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Abstract

Background: The cerebellum is an important site for cortical demyelination in multiple sclerosis, but the functional
significance of this finding is not fully understood.

Objective: To evaluate the clinical and cognitive impact of cerebellar grey-matter pathology in multiple sclerosis patients.

Methods: Forty-two relapsing-remitting multiple sclerosis patients and 30 controls underwent clinical assessment including
the Multiple Sclerosis Functional Composite, Expanded Disability Status Scale (EDSS) and cerebellar functional system (FS)
score, and cognitive evaluation, including the Paced Auditory Serial Addition Test (PASAT) and the Symbol-Digit Modalities
Test (SDMT). Magnetic resonance imaging was performed with a 3T scanner and variables of interest were: brain white-
matter and cortical lesion load, cerebellar intracortical and leukocortical lesion volumes, and brain cortical and cerebellar
white-matter and grey-matter volumes.

Results: After multivariate analysis high burden of cerebellar intracortical lesions was the only predictor for the EDSS (p,
0.001), cerebellar FS (p = 0.002), arm function (p = 0.049), and for leg function (p,0.001). Patients with high burden of
cerebellar leukocortical lesions had lower PASAT scores (p = 0.013), while patients with greater volumes of cerebellar
intracortical lesions had worse SDMT scores (p = 0.015).

Conclusions: Cerebellar grey-matter pathology is widely present and contributes to clinical dysfunction in relapsing-
remitting multiple sclerosis patients, independently of brain grey-matter damage.
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Introduction

In recent years, several neuroimaging studies have shown diffuse

grey matter (GM) damage in multiple sclerosis (MS) patients,

involving both cortical and subcortical structures, such as the

spinal cord and cerebellum. Indeed, modern neuropathological

research confirmed these findings and proposed the cerebellum as

an important location for cortical demyelination in MS, particu-

larly in those with primary or secondary progressive disease.[1–3]

Similar types of cortical lesions, as described in the forebrain, are

also seen in the cerebellum, such as intracortical and leukocortical.

These lesions are also characterized by complete demyelination

with relative preservation of neurons and axons.[1,3] However,

the functional significance of these lesions is not completely clear.

Moreover, besides its key role in motor function, increasing

evidence supports a significant function of the cerebellum in

cognition, dependent upon the existence of different anatomical

connections between high-level cortical regions, which may also be

involved in MS lesions.[3–5] Although there are some studies

reporting association between MRI atrophy measures and clinical

performance, very few evaluated the clinical and cognitive impact

of these cortical lesions.[6–8] Therefore, in this study, we

evaluated the influence of cerebellar GM pathology, as measured

by MRI, in clinical and cognitive functions in a group of patients

with relapsing remitting MS, addressing relative contributions of

cerebellar cortical and white-matter (WM) atrophy, and also

cerebellar leukocortical and intracortical lesions.

Methods

Subjects
We prospectively and consecutively enrolled 42 patients with a

relapsing-remitting MS diagnosis according to the revised 2005

McDonald criteria,[9] and 30 age- and gender-matched healthy

control subjects for comparison as a control group. All individuals

were evaluated at the MS Center of UNICAMP University

Hospital, Campinas, Brazil. All patients were clinically stable (no

relapse in the previous three months), with age ranging from 20 to

50 years-old, and on treatment with disease-modifying drugs

(Table 1). Exclusion criteria were: progressive course, fulfillment of

diagnostic criteria for neuromyelitis optica, EDSS .5.0, any pre-

existing condition known to be associated with brain atrophy or

any relapse or steroid therapy within three months preceding the

clinical and MRI evaluation.
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Ethics Statement
The study was approved by the ethics committee of the faculty

of medical sciences of University of Campinas and all individuals

provided written informed consent.

Clinical assessment/Outcome measures
Neurological clinical examination included: assessment of leg

function by means of the timed twenty-five foot walk (T25FW) and

arm function with the nine-hole peg test (9HPT) for all

participants. We also measured overall disability with the

Expanded Disability Status Scale (EDSS) for all patients and the

cerebellar Functional System (FS) score.[10] Cognitive evaluation

included the Paced Auditory Serial Addition Test (PASAT) and

Symbol Digit Modalities Test (SDMT) for all individuals. Each of

these tests was considered different outcome measures.

