
Shared Air: A Renewed Focus on Ventilation for the
Prevention of Tuberculosis Transmission
Eugene T. Richardson1,2,3*, Carl D. Morrow3, Darryl B. Kalil3, Linda-Gail Bekker3, Robin Wood3

1 Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America, 2 Department of

Anthropology, Stanford University, Stanford, California, United States of America, 3 Desmond Tutu HIV Centre, Institute of Infectious Diseases and Molecular Medicine,

University of Cape Town, Cape Town, Republic of South Africa

Abstract

Background: Despite an improvement in the overall TB cure rate from 40–74% between 1995 and 2011, TB incidence in
South Africa continues to increase. The epidemic is notably disquieting in schools because the vulnerable population is
compelled to be present. Older learners (age 15–19) are at particular risk given a smear-positive rate of 427 per 100,000 per
year and the significant amount of time they spend indoors. High schools are therefore important locations for potential TB
infection and thus prevention efforts.

Methods and Findings: Using portable carbon dioxide monitors, we measured CO2 in classrooms under non-steady state
conditions. The threshold for tuberculosis transmission was estimated using a carbon dioxide-based risk equation. We
determined a critical rebreathed fraction of carbon dioxide (�ffc) of 1?6%, which correlates with an indoor CO2 concentration
of 1000 ppm. These values correspond with a ventilation rate of 8?6 l/s per person or 12 air exchanges per hour (ACH) for
standard classrooms of 180 m3.

Conclusions: Given the high smear positive rate of high-school adolescents in South Africa, the proposal to achieve CO2

levels of 1000ppm through natural ventilation (in the amount 12 ACH) will not only help achieve WHO guidelines for
providing children with healthy indoor environments, it will also provide a low-cost intervention for helping control the TB
epidemic in areas of high prevalence.
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Introduction

Once the infectious origin of tuberculosis was discovered by

Koch in 1882, schemes for improving indoor ventilation spread

across the industrialized world [1]; such plans were associated with

dramatic declines in TB incidence [2]. South Africa, however,

currently has tuberculosis notification rates similar to those

reported in 19th century industrializing nations [3]. Despite

successful TB case identification and treatment programs, the

country had an incidence greater than 1,000 per 100,000 people

in 2012 [4]. This high incidence is not fully explained by HIV, as it

was increasing prior to the start of the South African HIV

epidemic in 1990 (see Figure 1) [5].

Many South African communities have yet to benefit from the

campaign for healthy indoor environments found in high-income

countries. And while the post-apartheid government in South

Africa has done an excellent job formalizing 206 of the 2,700

informal settlements countrywide [6], a substantial number of

South Africans still live in the equivalent of the 19th century

industrial tenement housing described by Marx and Engels [7].

Thus, a plausible explanation for the high prevalence is the

continued existence of crowded, poorly ventilated indoor envi-

ronments.

In 2012, young people aged 15–24 represented 17?2% of all

smear-positive cases in South Africa. Despite an improvement in

the overall TB cure rate from 40–74% between 1995 and 2011,

TB incidence continues to increase [4]. The epidemic is notably

disquieting in schools because—not unlike prisons [8]—the

vulnerable population is compelled to be present. Older learners

(age 15–19) are at particular risk given a smear-positive rate of 427

per 100,000 [4,9] of their peers and the significant amount of time

they spend indoors at school [10]. High schools are therefore

important locations for potential TB infection and thus appropri-

ate targets for prevention efforts.

The force of infection for tuberculosis in Cape Town has been

calculated to be at least 6% per annum in people aged 15–19 [11].

The number of individuals infected by each case (effective contact

number) is determined by the ratio of the force of infection (6%)

and the prevalence of infectious TB cases (427/100,000). For high

school students in Cape Town, the calculated effective contact
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number per case is 14. Effective TB control is achieved when the

effective contact number is lower than the number of individuals

who can be expected to develop infectious pulmonary TB over a

lifetime. Thus, the effective contact number per case must be

reduced to ,14 to decrease the current TB burden.

Re-circulated indoor air has long been recognized as a

mechanism for infectious disease transmission [12]. By measuring

carbon dioxide levels in classrooms, one can estimate probabilities

of TB transmission using the equation developed by Rudnick and

Milton (see Methods):

Exhaled breath is the vehicle for release of airborne infectious

particles. Exhaled breath contains almost 40,000 ppm of CO2

compared with approximately 350 ppm [currently 400 ppm due to

anthropogenic global change] in outdoor air [13].

