
Can We Identify Non-Stationary Dynamics of Trial-to-
Trial Variability?
Emili Balaguer-Ballester1,2*, Alejandro Tabas-Diaz1, Marcin Budka1

1 Faculty of Science and Technology, Bournemouth University, United Kingdom, 2 Bernstein Center for Computational Neuroscience, Medical Faculty Mannheim and

Heidelberg University, Mannheim, Germany

Abstract

Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data
analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same
experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions
in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis
approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a
fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper,
we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous
dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories
in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions
leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical
system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the
coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern
variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are
benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As
an illustrative example, we focused on the analysis of the rat’s frontal cortex ensemble dynamics during a decision-making
task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most
likely underlies the observed trial-to-trial variability. Thus, the empirical tool developed within this study potentially allows
us to infer the source of variability in in-vivo neural recordings.
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Introduction

Non-stationary time series are very common in physical and

biological systems. Thus, approaches to the analysis of time series

in dynamic scenarios have been developed in a wide range of areas

such as geophysics (e.g. [1,2] and references therein), econometrics

[3] or human neurophysiology [4] to name just a few. For

instance, electroencephalographic responses (EEG) often appear

non-stationary; therefore it is crucial to extract invariant,

stationary components of the signal for performing reliable

analyses [2,4].

More generally, responses of the brain to the same stimulus

typically vary across multiple instances of the same experiment

(trials) [5–12]. The origin of the trial-to-trial variability is currently

one of the most actively debated topics in neuroscience. Trial-to-

trial variability has been observed in multiple modalities of neural

recordings [5,7,13–17] and it has been studied using a variety of

techniques ranging from multivariate statistics to information-

theoretic approaches (e.g. [7,18–20]). However, despite the large

number of studies over recent decades, the dynamical substrate of

such observed variability is largely unknown [5,13].

Understanding the main causes of trial variability in neural

recordings is a major challenge for current data analysis

techniques. Often such variability is attributed to the irregular

responses in cortical neurons (due to the probabilistic nature of

synaptic transmission; see e.g. [5,21–24]), but other potential

causes are the chaotic dynamics of complex neural networks [25–

27] or the lack of specificity in top-down brain dynamics [13].

Thus it is important to design new data analysis methods in order

to discern whether observed variability is essentially driven by

stochastic or by deterministic processes.

Data analysis methods for non-stationary environments are a

very active research direction in machine learning and computa-

tional statistics. Attention has typically been focused on change

detection (e.g. [28–34]) and on designing strategies yielding to

competitive predictions in dynamic settings e.g. in areas such as

streaming data mining [29,35,36], on-line dimensionality reduc-

tion [37], metalearning [38] or Gaussian Processes [39] to name a

few. Recent studies identified invariant subspaces, allowing the
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design of robust models specifically for each stationary data

segment [4,6]. Nevertheless, a common assumption in such

approaches is that stationarity is preserved in short segments of

the time series (for instance [6]). In this setting, the source of non-

stationarity is typically attributed to a ‘‘temporal drift’’ in the

statistical moments of likelihood distributions P(xDC; t), generating

x patterns of each class C [6,36].

In this proof-of-concept initial study we propose a different

angle for the analysis of multivariate recordings based on non-

autonomous dynamical systems. The challenge is to discern

whether the observed trial-to-trial variability in recordings is

caused by deterministic dynamics or by stochastic fluctuations.

Towards this goal, we first analysed a compact low-order

nonlinear dynamical system with random initial conditions. As

the simplest possible model exhibiting two attractors, we used the

Duffing equation[40–43], a ubiquitous model arising in many

physics and engineering areas such as nonlinear electrical circuits,

optics (e.g. [44,45] and references therein), quantum field theory

[45,46] or the study of chaotic oscillatory behaviour [43]. Similar

but less parsimonious multi-stable canonical systems have been

recently used for modelling how biological systems effectively

operate in non-stationary environments, such as human alpha

rhythms underlying EEG recordings [47]. Smooth variations of

the high-order perturbation term typically enable such class of

models to express a wide dynamic repertoire [47], as is the case in

the compact system that we show in this work.

We also propose a simple measure of classifier performance

based on the coherent behavior of trajectories with respect to class-

boundaries and analyse its response depending on the source of

non-stationarity. Time series driven by non-autonomous (time-

varying) dynamics show an abrupt variation in the trajectory

coherence statistic which is not present in randomly generated

data, as commonly assumed in current approaches [29]. Thus, this

statistic acts as an immediate signature of a significant variation in

the underlying dynamics. Our analyses enable us, for instance, to

inform models on the necessity of updating their parameters

towards maintaining a competitive performance in non-stationary

conditions.

The analysis is then extended to multivariate classification

problems in real datasets exhibiting non-stationary dynamics,

consisting of atmospheric pollutants and neural recordings time

series. As an illustrative example, we focused on multi-unit

recordings in rodent frontal cortex networks in behaving animals

during the performance of a difficult task [48,49]. Recently, it has

been proposed that behavioural trial-to-trial variability could be

the result of the imprecision of top-down processes involved in the

performance of cognitively demanding tasks [13,50], while

variability in cell-to-cell responses – the commonly accepted

source of the observed variance [21–23,51] – may play a

secondary role [13]. Thus, as an illustrative example, we focus

on multi-unit recordings in rodent frontal cortex networks.

Equipped with the analyses presented here, we suggest that a

deterministic trend plays a major role in the observed trial-to-trial

variability during decision making.