Magnetic resonance imaging
MRI scans for all subjects were acquired on a 3T scanner

(Phillips Achieva-Intera). The study protocol consisted of: fluid

attenuated inversion recovery (FLAIR) – acquired in the axial

plane with 3 mm slice thickness (TR 11000 ms, TI 2800 ms, TE

125 ms, matrix 3286210, gap 0, FOV 23618 cm, flip angle 90u;
in-plane resolution 0.7 mm60.85 mm); double inversion recovery

(DIR) - acquired in the axial plane with 3 mm slice thickness (TR

11000 ms, TI 3400 ms, TE 50 ms, delay 325 ms, matrix

3286210, gap 3, FOV 23618 cm, flip angle 90u; in-plane

resolution 0.7 mm60.85 mm) and a volumetric (three-dimension-

al) T1 gradient echo images - acquired in the sagittal plane with

1 mm slice thickness (TR 7.0 ms, TE 3.2 ms, matrix 240 6 240,

FOV 24 6 24 cm, flip angle 8u; in-plane resolution

1.0 mm61.0 mm).

Image Analysis
Brain – WM. Brain WM lesion load (WML) was quantified

on FLAIR sequences, blinded to clinical data, using the freely

available Medical Image Processing, Analysis, and Visualization

(MIPAV) software package developed at the Center for Informa-

tion Technology, National Institutes of Health.[11] The intrarater

reliability between brain WML quantification was assessed using

intra-class correlation (with three sets of data points; ICC = 0.972);

Infratentorial lesions were not included in brain WML.
Brain – GM. Brain cortical lesions were identified and scored

on DIR sequences, blinded to clinical data, in accordance to

consensus recommendation, [12] and accurately controlled for

artifacts. Lesion volume was quantified using the MIPAV software.

The intrarater reliability between lesion quantification was

assessed using intra-class correlation (with three sets of data

points; ICC = 0.896). Brain cortical volume evaluation was

performed on volumetric T1 gradient echo images by means of

the FreeSurfer v5.1 image analysis suite, available online (http://

surfer.nmr.mgh.harvard.edu/) (left + right hemispheres volumes),

as described elsewhere.[13–15] All images were systematically

controlled for errors and artifacts.
Cerebellum – WM. Presence of cerebellar WM lesions was

analyzed on both FLAIR and DIR sequences. Cerebellar WM

volume evaluation was performed on volumetric T1 gradient echo

images by means of the FreeSurfer v5.1 image analysis suite,

available online (http://surfer.nmr.mgh.harvard.edu/) (left + right

hemispheres volumes), as described elsewhere.[13–15] All images

were systematically controlled for errors and artifacts.
Cerebellum – GM. Cerebellar GM lesions were identified

and scored on DIR sequences, blinded to clinical data, in

accordance to consensus recommendation,[12] and accurately

controlled for artifacts. Lesion volume was quantified using the

MIPAV software. Cerebellar GM lesions were further classified as

being intracortical or leukocortical (Figure 1):

Intracortical - when lesion borders remained completely within

the cortex.

Leukocortical - when lesions involved the WM/GM junction.

The intrarater reliability between lesion quantification was

assessed using intra-class correlation (with three sets of data points;

ICC = 0.949 for both);

Cerebellar GM volume evaluation was performed on volumet-

ric T1 gradient echo images by means of the FreeSurfer v5.1

image analysis suite, available online (http://surfer.nmr.mgh.

harvard.edu/) (left + right hemispheres volumes), as described

elsewhere.[13–15] All images were systematically controlled for

errors and artifacts.

Statistical analysis
Statistical analysis was performed using the Statistical Package

for the Social Sciences (SPSS, Version 20.0., SPSS Inc, Chicago,

Illinois).

Comparisons on brain and cerebellar volumes were analyzed by

the General Linear Model (GLM) univariate analyses of variance

procedure, with gender and total intracranial volume as covari-

ates. Group comparisons on clinical and cognitive tests were also

performed with GLM with number of years of education as

covariate.

Spearman correlation analyses were performed to test the

associations between clinical and MRI factors and clinical/

cognitive outcomes. We also performed partial correlations of

cerebellar cortical lesions, EDSS, and cerebellar FS score

controlling for brain cortical lesions and brain cortical volume

(as covariates).

A stepwise multivariate linear regression analysis was performed

initially to assess a possible relative contribution of demographic

variables (age, disease duration, years of education and gender) in

Figure 1. Cerebellar intracortical and leukocortical lesions. Axial
double inversion recovery images from relapsing-remitting MS patients
showing intracortical (long arrows, A and B) and leukocortical lesions
(short arrows, C and D).
doi:10.1371/journal.pone.0096193.g001
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clinical (EDSS, cerebellar FS, 9HPT and T25FW) and cognitive

outcomes (PASAT and SDMT) and then, the same procedure was

used to assess the relative contribution of MRI factors (cerebellar

intracortical and leukocortical lesions, brain WML, brain cortical

lesions, brain cortical volume, and cerebellar WM and GM

volumes) in the same clinical and cognitive outcomes. Given a non

normal distribution of cerebellar and brain lesion volumes, these

variables were dichotomized to low/high burden of lesions based

on the mean value (cerebellar intracortical and leukocortical

lesions $ 0.05 cm3; brain cortical lesions $ 1 cm3; and brain

WML $ 3 cm3).

