiric rat-human Mcl-1 complexed with human hBim BH3, 2nl9 [9].
lChimiric rat-human Mcl-1 complexed with human hBim (L62A, F68A), 3d7v [13].
JHuman hMcl1 complexed with human Bid BH3, 2kbw [15].
kHuman hMcl-1 complexed with human Bim BH3 mutant I2dY, 3kj0 [11].
lHuman hMcl-1 complexed with human BimL12Y, 3io9 [16].
mHuman hMcl1 complexed with human Bim BH3 mutant I2dA, 3kj1 [11].
nHuman hMcl1 complexed with human Bim BH3 mutant F4aE, 3kj2 [11].
oHuman hMcl-1 complexed with Mcl1 specific selected peptide B7, 3kz0 [41].
pHuman hMcl-1 complexed with human Mcl1 BH3, 3mk8 [17].
qHuman hMcl1 complexed with human Bax BH3, 3pk1.
rMouse mMcl-1 complexed with mouse Noxa BH3, 4g35 [18].
sHuman hMcl-1 complexed with 6-chloro-3-[3-(4-chloro-3,5-dimethylphenoxy)propyl]-1H-indole-2-carboxylic acid, 4hw2 [14].
tHuman hMcl-1 complexed with 6-chloro-3-[3-(4-chloro-3,5-dimethylphenoxy)propyl]-1H-indole-2-carboxylic acid, 4hw3 [14].
uHuman hMcl-1 complexed with human Mcl1 BH3, 4hw4 [14].
doi:10.1371/journal.pone.0096521.t002
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performed using CYANA followed by explicit water bath

refinement using the program CNS [35].
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