Results

The following section introduces intuitively the canonical system

used in the study (the Duffing family) and frames it in the context

of a supervised machine learning task – classification. This system

plays the role of a ubiquitous model for understanding complex

classification problems from a nonlinear dynamics angle. Results

lead to a proposition in Text S1 and to a general conjecture, which

we have benchmarked in real non-stationary datasets discussed in

Text S2 and Figure S2. In the last section, these approaches are

applied to neural recordings.

Canonical model of binary classification in non-stationary
settings

Our first aim is to infer the conditions in which arbitrarily small

perturbations in parameters of underlying dynamics can be

discriminated from random fluctuations. The first step is to model

a non-stationary two-class classification problem.

The simplest, yet ubiquitous ordinary dynamical system capable

of a range of attracting dynamics is the Duffing nonlinear

equation, encompassing first order and cubic nonlinearities (the

perturbation term) as well as an external force:

€xx(t)zd _xx(t){bx(t)zax3(t)~V:cos(wt), ð1Þ

or equivalently,

y~ _xx(t); _yy(t)~{dy(t)zbx(t){ax3(t)zV:cos(wt),

where a,b and d[< are model parameters. This dissipative

autonomous system generates a wide range of attracting phenom-

ena such as bi-stability, periodic orbits and fractal attractors. Thus,

it has provided a useful paradigm during recent decades for the

study of nonlinear oscillations and chaotic dynamical systems [45].

Despite its simplicity, exact solutions of this system are generally

not known, although they have been the focus of many studies

during recent decades [41–43,45], thus numerical simulations are

needed.

For a range of parameter values (d§8b; b,aw0; V~0) the

system has a simple behaviour: a saddle point at x~0 and two

sinks at the symmetric equilibrium points x1~{

ffiffi
b
a

q
, x2~

ffiffi
b
a

q

(Figure 1A; see also Methods).

A nonlinear two-class classification problem is then naturally

defined: Figures 1A and 2B show the basin of attraction of the two

sinks, constructed by generating random initial conditions from a

fixed, two-dimensional Gaussian distribution centred at the origin

(standard dev. 4), which are then subjected to the flow indicated in

Equation 1.

Blue and red dots show fixed points towards which trajectories

converge. Trajectories belong to the class C1 (red) if they are

attracted to the left sink or to the class C2 (blue) if they converge to

the right sink. Figure 2B shows a more detailed display of the

basins of attraction of the sinks (using 104 random initial

conditions). Groups of class C1 trajectories are interleaved with

groups of C2 trajectories in the phase space; hence basins of

attraction furnish the spiral structure shown in Figure 2B.

Such simple dynamics typically breaks down with changes of

b,d,V parameters (e.g. it undergoes supercritical pitchfork

bifurcation and periodic orbits appear for d^0, Figure 1B; a

chaotic attractor emerges for a range of V values, Figure 1C [45]),

yielding to abrupt variations in posterior probabilities of class-

membership P(CDx,y; t) (see insets in the figures and Methods for

details).

This setting has parallels with the so-called ‘‘concept shift’’ in

data mining literature [38,52] and is not of interest here as

detection of abrupt changes is often successfully addressed by

standard change detection approaches (e.g. [29,36]). Thus, such

kind of relatively obvious non-stationary changes, typically

induced by bifurcations are not considered in this work.

In contrast, and crucially, here we are only interested in

inferring very subtle variations in the underlying system dynamics

Non-Stationary Dynamics of Trial-to-Trial Variability
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which are not evident from standard statistical analysis. To this

end, we modify slightly the relative distance of the attractors while

the dynamics are essentially unchanged by inducing a small

perturbation in a, which can be approximated to a(t0)?

a(t1)~a(t0)zDa on a first-order level (all other parameters are

fixed). As the fixed points become closer to each other i.e. the a
parameter increases (Figure 1A, inset) distribution modes signif-

icantly differ (multivariate analysis, Wilks’ L~0:35,

Figure 1. Duffing non-linear oscillator (Equation 1, see parameter values in Methods). (A) A small perturbation leading to a subtle drift in
the relative distance between fixed points. Each subplot shows 10 trajectories (i.e. 10 different initial conditions randomly drawn, see text). Light red
(left) and blue (right) lines indicate an example of a trajectory that changes its class (i.e. it is attracted to the opposite sink) after the small perturbation
induced. Insets show class-posterior probabilities of each phase space vector belonging to the basin of attraction of one of the two sinks (see
Methods for details). Two stars (**) indicate significant differences between means in the x-axis at pv0:001; which remain after a subtle variation in
the Da of the perturbation parameter of the Duffing system. (B) and (C): Perturbation in other parameters induces bifurcations leading to chaotic
oscillations (B) or global limit cycles (C) e.g. [42]. As in plot A, inset shows the class-posteriors, which are severely transformed after such parameter
variations.
doi:10.1371/journal.pone.0095648.g001
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x2(2)~1:58103, p,0.001). However, some of those trajectories

crossing the vicinity of the centre fixed point (0,0) are attracted to

the opposite sink i.e. they belong to a different class (Figure 1A).

Thus, intuitively, we expect that a classifier which models the two

posteriors with negligible error at t~t0, will fail to predict the true

class of such trajectories at t~t1 after a subtle drift on the a

Figure 2. Trajectory behaviour in Duffing systems. (A) Schema illustrating convergent trajectories with respect to attracting state boundaries
(see also Figure S1). (B) Phase space flow (using 104 initial conditions). (C) Projection into the three maximally discriminating directions (gram-schmidt
ortonomalized) of an expanded space of order three. (D) This optimally regularized discriminant was used to compute the 20-fold cross validation of
the trajectory incoherence index (TI) i.e. those different from any of the trajectories shown in plot (A) across initial conditions. The expansion order 3
yields to a maximal out-of-sample convergence; highly significant with respect to the phase space (O~1) shown in plot B (pv0:001, see main text).
doi:10.1371/journal.pone.0095648.g002
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parameter. This arbitrary accurate classifier at t~0 is blind to

such a subtle, yet fundamental change in the latent dynamics.