We also assessed the relative contribution of disease duration,

age, and MRI lesions (brain and cerebellum) to cerebellar GM and

WM volume. Backward stepwise analyses were conducted (Wald

statistic) with a p value for entry of 0.05 and a p value for removal

of 0.1. The level of significance was p,0.05.

Results

Clinical and MRI characteristics
Clinical and MRI features are shown in Table 1. Cerebellar

intracortical and/or leukocortical lesions were observed in 53.8%

of the patients (leukocortical in 43.6% and intracortical in 33.3%).

Cerebellar WM lesions were found in 62.5% of the patients

(Overall, 70.7% of the patients had cerebellar WM and/or GM

lesions).

Patients and controls were similar regarding age and gender

distribution, but had different years of education. Therefore, group

comparisons on clinical and cognitive tests were also performed

with number of years of education as covariate. There was no

difference regarding gender or presence of oligoclonal bands on

performances of clinical/cognitive tests or volumes of brain/

cerebellar lesions, except for the T25FW test, where women took

longer than men (4.99 vs. 4.20 seconds, p = 0.011).

Outcome measures
Clinical. Patients with high load of cerebellar leukocortical

lesions had similar scores on clinical outcomes when compared to

those with lower burden of these lesions. Conversely, patients with

high burden of cerebellar intracortical lesions performed the

T25FW and 9HPT tests at a slower pace (5.49 vs. 4.37 seconds,

p,0.001; and 25.22 vs. 21.94 seconds, p = 0.025, respectively) and

had higher scores on the cerebellar FS and total EDSS (1.25 vs.

0.33, p = 0.007; and 2.92 vs. 1.74, p = 0.001, respectively)

(Figure 2).

On correlation analysis, cerebellar leukocortical lesions were

significantly associated with cerebellar FS score while cerebellar

intracortical lesions were related to all clinical outcomes (Table 2).

We performed partial correlations of cerebellar cortical lesions

and EDSS controlling for brain cortical lesions and brain cortical

volume (as covariates), and the correlation was still significant

(R = 0.491, p = 0.002). This was also true for the FS cerebellar

score (R = 0.463, p = 0.004).

Table 1. Clinical and MRI data.