Their calculation incorporates CO2 as a surrogate for exhaled

breath, thereby addressing two key limitations of the Wells-Riley

equation [14] on which it was based. First, the Rudnick-Milton

adaptation does not require the assumption of steady-state

conditions. Second, it assumes the loss of infectious particles to

settling, filtration, and loss of viability is negligible compared to

that removed by ventilation [13].

Recent studies utilize the Wells-Riley equation to determine

ventilation recommendations for TB prevention but are based on

the assumption of steady state conditions [15,16]. We believe this

is the first publication to date to use the Rudnick-Milton equation

to determine ventilation recommendations for the transmission of

tuberculosis under non-steady state conditions in schools.

Methods

Ethics Statement
Ethics approval for this study was obtained from the Human

Research Ethics Committee at the Faculty of Health Sciences,

University of Cape Town. For minors enrolled in the study, we

obtained written informed consent from a parent or guardian.

This consent procedure was approved by the Human Research

Ethics Committee.

Equations Used for Estimation of Transmission Risk
The threshold for tuberculosis transmission was estimated using

the carbon dioxide-based risk equation developed by Rudnick and

Milton (refer to Figure 2 for descriptions of parameters) [13].

Figure 1. TB Notification Rates for Cape Town, 1970–2011 [5].
doi:10.1371/journal.pone.0096334.g001
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The conversion between indoor CO2 concentration and ventila-

tion rate is expressed by [17]

Q~
G

Cin{Cout

ð2Þ

The critical rebreathed fraction (�ffc) represents the fraction of

ambient CO2 under which a reduction in TB transmission would

be expected to occur. Substituting (�ffc) for the indoor CO2

concentration yields

Q~
G

�ffc{Cout

ð3Þ

The indoor CO2 generation rate is expressed by

G~ �VVCex ð4Þ

The ventilation rate can be converted to air changes per hour

(ACH) by

ACH~
3600Qn

vol
ð5Þ

Data Collection Procedures
Using portable carbon dioxide detection devices (EasyView 80

CO2 analyzer, Extech Instruments, Waltham, MA) and custom

monitors (based on COZIR Ambient sensors, Gas Sensing

Solutions Ltd., Glasgow, UK), we monitored CO2 in non-

mechanically ventilated classrooms in a high TB burden

community under varying natural conditions. The accuracy of CO2

measurements taken by the sensor is reported by the factory to be

650 ppm or 3% of each reading (www.cozir.com). To verify that

devices were not affected by the wearer’s respiration, we

conducted an experiment measuring CO2 levels in an unventilated

space with one individual using CO2 devices, placed on areas of

the body where our study participants wore their devices. From

these trials, we were not able to find differences in data from

monitors hung from a neck lanyard or monitors worn in waist

pockets—the two locations where subjects were instructed to keep

the devices on their person.

Our sample consisted of 64 students carrying individual

monitors over 91 school days throughout an entire school year

(for a total of 509 hours of school time). The monitors provide a

CO2 measurement in parts per million (ppm) every 60 seconds as

well as GPS locations. The average number of students per class (n)

was 31. We estimated q using the value obtained in previous

studies [18–22] combined with the logic that—since the molecular

epidemiology of TB in Cape Town militates against the presence

of super-spreaders [23]—q would not be at the high levels found in

some hospital outbreaks. We also assumed that infectious cases

would overlap with the same individuals for up to 175 hours of

class time (i.e., 35 school days [24] at 5 indoor hours per day)

before diagnosis. We then solved for the critical rebreathed

fraction (�ffc).

Figure 2. Parameter definitions and values used in computing CO2 threshold and ventilation rates [18–22,24,38–40]. *ppm (parts per
million) = mg/l
doi:10.1371/journal.pone.0096334.g002
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Solving for the Critical Rebreathed Fraction
We calculated that the effective contact number per case must

be reduced to ,14 to reduce the current TB burden (see

introduction). Since 50% of transmission for 15–19 year-olds

occurs in schools [25], the effective contact number for schools is

14 � 0:5~7

(i.e., the portion of contacts in a TB case’s total social-network that

he/she infects in school). Setting D = 7 for 30 susceptibles

(Equation 1) and solving for the critical rebreathed fraction (�ffc)

yields

�ffc~
0:266n

qt
ð6Þ

Results

By substituting the values in Figure 2, we obtain a critical

rebreathed fraction (�ffc) of 1?6%, which correlates with an indoor

CO2 concentration of 1000 ppm. Entering this value into equation

3 yields a ventilation rate of 8?6 l/s per person. Note that classes

are more likely to approach steady-state conditions when highly

ventilated.