Is there a way to discriminate deterministic variations from

changes of probabilistic nature? The following sections show how

trajectories which changed the attractor in non-stationary settings

allow us to discern the source of the observed data variability.

Reconstructing attractor dynamics
The analysis starts by devising an optimal classifier for the

autonomous (stationary) system shown in Equation 1. The two

basins of attractions (the regions of the space in which trajectories

ultimately converge towards the corresponding attractor) are not

separable in the original phase space (Figure 2B). Thus, an

optimally expanded space was used to compute boundaries

between classes with a minimum generalization error (the space

with the lowest dimensionality allowing us to reach a Bayes-

optimal error, see Methods and Figure 2).

Multinomial expansions of a phase spaces are also suitable

spaces i.e. the trajectory flow will consistently converge to the

corresponding attractor as in the original phase space, while the

basin of attraction tends to be linearly separable [48,53,54]. Here

we used embedding spaces of different dimensionality spanned by

high-order interactions up to a othorder of the original dimensions

(see Methods).

In general, distances in such high dimensional spaces cannot be

feasibly computed due to a range of problems collectively referred

to as the ‘‘curse of the dimensionality’’ in the machine learning

literature [55], and especially the distance concentration phenom-

enon [56]. Thus it is in general not possible to analyse trajectory

dynamics directly in large embedding spaces. Nevertheless, a

classifier allows us to estimate relative positions of input vectors

with respect to the class boundaries (Figure 2). By tracking the

predicted label of the l vectors encompassing a single trajectory,

we can access and assess the behaviour of the class-trajectory in the

state space.

In simple terms, a class-trajectory initiated at x(t0)~
(x(t0),y(t0)) is considered as convergent into a specific volume of

the space if all its vectors from a certain time twwt0 are correctly

classified (empirically, it will suffice in this simulation with the last

l=4 trajectory vectors) i.e. they are assigned to the closer attractor

(see schema in Figures 2A and S1A). For instance, trajectories

shown in Figure 2A are examples of convergent trajectories,

because they either cycle within or finish in the region of the space

delimited by its class i.e. its basin of attraction.

We can thus define a natural statistic for time series, the lack of

coherence of class-trajectories (trajectory incoherence, TI), as the

fraction of complete trajectories which are not convergent. In

other words TI is the percentage of trajectories which are not of the

type of trajectories shown in Figure 2A (see Methods for a more

precise definition and Text S1).

TI is thus a quantitative index of trajectory behaviour in non-

accessible, high-dimensional state spaces (not to be confused with

the exponential divergence of nearby trajectories given by the

maximum lyapunov exponent, used as a signature of chaos, for

instance [57,58]). In Figure 2 we estimated TI by cross-validating

a regularized Fisher discriminant (kernelized for effectively operating

in high dimensional state spaces as detailed in Methods [59,60]).

Not surprisingly, an embedding space of third order, precisely the

nonlinear order in Equation 1, is the most suitable to capture the

attractor dynamics i.e. with the lowest TI. In the light of this

simple index, we next studied the behaviour of trajectories in time-

varying scenarios.

Detection of latent non-stationary trends
The analysis continues with a parsimonious simulation of a

multi-stage data acquisition setting in noise. We induce a temporal

dependency on the perturbation term of the Duffing model

(Equation 1),

€xx(t)zd _xx(t){bx(t)za(t)x3(t)~0; ð2Þ

which now has a simple non-autonomous dynamics. We must

stress that we are interested here in subtle i.e. non-statistically

detectable (on a single-trial basis) variations in the relative position

of the attractors in the phase space; which essentially preserve their

dynamics (unlike more abrupt non-stationary changes, e.g.

Figures 1C and D) therefore bifurcations are typically excluded

from this analysis. This subtle non-stationarity is induced by

arbitrarily small perturbations in the parameter a, thus, it will

suffice to analyse the behavior of TI for a first order expansion of

a(t) in equation 2. An analysis of the perturbation effect in the

system dynamics can be found in Text S1.

Figure 3A shows a few randomly generated trajectories, see also

schema in Figure S1A. As stated previously, when a linearly

increases the distance between attractors decreases and some

trajectories crossing x~0 will be potentially attracted to the

opposite spiral (see also Text S1). For instance, after six trials in

Figure 3A a single trajectory changes the attractor, while no

significant change in the statistical moments will be observed, as

discussed below.

A simulation of this setting is shown in Figures 3B–D and S1. As

expected, the error monotonically increases while distance

between fixed point decreases. Critically, there are no statistical

differences in the classification error from one trial to the next

(two-tailed pairwise t-tests, t(598)v1:26,pw0:21, normality

accepted according to Lilliefors tests, pw0:05). Other standard

classification accuracy measures (Wilk’s Lambda, higher order

statistics such as Jensen-Shanon divergence between posteriors or

certainty measures [61]) showed similar insensitivity to those subtle

changes (Figures S1B and S2C).

In this simulation, CE does not increase significantly with

respect to the first trial before trial number 6 i.e the comparison of

trial 1 versus trial 6 is the first to achieve significance

(t(598)~1:02,p~0:012, Figure 3B). Thus, when information on

the classification performance in previous trials is not accessible,

statistics will fail to detect such an event on a single-trial basis. This

historical information is often not available.