RRMS patients Controls Between-Subjects Comparisons *

Sex: no. (%) Female/Male 32 (76.2)/10 (23.8) 23 (76.7)/7 (23.3) 0.596

Age: years 30.5266.60 29.5267.52 0.352

Education: years 13.6961.83 15.1860.77 0.001

Disease duration: years 6.4064.94 NA NA

Treatment: no. patients (%) IM IFN b-1a/SC IFN
b-1b/SC IFN b-1a/SC GA

14 (18.4)/15 (19.7)/7 (9.2)/6 (7.9) NA NA

EDSS score 2.5 (0 – 4) NA NA

FS cerebellar 0 (0 – 3) NA NA

9HPT: seconds 22.9264.43 17.8361.49 F = 17.24; p,0.001

T25FW: seconds 4.8060.85 4.0560.67 F = 7.94; p = 0.001

PASAT: raw score 33.02613.01 43.6669.44 F = 13.20; p,0.001

SDMT: raw score 50.38 6 13.31 65.14611.37 F = 16.75; p,0.001

Cerebellar GM volume: cm3 92.77612.92 94.376611.43 F = 15.63; p,0.001

Cerebellar WM volume: cm3 27.37 6 4.71 29.0363.52 F = 3.45; p = 0.021

Brain cortical volume: cm3 432.19641.52 440.83635.14 F = 9.27; p,0.001

Cerebellar intracortical lesions: cm3 0.0560.08 NA NA

Cerebellar intracortical lesions: no. (range) 0.5460.91 (0–4) NA NA

Cerebellar leukocortical lesions: cm3 0.0560.10 NA NA

Cerebellar leukocortical lesions: no. (range) 0.6961.00 (0–4) NA NA

Brain WM lesions volume: cm3 6.1969.19 NA NA

Brain cortical lesions: cm3 0.8560.87 NA NA

Expressed are mean values and standard deviation, except for EDSS and FS cerebellar scores, where a median and range are provided.
9HPT: nine-hole peg test; EDSS: Expanded Disability Status Scale; FS: functional system; GA: glatiramer acetate; GM: grey-matter; IFN: interferon; IM: intramuscular; NA:
not applicable; PASAT: Paced Auditory Serial Addition Test; RRMS: relapsing-remitting multiple sclerosis; SC: subcutaneous; SDMT: Symbol Digit Modalities Test; T25FW:
timed twenty-five foot walk test; WM: white-matter.
* Group comparisons were performed with Mann-Whitney U tests for age and education; Fisher’s exact test for gender distribution; and the General Linear Model with
gender and total intracranial volume as covariates for volumes comparisons and with education as covariate for clinical tests performances.
doi:10.1371/journal.pone.0096193.t001
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After multivariate analysis, age, disease duration, years of

education, and gender were not related to clinical outcomes,

except for the T25FW test, where gender, disease duration and

age were independent predictors (b= 0.75, 95% CI 0.27 to 1.23,

p = 0.003; b= 20.05, 95% CI 20.095 to 20.007, p = 0.025; and

b= 0.076, 95% CI 0.043 to 0.108, p,0.001, respectively).

High burden of cerebellar intracortical lesions was the only

independent predictor for the EDSS (b= 1.109, 95% CI 0.575 to

1.642, p,0.001), cerebellar FS score (b= 0.904, 95% CI 0.349 to

1.459, p = 0.002), and to the 9HPT time (b= 3.107, 95% CI 0.011

to 6.203, p = 0.049).

For the T25FW time, high burden of cerebellar intracortical

lesions and brain cortical volume remained as independent

predictors but only the first was statistically significant

(b= 1.062, 95% CI 0.607 to 1.518, p,0.001, and b= 20.005,

95% CI 20.009 to 0.000, p = 0.071). When those clinical factors

found to be independent predictors of this test (age, disease

duration and gender) were included in the model, cerebellar

intracortical lesions still remained as an independent predictor

(b= 0.965, 95% CI 0.59 to 1.34, p,0.001).

Cognitive. Patients with high burden of cerebellar leukocor-

tical lesions had lower scores on the PASAT test (25.25 vs. 36.67,

p = 0.013), while patients with greater volumes of cerebellar

intracortical lesions had lower scores on the SDMT (43.25 vs.

53.18, p = 0.015) (Figure 2).

On correlation analyses, cerebellar leukocortical lesions were

significantly associated with the PASAT score but cerebellar

intracortical lesions were not related to cognitive outcomes

(Table 2).

In multivariate analysis, number of years of education was the

only clinical factor related to SDMT (b= 3.102, 95% CI 0.996 to

5.209, p = 0.005) and to PASAT score (b= 2.930, 95% CI 0.857 to

5.002, p = 0.007).

For the PASAT score, high burden of cerebellar leukocortical

lesions (b= 26.066, 95% CI 212.296 to 0.165, p = 0.056), WML

(b= 214.610, 95% CI 220.909 to 28.310, p,0.001), and brain

cortical volume (b= 0.083, 95% CI 0.015 to 0.152, p = 0.018)

remained in the model.

Both high burden of cerebellar intracortical lesions and brain

WML showed a trend to predict SDMT score (b= 27.869, 95%

CI 216.843 to 1.106, p = 0.084, and b= 27.837, 95% CI 2

16.371 to 0.698, p = 0.071, respectively).

Cerebellar atrophy
There was a tendency to cerebellar intracortical lesions predict

cerebellar GM volume (b= 28.55, 95% CI 217.74 to 0.65,

p = 0.068). High burden of cerebellar leukocortical lesions was the

only independent predictor to cerebellar WM volume (b= 23.65,

95% CI 26.93 to 20.37, p = 0.030).

Discussion

This in vivo MRI study confirms a major role of cerebellar GM

pathology in clinical disability of MS patients, and strengthens

findings from previous research. [8] Cerebellar GM involvement

in this disease has been clearly demonstrated in a number of

neuropathological studies, concerning both cortical lesions and

atrophy.[3] Alike the forebrain, similar types of cortical lesions are

seen in the cerebellum, mainly extending over several folia.[1]

However, pathological studies so far yielded little information

about the clinical significance of cerebellar GM pathology and one

study found no association between cerebellar cortical demyelin-

ation and clinical factors (i.e. age, gender and disease duration).[1–

3]

MRI in-vivo visualization of cortical pathology provides a better

opportunity to assess such clinical significance but lesions in the

GM are mostly undetectable with traditional MRI sequences.[3]