Using equation 5, the value 8?6 l/s per person (with an average

class size of 31 students and class volume of 180,000 liters or

180 m3) [26] converts to between 5 and 6 air changes per hour

(ACH), which is around half the level of ventilation recommended

for health care settings [27,28].

To explore the ramifications of our recommendations in the

local context, we conducted CO2 analyses in classrooms in an area

of high TB prevalence in Cape Town, South Africa. Our findings

demonstrate that students spend 60?2% of their time above our

recommended threshold (Figure 3).

A sample student day with CO2 measurements and GPS

locations is presented in Figure 4. Visits to different classrooms and

outside locations throughout the day are clearly identifiable. In

addition, the CO2 environment encountered is seen to be highly

variable. Classrooms B, H and G achieve steady state conditions

quite quickly. In spite of very high levels of CO2, classrooms E and

F do not achieve steady-state conditions (these are the only classes

visited without windows on more than one side of the room).

Discussion

In this article, we have presented a statistical buttressing of

recommendations made over a century ago. It seems that—in an

era of effective treatment—current TB prevention programs have

become complacent in promoting the prevention benefits of

ventilation. There is growing consensus that biomedical solutions

will be insufficient to tackle the TB epidemic in low and middle

income countries [29]. Thus, a renewed focus on environmental

interventions is called for. Given the high smear positive rate of

high-school adolescents in Cape Town informal settlements, the

proposal to achieve CO2 levels of 1000ppm through natural

ventilation (in the amount 12 ACH for a standard classroom of

180 m3) will not only help achieve WHO guidelines for providing

children with healthy indoor environments, it will also help curb

the TB epidemic the ‘old-fashioned way’ (i.e., through improve-

ments in air hygiene).

The cutoff of 1000 ppm falls in line with regulations in other

industrialized nations (Figure 5). It should be recognized that the

benefits of increased ventilation are not limited to prevention of

TB transmission: decreased respiratory illness, fewer school

absences, and improved cognitive function have been demon-

strated in the literature [30–32]. South Africa is not alone in failing

to adequately ventilate schools (although the consequences may be

greater due to the high TB incidence). The majority of European

Figure 3. The percent of time spent at various levels of total CO2 (in ppm). CO2 levels are shown in ranges of 500ppm. The dotted red line
represents calculated threshold for reducing TB transmission. Sample: 64 students over 91 school days (509 class hours).
doi:10.1371/journal.pone.0096334.g003
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Figure 4. Sample student day with measured CO2 concentrations and GPS locations (A–H).
doi:10.1371/journal.pone.0096334.g004

Figure 5. Recommended ventilation rates in classrooms by country [41–45]. * Denotes calculated value.
doi:10.1371/journal.pone.0096334.g005
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classrooms in a meta-analysis by Santamouris et al., were found to

be inadequately ventilated (see Figure 6) [33]. Furthermore, the

occurrence of TB outbreaks in schools in middle- to high-income

countries suggests a renewed focus on ventilation recommenda-

tions is apposite across a broad range of settings [34–36].

Given historic precedent, pharmacologic intervention on its

own is unlikely to curtail the TB epidemic. This work would

suggest that the addition of a key structural intervention such as

improved school ventilation might enhance our efforts to effect TB

control. Indeed, given the association of formal recommendations

by Commissions on Ventilation with decreased TB notifications in

industrialized nations [37], it may be prudent to revive such

commissions in areas of high TB prevalence.

Limitations
1. We did not measure CO2 concentrations in a given classroom

with multiple devices simultaneously and thus cannot provide an

error analysis for our measurements; however, the devices were

factory calibrated, and we periodically compared the performance

of monitors (in our offices) and found them to be consistently

measuring within 10% of each other.

2. We did not record temperature so do not have temperature

associations with the varying CO2 levels found in classrooms;

however, we did conduct the study over a full year and thus

control for the effect of a whole year’s weather on classroom

ventilation (i.e., number of windows open).

3. As shown in Figure 2, there is significant variation in the

parameters used to determine the TB risk threshold; however, we

feel that the use of empirically derived numbers for a high-

incidence community coupled with conservative choices for the

theoretical parameters allows us to calculate a threshold for

tuberculosis transmission that is evidence-based as well as

practically meaningful.
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