Class-trajectory coherence statistic (TI), in contrast, allows the

detection of such critical change on a trial-by-trial basis. The

fraction of misclassified trajectories progressively increases with

respect to the previous trial and reaches trial-to-trial significance

on trial 6 (t(598)~1:97,p~0:048) precisely when CE is significant

with respect to the reference trial. Therefore TI immediately alerts

on the loss of generalization capability of the classification model,

unlike the classification error and related statistics (Figure 3C,

thick triangle markers). Consistently, the Priestley-Subba-Rao test

(PSR) of non-stationarity shown in Figure S1C (see Methods, [32–

34]) is non-significant for all trial-to-trial pairwise comparisons of x
and y time series until trial 5 (non-parametric MannWhitney

U(4998)v6:3|106,pw0:503); while it reaches trial-to-trial sig-

nificance precisely on trial 6 (Figure S1C, MannWhitney

U(4998)~6:4|106,p~0:0478; normality rejected according to

Lilliefors test, pv0:01) fully in line with TI results.

Note also that initial conditions were randomly drawn from a

normal distribution spanning up to four standard deviations,

suggesting that TI is robust to high levels of this input noise at

Non-Stationary Dynamics of Trial-to-Trial Variability
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99:9% confidence. However, and significantly, this is only the case

if the underlying source of non-stationarity is deterministic.

Figure 3B also shows bootstrap data, constructed by shuffling

vectors x(t) within each trajectory, while class-associations are

maintained. Thus, CE is not altered, but the temporal flow within

trajectories breaks down. In this setting, there is no guarantee that

trajectories are attracted to any volume and thus TI should not

vary significantly (Figure 3B, grey triangle markers), suggesting

that multi-stable deterministic dynamics does not play a major role

in the observed data. Likewise no trend in TI is observed either

when trajectories are preserved, but the perturbation term varies

randomly from trial to trial; in other words when the autonomous

duffing system is deterministic but its non-autonomous dynamics is

stochastic (grey line in Figure 3B), as envisaged.

These results have been illustrated for the Duffing family, but

this analysis potentially has a wider scope of application.

Figure 3. Non-autonomous drift in a non-linear dynamical system (unforced Duffing oscillator). (c.f. Figure S1). (A) Example of a linear
variation in the perturbation term a (see also Equation 1). As fixed points approach each other, few trajectories change the basin of attraction and
thus the class-membership. (B) Optimally regularized kernel-fisher discriminant in a third order expanded space was used to compute the
classification error (CE) and trajectory incoherence (TI) as the distance between fixed point varies (shown mean values of 1000 initial conditions for
each trial, error bars are SEM). The discriminant subspace is computed for the first trial and then fixed and applied to subsequent trials (note that only
validation results from trials 2–14 are shown in the figure). Insets show amplified versions. Both CE (bottom inset) and TI (top inset) increase over
trials, but TI enables us to detect, on a single trial basis, when a significant change occurs. When the temporal contingency within each trajectory is
disrupted (bootstrap data, middle inset) TI is no longer sensitive to trial-to-trial variations, indicating the absence of a deterministic trend driving the
observed dynamics. When bootstraps are generated by randomly sampling the increment of a (from a uniform distribution of the same range), no
trend in TI is observed either (thin grey line), as expected. These results are fully in line with statistical analyses shown in Figures S1B and S1C.
doi:10.1371/journal.pone.0095648.g003
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As a simple, intuitive example, consider an autonomous (static)

dynamical system parameterized by a equipped with i.i.d. random

initial conditions; this system generates an observable dataset of n

trajectories of length l patterns each. Consider also an accurate

classifier in a Bayes sense for such stationary dataset. Then, a small

parameter perturbation such as the ones illustrated in Figures 1

and 3 will have a completely different effect on CE and TI. Since

at least one trajectory of length l will converge to a different

attractor (see also Text S1 Lemma 1), the change on TI is at least
1
n
:

DTI~TI(azDa)§
1

n
; ð3Þ

By definition of TI only the last ~llƒl vectors from a trajectory of

length l will be misclassified, thus:

DTI§
l

n:l
§

~ll

n:l
; ð4Þ

As the classification error is the fraction of misclassified vectors

CE~
~ll

n:l, trivially, the following relation holds:

DTI§DCE; ð5Þ

This is precisely the result shown in Figure 3C i.e. TI increases

more abruptly than the classification error.

In contrast, if we consider an identical dataset in which all n|l

patterns (not just the initial conditions) have been i.i.d randomly

drawn i.e. where there are no coherent trajectories, a change in

the parameters of the generative distribution does not guarantee

Equation 5 bound. Thus, TI would not be sensitive to any changes

and CE would be a more appropriate estimate in this i.i.d. data.

This effect is shown in Figure 3C, where the order or vectors

within trajectories has been randomly altered before the system

undergoes a parameter drift (Bootstrap TI in Figure 3C).

The approach devised here could be thus applied to multi-stable

scenarios, where a ‘‘snapshot’’ of attracting dynamics is observed

in each trial. As a real data example, we applied analyses in a well-

known, multivariate time series where attractors subtly drift over

time, discussed in detail in Text S2. The dataset consists of hourly

concentrations of ozone, meteorological variables and other

atmospheric pollutants (Text S2). Ozone time series are well

known-to exhibit daily periodicity which is modulated by a subtle

seasonal trend [62,63]; thus they will serve to benchmark further

simulation results before the analysis of neural data in the next

section.

This first illustrative analysis is shown in Figure S2. Precisely as

in the dynamical system simulations, a signature of non-

autonomous dynamics is indicated by an abrupt increase in TI

not accompanied by a sudden change in CE, suggesting a

deterministic trend in the observed trial-to-trial variability (see

details in Figure S2 and Text S2).

In summary, results obtained for the Duffing family of

dynamical systems are potentially extendible to more general

settings, exhibiting a repertoire of attracting dynamics in noise.

The next section shows another example of application of our

approach, the investigation of trial-to-trial variability in in vivo

recordings.