GM atrophy measurements can be done with 3D MRI

acquisitions using different types of software. Therefore, this

approach has been used by several studies which documented a

progressive loss of brain parenchyma, starting at the earliest stages

and continuing throughout the long course of the disease.[3] In

particular for the cerebellum, using voxel-based morphometry,

significant correlations were found between cerebellar volume

estimates and clinical metrics as measured by 9HPT and EDSS

cerebellar functional score.[6] On the other hand, Anderson et al,

on a comprehensive evaluation of cerebellar damage using

diffusion tractography and volumetric analysis, found that

cerebellar WM volume was associated with 9HPT score in

patients with primary progressive MS, independently of cerebellar

GM volume.[16] We found significant correlations between

cerebellar WM/GM volumes and clinical dysfunction (cerebellar

FS) and information processing speed performance (PASAT) in

patients with relapsing-remitting MS, supporting findings from

recent research stressing the cerebellar role in cognitive functions

and notably sequencing abilities.[4,5] However, these associations

with cerebellar volumes were not present after multivariate

analysis, where cerebellar cortical lesions were more predictive.

Posterior fossa lesions are typical in MS but their visualization

presents challenges for neuroimaging. Conventional MRI tech-

niques can leave some infratentorial lesions undetected, and

especially cerebellar GM lesions. Recently, a more sensitive MRI

acquisition sequence, known as DIR, has become available and

has been reported to identify significantly more inflammatory

lesions in the infratentorial brain even compared with the T2

turbo spin-echo sequence. [3,17] Although some studies have

found significant associations between brain cortical lesions and

cognitive dysfunction using this sequence, [3,18] very few studies

evaluated the clinical impact of cerebellar GM lesions. Calabrese et

al evaluated the relative contribution of cerebellar cortical lesions

in multivariate analysis and found them to be independent

predictors of cerebellar disability. They also found cerebellar GM

volume to be independent predictor of both cerebellar disability

and EDSS score.[8] In accordance, we found that cerebellar

intracortical lesions are predictors for both arm and leg

dysfunction, and also for cerebellar and overall disability as

measured by the EDSS, independently of brain cortical lesions or

volume. As an example, high burden of cerebellar intracortical

lesions increased T25FW time in one second, 9HPT time in three

seconds and the EDSS score in one step.

We also aimed to discriminate the role of cerebellar intracortical

and leukocortical lesions. Intracortical lesions were strongly related

to clinical dysfunction and had a milder association with SDMT

test performance, while leukocortical lesions were associated with

the PASAT test score and cerebellar WM atrophy. Intracortical

lesions represent around 50% of GM plaques in the cerebellum.[2]

Some demyelinated plaques in the cerebellar cortex are also found

in continuity with demyelination in the subcortical WM and

sometimes associated with large WM plaques,[1] what may

explain the contribution of cerebellar leukocortical lesions to

Figure 2. Burden of cerebellar intracortical lesions and clinical/cognitive outcomes. Box plots comparing patients with high and low
burden (. 0.05 cm3 or,0.05 cm3) of cerebellar intracortical lesions on clinical (A – D) and cognitive outcomes (E, F).
doi:10.1371/journal.pone.0096193.g002
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cerebellar WM atrophy found in our study. Moreover, involve-

ment of both GM and WM may disrupt important cerebello-

cortical loops known to be involved in attention and other

cognitive functions.[4,5] Interestingly, Sastre-Garriga et al has

recently shown with functional MRI an important cerebellar

activation when PASAT test was used as paradigm.[19]

Although DIR MRI may improve detection of cortical lesions

up to five times when compared with a conventional T2-weighted

sequence, the vast majority are still missed by this technique,

especially subpial lesions which may also have important

contribution to clinical and cognitive dysfunction in MS

patients.[3] Another disadvantage is its low signal-to-noise ratio,

resulting in low agreement between observers. Therefore, some

lesions considered as intracortical may in fact be leukocortical and

vice-versa. Moreover, we have not included cerebellar WM lesions

volumetry in our analysis and, therefore, we cannot discriminate if

cerebellar leukocortical lesions influence is predominantly due to

its GM or WM involvement. Future studies associating greater

MRI field strengths and novel/improved sequences, such as 3D-

DIR or phase sensitive inversion recovery may overcome this

gap.[3,20,21]

In conclusion, cerebellar GM is widely affected in relapsing-

remitting MS patients. Cerebellar GM pathology strongly

contributes to clinical dysfunction in relapsing-remitting MS

patients and also to information processing speed deficits in a

lesser extent, independently of brain cortical lesions or volume.

This damage can be monitored in-vivo with MRI. Further work is

required to better characterize GM plaques and to assess its

contribution to long term disability.
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