Trial to trial variability in neural ensembles
Neuronal responses to the same task often differ from trial to

trial, particularly when recorded in higher cognitive areas [5]. The

origin and functional role of this variability has recently attracted a

lot of attention in neuroscience [5,13,64], and has been analysed

using a variety of statistical and information-theoretic approaches

(e.g. [6,7,18–20,65]).

The analysis developed in this work enable us to infer whether

the observed trial-to-trial variability is essentially driven by

stochastic processes as typically assumed in previous studies. We

focus on a cognitively demanding task to investigate the trial-to-

trial dynamics of neural ensemble recordings in rodent frontal

cortex. Figure 4A shows an example of a memory-guided decision-

making radial arm-maze experiment (e.g. [48,49]). In a nutshell,

the animal visits a series of baited arms during the training phase

(termed choice epochs) in order to consume the reward (termed

reward epochs), followed by a delay phase in which no task is

performed (omitted in the Figure). Subsequently, during the test

phase, the rat visits different arms to obtain the reward again.

Activity of a neural ensemble was recorded in a rat frontal cortex

during several consecutive trials (Methods). We next defined a

classification problem where classes correspond to short (+1 sec.)

temporal periods surrounding choices and reward epochs during

training and test periods, respectively (the rest of the firing rate

vectors are not considered in the analysis). For more details on the

task, see Methods and [49]). Figure 4B shows the projection into

the three maximally discriminating dimensions of the optimally

expanded space. In this case the reconstruction started with a

delay-coordinate map before the nonlinear expansion map

[53,54,66] as a previous step for disambiguating the trajectory

flow (see [48,67]). As in Figure 2, arrows indicate the flow field of

neural population states; which moves quickly between different

task phases, suggesting the presence of attracting states. Attracting

dynamics of neural ensembles have previously been found in

different areas such as the olfactory bulb of insects, rodent

hippocampus [68–71] and in prefrontal cortex [48].

However, Figure 4C also shows responses from trial to trial

subtly differ: there is an apparent clockwise rotation of the task-

epoch trajectories suggesting a consistent temporal drift, which

may be the cause of such non-stationarity. The approach

developed here helps to discern whether the origin of such shift

can be solely attributed to stochastic fluctuations.

A sufficient condition of non-autonomous dynamics is a sharp

increase in TI index just at the trial when the classification error

significantly increases (with respect to any previous trial); as

devised in the previous section. This is precisely the result of the

analysis shown in Figure 4C, where TI abruptly changes on the

third trial (Mann-Whitney U(5)~18,p~0:046; normality rejected

according to Lilliefors test, pv0:05). As in Figure 3, this trial-to

trial variation is non-significant for CE by large margins (pw0:15
for any trial-to-trial test comparison) while the comparison of trials

1 and 3 CE reaches significance (Mann-Whitney-U, p~0:0079)

In order to ensure further the significance of these analyses,

bootstraps were constructed by shuffling the firing rate vectors

within trajectories while preserving the trials order [48]. According

to previous section results, DTI should no longer be informative,

as shown in Figure 3C. This prediction is again fully in line with

results reported in Figure 4C.

Overall, Figure 4 shows that during the performance of this

cognitively demanding task, the process underlying trial-to-trial

variability in frontal cortex ensemble recordings is essentially non-

autonomous. The aim of this single example is only to illustrate the

capacity of the proposed approach. However, this striking result

suggests that intrinsic, random fluctuations may not be the only

Non-Stationary Dynamics of Trial-to-Trial Variability
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Figure 4. In vivo neural ensemble recordings in rat frontal cortex. (A) Example of a delay-coordinate map expanded to a third order state
space; see Methods and [48]) projected onto the three maximally discriminating dimensions (ortonormalized). Different colours correspond to
different stages of the task (a radial arm-maze, inset left). (B) A clockwise rotation of the task-stage states from trial to trial seems to take place,
suggesting a deterministic drift in the putatively attracting sets associated with task epochs. (C) Non-stationary drift in ensemble recordings. Analyses
on an expanded space of third order where optimised for the first trial, the maximally discriminant subspace is fixed and then used to compute CE
and TI in the next trials. As in the theoretical model (Figures 1–3) and in the real data example (Figure S2), TI increases faster than CE. Again
consistently with previous results, when temporal order of vectors is shuffled, TI is not sensitive to trial-to-trial shifts in dynamics.
doi:10.1371/journal.pone.0095648.g004
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cause of the observed variability in ensemble recordings, as

commonly assumed in neural modelling [5].

Discussion

In this proof-of-concept study we devised a sufficient condition

to identify when a multivariate dataset has undergone changes in

its parameters’ dynamics from trial to trial. The proposed statistic,

class-trajectory coherence (or lack thereof) is an easily accessible

value, sensitive to subtle departures of deterministic nature in

multi-attracting dynamics subject to input noise. This analysis is

particularly advantageous when statistical moments do not

significantly vary from trial to trial and thus a significant trend

cannot be statistically proven on a trial-to-trial basis by standard

testing.

The fraction of non-coherent trajectories is a sufficient statistics

i.e. if data is independently drawn, both trajectory and classifica-

tion errors would behave similarly, indicating that deterministic

hypothesis cannot be accepted. The importance of this study

hence also stems from the fact that i.i.d. data generation is still the

typical assumption in current data mining approaches for non-

stationary problems [36]. For i.i.d. data, the classification error or

derived measures are appropriate empirical estimators of the ‘‘true

error’’ (the asymptotic risk, a well-known result in statistical

learning [72]) and trajectory analyses are not necessary. A number

of tests for non-stationary time series have been proposed in the

statistical literature based e.g. on fourier analyses [33,34] or more

recently on wavelet spectrum analyses (for instance see [32]); such

tests are also powerful tools when the sampling size is significant

(unlike the in vivo ensemble recordings analysed here).

As an example of a real-world application, we used two well-

known and completely different datasets where attracting dynam-

ics was observed. The main focus of our analysis was on in-vivo

neural ensemble recordings, where trial-to-trial variability is often

observed. The origin of trial-to-trial variability in neural record-

ings is a fundamental question in neuroscience, touching the

essentials of our understanding of neural computations. Among

the many possible causes, it has been traditionally accepted that

the intrinsic irregularity of spike probability is the origin of most of

the observed trial-to-trial variance, mainly due to probabilistic

nature of synaptic transmission [5]. Thus, very recently, efforts

have been applied to devising suitable methods for the analyses of

non-stationary spike trains[6,65]. In a similar spirit, recent models

have sought to infer time-varying statistics of synaptic conduc-

tances from membrane recordings (e.g. [73–75]).

However, there are no empirical demonstrations of whether

internal, random fluctuations always drive the observed trial-to-

trial variance in neural recordings. The hypothesis stating that the

observed trial-to-trial variably has a stochastic, internal origin has

recently been debated [5]. For instance, Beck and colleagues [13]

proposed that spike irregularity is often a minor contributor to the

unexplained variance, while suboptimal inference (the imprecision

associated with deterministic approximations in complex compu-

tations) may be the dominant component of behavioural

variability in difficult tasks. Thus, most of the variability may be

originated rather by complex or chaotic deterministic processes

[13], whose parameters can be top-down modulated by active

attention (e.g. [50,76]) or by stimulus expectancy [18].

The analyses performed within this study are in line with this

hypothesis: we have observed that trial-to-trial variability process-

ing in frontal cortex has a deterministic component. Nevertheless,

in this work we show only a limited dataset as an illustrative

example because our focus here is rather methodological (an

exhaustive analysis on ensemble recordings is not in the scope of

this preliminary study).

Our initial analyses are also potentially relevant in the context of

biophysical modelling. It has recently been proposed that

structured stochastic fluctuations have a highly beneficial function

by enhancing the dynamical repertoire of multi-attractor land-

scape of deterministic networks shaped by anatomical structures in

cortex [15,64]. In contrast, in other contemporary models, the

richness of observed activity pattern dynamics is provided by

purely deterministic, transient dynamical objects. Such heteroclinic

channels [77,78] are not attractor states, but still retain the neural

activity trajectories only for a limited amount of time, even without

the intervention of stochastic variability. The class-trajectory

coherence statistic presented here would help to validate

empirically or disconfirm these two theories.

In a wider scope, understanding the dynamics underlying non-

stationary recordings is a ubiquitous problem of computational

biology and data analysis. Contemporary machine learning

approaches focus on designing algorithms capable of operating

in non-stationary settings (e.g. [30,36,37,52]). In this context, the

results of this study suggest that trajectory coherence can be used

to detect when a classifier needs updating on a single trial basis.

This is a critical advantage of our method as with sufficiently

smooth drift, an arbitrarily large number of historical results may

otherwise be required, which is often computationally impractical

in real life settings (e.g. in data streams or online settings [30]) and

sometimes not even experimentally accessible.

In summary, in this opening work, we have provided simulated

and real challenging scenarios where standard statistics are unable

to identify a deterministic trend on a trial-by-trial basis. Analyses

developed in this study help to circumvent drawbacks of existing

data analysis tools in order to potentially enable a deeper insight

into the dynamic sources of the observed trial-to-trial variability in

neural recordings.

Materials and Methods

Analyses
Compact non-autonomous dynamical system. The un-

forced Duffing oscillator for d§8b,bw0,V~0, as indicated in the

Results section, has a simple behaviour consisting of three fixed

points (two spiral sinks and a centre). Trivially, the linearized

system matrix,

J~

0 1

b{3x2 {d

0
B@

1
CA; ð6Þ

has eigenvalues { d
2
+

ffiffiffiffiffiffiffiffiffiffiffi
d2z4b
p

2
for x~0 and { d

2
+

ffiffiffiffiffiffiffiffiffiffiffi
d2{8b
p

2
for the

two attractors x1,2 (e.g. [42]). The basic set of parameters used in

static simulations (Figures 1–2) were a~0:25,b~0:6,d~0:5,V~0
(Figure 1A, left plot, Figure 2B) [42]. In Figure 1, only the

parameter specified in the plot title is varied, while the rest of

parameters are held constant.

A discrete trajectory of class C1 (c.f. C2) of length l is defined as

T(t0)~(x(t0),x(t1),:::x(tl)); ð7Þ

where x(t)~(x,y), the initial condition x(t0) belongs to the basin

of attraction of the positive attractor (blue, class C2; c.f. red, class

C1) i.e. the continuous counterpart of such discrete trajectory

asymptotically converges to the two fixed points (x1,0) (c.f. (x2,0).
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In Figures 1 and 2, a class C1-trajectory is a set of l~100
consecutive patterns with a random initial condition x(t~0) i.i.d.

drawn from Q(0,3) such that Ex(tl){x1EvEx(tl){x2E (c.f.

Ex(tl){x1EwEx(tl){x2E for class C2).

Posterior probability distributions shown in Figure 1

(P(C1Dx,y; t) and P(C2Dx,y; t)) are computed by tiling the phase

space in equal rectangular bins; the limits of the grid are defined

by the maximum and minimum values of x and y axes in each

simulation. The histogram of classes (i.e. of the corresponding

attractors of phase space vectors) is then computed and

normalized, yielding to posteriors estimates.

The model used in this work is the simplest dynamical system

that can implement a binary classification problem (as defined

herein). Although exact solutions are generally unknown, approx-

imations can be established (e.g. Text S1, [45]) enabling us further

insights into the system dynamics. A more detailed study of the

behaviour of the non-autonomous Duffing oscillator can be found

in Text S1.

Reconstruction of attractor dynamics. Kernel algorithms

(e.g. [31,59,79]) were used to solve the non-autonomous classifi-

cation problem in a phase space where basins of attractions are

separable. Recently, embedding delay-coordinate maps were

combined with nonlinear expanded spaces to reconstruct neural

activity trajectories [48]. A polynomial expansion of a phase space

is a potentially valid reconstruction of attractor dynamics in

moderate noise conditions (for instance [53]) and a well-know

reproducing-kernel Hilbert space [59]. Thus, an expanded space

of dimension pz2!
2p! is devised here by including high-order

interactions up to a pthorder of the phase space variables. The

dot product of two feature vectors is the inhomogeneous

polynomial kernel of a Mercer type [59,80],

k(t,t’)~WWT~(1zx(t)x(t’))p{1; ð8Þ

A regularised kernel Fisher discriminant was then 20-fold cross-

validated (Figure 2C, D) in blocks of 105 patterns (1,000

trajectories of 100 patterns each on this test set). Optimal

regularization penalties, specific of each expanded space, were

previously established on an independent (validation) dataset

leading to the minimum TI index; see details of this process in

[48,60]. Normality is preserved in the discriminant subspace

(Lilliefords non-parametric test, pv0:05) as expected from the

Central Limit Theorem [55,59,81], leading to a negligible cross

validation error for the optimal expanded space (see Figure 2D).

Figure 2A shows an intuitive schema on the class-trajectory

coherence index (TI). To be more precise, consider an autono-

mous dynamical system parameterized by p coefficients a in a

dynamical regime corresponding to multiple attracting sets:

_xx(t)~A(x(t),a); ð9Þ

where x~(x, _xx) is a d-dimensional phase space and A is a

nonlinear differential operator.

This system, equipped with i.i.d. initial random conditions,

defines a natural classification problem. The system generates an

observable dataset D of size n|l patterns (n discrete trajectories of

length l). In this context, f (x(t)) is an arbitrary classifier such that

the ‘‘true’’ (asymptotic) risk [6,59,72] e(a) given that the pattern x
belongs to class Ci

e(a)~P(c(x)=Ci,a); ð10Þ

is minimum. The empirical estimator of the true error is the

classification error CE shown in the figures. Taking into account

the definition of class-trajectory (Equation 7), we term f (T) as the

predicted class for each point in the trajectory

f (T)~(f (x(t0)),f (x(t1)),:::,f (x(tl))); ð11Þ

Thus, a divergent or incoherent class-trajectory is the one in

which all vectors from a certain ti are incorrectly classified. In

other words, considering trajectory of class C i.e. in which all

points of the trajectory belong to this class, a divergent class-

trajectory verifies

f (x(ti))=C Vtwti; ð12Þ

For simplicity, we will indicate the last condition as f (T)=C.

The true trajectory error is then

eT (a)~P(f (T)=C,a); ð13Þ

The lack of trajectory coherence index, TI, shown in figures is

the empirical estimator of the true trajectory error eT .

Analysis of the non-autonomous system. Endowed with

the definition of TI, we can infer the conditions for a classifier to

be no longer optimal when the system undergoes gradual non-

stationary drift. In short, Text S1 analyses show how an arbitrarily

small parameter perturbation Da causes at least one trajectory to

change its basin of attraction i.e. its class as was demonstrated

empirically in Figures 1–3. In Figure 3 a increases by 10% after

each time step. The dataset size is the same as in the previous

sections (1000 randomly generated initial conditions i.i.d. normally

drawn, zero mean and s~4).

As suggested in this section, DTI§DCE cannot be established

in general: for i.i.d. data from a generative distribution Q, the

change induced in the distribution parameters Q(azDa) does not

necessarily entail a change in TI. For instance, given 1v
~llvl

misclassified i.i.d. patterns, the log-likelihood that they belong to

the same trajectory is typically very small, and thus we cannot

expect a different behaviour of TI and CE statistics (Figure 3C, TI

bootstrap; see also Figures 4 and S2 bootstrap data).

The classical Priestley and Subba Rao (PSR) test of non-

stationarity (Figure S1C) was used to analyse the simulated dataset

shown in Figure 3, because it typically requires large sample sizes

for a robust estimation (e.g. [32,34]). The simplest version of the

test consists of analysing the logarithmic of the time-varying

spectrum,

X (t,w)~log(f (x(t))); Y (t,w)~log(f (y(t))); ð14Þ

where f is an estimator of the fourier spectrum and w is the

frequency. The logarithm typically stabilizes the variance and thus

enables us to assume a linear model for Y (t,w), X (t,w) with

constant covariance. Differences between non-stationary means in
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segments of Y ,X are then analysed using standard statistical

testing [32,34] as shown in Results section and in Figure S1C.

Data acquisition
Behavioural task and electrophysiological recordings.

Electrophysiology and preprocessing. The animal recorded

was treated in accordance with the ethical guidelines set forth by

the Canadian Council for Animal Care. Procedures have been

approved by the Animal Care and Biosafety Committee of the

University of British Columbia (UBC) and conform to the UBC

policy 41 regarding research and teaching involving animals. For a

detailed description of the surgical and probe making procedures

see [48,49]. In brief, electrophysiological data was recorded via a

24 single-wire tungsten array implanted into the ACC of the

behaving rodent; recordings were sampled at 30 kHz, band-pass

filtered from 600–6000 Hz. Spike channels were then amplified,

sorted and classified offline using the Spikesort 3D unsupervised

clustering software (Neuralyx; Bozeman, MT, USA) as explained

in [49].

Spike trains from the 24 simultaneously recorded units were

convolved with Gaussian functions to obtain statistically reliable

estimates of spike densities. The value of the optimal bandwidth

for each neuron (variance of the gaussian kernel) was optimized

using a multivariate kernel density estimation approach as

described in [82] (see also [83]). Spike density estimates were

then binned at 100 ms, so that 95% of bins contained 1-0 spikes.

Behaviour. Behavioural data were captured via a video

camera (Cohu, Poway, CA), recorded in Noldus Ethovision

(Noldus, Leesburg, VA) and also stored for off-line analysis. The

rat was trained on the delayed spatial win shift run on an eight arm

radial arm maze where all arms where initially baited. Each trial

consisted of a training, test phase (separated by one minute delay

not considered in this study). During the training phase, four of

eight arms where opened to enable acquisition of a sugar reward

(Noyes, Lancaster, NH). After the delay, all eight arms were

opened during the test phase and errors were scored as re-entries

into previously visited arms (Figure 4A). This task was performed

ten times (trials). The animal scored no error during this task in

any of the trials.

In this study we focused on four periods with different cognitive

demands, namely reward epochs (dark gray and red dots) during

the training or test phases, respectively and correct choice epochs

during training and test phases (blue and green, respectively).

Reward epochs were defined as the +1 s periods around the point

in which the animals nose reached the sugar pellet; similarly

choice epochs were defined as 1 s periods around each arm entry

(see [48]).

Standard statistical testing, atmospheric pollution

supplemental dataset and software. Statistical test details

can be found in the corresponding sections. Nonparametric tests

were used based on conservatively designed bootstrap data (200

replications used for two-sided comparisons at p~0:01, [81]) as

explained in the corresponding text sections and figure captions.

Analyses presented in this work are also benchmarked with an

additional illustrative dataset where the presence of attracting

states is well-known. Data used in this research belongs to the

Department of Agriculture, Generalitat Valenciana (Regional

Government), Valencia, Spain; and it was recorded in a rural area

of particular agricultural interest. Data consists of hourly

concentrations of ozone, NO, NO2 and hourly recordings of

meteorological variables for over a two month period. Ozone

concentration is known to exhibit regular daily oscillations yet

subtle seasonal variations [62,63]and thus this data is an ideal

testbed for the TI index. Details of this dataset and analyses

performed can be found in Text S2 and Figure S2.

Software for analysing trajectory dynamics is freely available

under the terms of the GNU licence as Software S1. Updates of

this software are available at http://www.bccn-heidelberg-

mannheim.de and http://www.researchgate.net/profile/

EmiliBalaguer-Ballester/ websites.

Supporting Information

Figure S1 Non-autonomous drift in the duffing dynamical

system (cont. from Figure 3). (A) Schema illustrating convergent

trajectories with respect to attracting state boundaries in the

reference set (top left), in the prediction (validation) set after a

deterministic drift preserving the initial conditions (top right) and

when those initial conditions are randomly drawn (bottom); the

later setting is related to the analyses shown in Figure 3. As

illustrated in the figure, the behavior of CE and TI indexes is

remarkably different. (B) The left axis shows the Jensen-Shannon

divergence between predicted posteriors provided by the discrim-

inant analysis (same dataset as in Figure 3). As in Figure 3 analyses,

regularized kernel-fisher discriminant in a third order expanded

space was optimized for the first trial and applied to the

subsequent trials. As the distance between fixed point varies, like

in CE, the Jensen-Shannon divergence increases approximately

monotonically in a logarithmic shape, thus it is not sensitive to any

change in dynamics (two-tailed t-tests, t(598)v0:49,pw0:63,

normality accepted at p~0:05 according to Lilliefors test). The

right axes show the Wilks L value, which behaves in similar way to

CE and Jensen-Shannon divergences. All trial-to-trial comparisons

are again non-significant (t(598)w{1:1,pw0:28, normality

accepted at p~0:05). Moreover, the first significant result is

achieved in the pairwise comparison form trial 1 to trial 6

(t(598)w{2:7,p~0:007), fully in line with CE results shown in

Figure 3. (C) Priestley-Subba-Rao test (PSR) of non-stationarity

[32–34](see main text and Methods). Again fully in line with TI

results (Figure 3) only the pairwise comparison from trial 5 to trial

6 reaches significance (MannWhitney U(4998)~6:4|106,
p~0:0478; normality rejected according to Lilliefors test,

pv0:01).

(TIF)

Figure S2 Example of the analysis of a non-stationary dataset.

(A) Hourly ozone (O3) ground concentration, nitric oxides

(NO2,NO) temperature and relative humidity during a summer

week. Ozone is an atmospheric pollutant synthesised primarily

from NO2 (red line in the plot) by the catalysis of solar radiation.

Ozone levels are divided into three ranges (low, moderate and

high). (B) An optimally regularized discriminant defined in an

expanded phase space of third order is used to map precursors and

atmospheric variables to O3 classes. As in Figure 3, the

discriminant subspace is computed for the first trial (i.e. the first

week of data) and then used to compute CE and TI on the next

trials. In week 6, an abrupt increase of TI is not accompanied by a

trial-to trial change in CE, suggesting a deterministic origin of the

observed non-stationary in hourly ozone concentrations. Lowest

plot shows the certainty in the classification (see Text S2).

(TIF)

Software S1 Demo trajectories reconstruction toolbox; pls revise

this cite in the text and EM.

(ZIP)

Text S1 Local trajectory analyses in a Duffing system.

(PDF)
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Text S2 Illustrative dataset in a non-stationary environment.

(PDF)
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