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Abstract

This paper studied the cluster synchronization of directed complex networks with time delays. It is different from undirected
networks, the coupling configuration matrix of directed networks cannot be assumed as symmetric or irreducible. In order
to achieve cluster synchronization, this paper uses an adaptive controller on each node and an adaptive feedback strategy
on the nodes which in-degree is zero. Numerical example is provided to show the effectiveness of main theory. This method
is also effective when the number of clusters is unknown. Thus, it can be used in the community recognizing of directed
complex networks.
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Introduction

During last decade, the study of complex networks has become

a hot topic in various fields like physics, mathematics, biology,

social sciences, computer sciences, and so on [1–3]. Most of

complex networks have two properties: small-world and scale-free

[4–5]. Recently, as one of the most important phenomenon of

dynamical system, synchronization has gained growing attention.

So far, many different kinds of synchronization in complete

networks are realized, such as generalized synchronization, phase

synchronization, cluster synchronization and so on [6–25].

Nowadays, cluster synchronization has been widely and thor-

oughly studied because it can show the community of the complex

networks [26–30].

Cluster synchronization is a middle state of the progress which is

from none-synchronization to complete synchronization. When

this middle state is achieved, the nodes in same group (or

community, or cluster) can achieve complete synchronization, but

the nodes in different clusters are chaotic. Owing to the significant

application in biological science and communication engineering,

the researching of cluster synchronization is focus on the control

method such as pinning control, adaptive control, impulsive

control, and so on, but few of them studies cluster synchronization

of directed complex networks with time delays.

Liu and others researched generalized synchronization of three

typical complex dynamical networks including scale-free network,

small-world network, and a family of interpolating network [7].

They found that there is a general progress to global generalized

synchronization (GS): non-GS R partial GS R global GS and the

GS stats from a small part of hub nodes with larger degrees first. In

their paper, the partial GS is called cluster synchronization.

Several interesting adaptive and impulsive synchronization criteria

are attained for a general complex dynamical network with two

different clusters by Shi and others in [8]. Lu proposed a novel

adaptive strategy to make a network achieve cluster synchroniza-

tion in [9], and Liu and others investigated the cluster

synchronization with intermittent control in [10]. They also

pointed out that to realize cluster synchronization, enlarging the

couplings of nodes in the same cluster is the key point.

There are also some papers on cluster synchronization of

directed networks without time delays. Ma and others intensively

studied the pinning cluster synchronization of directed complex

networks in [11]. They gave the pinning controllers which are

applied to inter-act nodes and intra-act nodes with zero in-degree,

respectively.

This paper uses an adaptive controller to make a directed

network with time delays achieved cluster synchronization. The

rest part of the paper is shown as following. In Section 2, the

model of directed complex dynamical network and some

preliminaries are given. The main theorems and corollaries for

cluster synchronization through adaptive control are given in

Section 3. At last, a numerical simulation is provided to show the

effectiveness of the theoretical results. Conclusions are finally

drawn in Section 5.

Preliminaries

Consider a directed complex network with N identical coupled

nodes:

_xxi(t)~fi(xi(t),xi(t{t1))z
XN

j~1

aijxj(t{t2); i~1,2,:::,N ð1Þ

Here xi~½xi1,xi2,:::,xiN �T[RN is the state vector of node i;

function f : RN?RN is a nonlinear function which can describe
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each node’s dynamics; t1 and t2 are time-varying delay and

coupling delay, respectively. Matrix A~(aij)
N|N represents the

topological structure of the network. In a directed complex

network, aij is defined as follows: if there is a direct link from node

i to node j(i=j), then aij~{aji~1; otherwise aij~aji~0. Matrix

A is satisfied with diffusive condition as follows:

aii~{
XN

j~1j=i

aij , i~1,2,:::,N

Because the complex network is directed, this paper doesn’t

assume A as symmetric or irreducible like other papers. The in-

degree of node i is defined as:

{aii~
XN

j~1

aij

If the ith node is satisfied with the following equation

XN

j~1

aij~{aii~0,

this paper will call the node which is under this condition as 0-in-

degree node.

Assume that the network has P clusters (P is unknown), which

means that all nodes in network will split into P groups when the

network achieves cluster synchronization. If P~1, then cluster

synchronization turns to complete synchronization. If node i
belongs to the kth cluster, this paper denotes that vi~k. When the

complex network achieves cluster synchronization, for any node

i,j, the following equation is established.

lim
t?0

xi(t){xj(t)
�� ��~0, vi~vj

lim
t?0

xi(t){xj(t)
�� ��=0, vi=vj

8<
:

That is to say, when the network achieves cluster synchronization,

the community of the network can be recognized. If it defines a

solution vector S~(s1(t),s2(t),:::,sM (t))T to represent the desired

state when the network achieves cluster synchronization at time t,

here k~1,2,:::,M. The error system is defined as follows:

ei(t)~xi(t){svi
(t)

Here the stable dynamic status svi
is satisfied with

_ssvi
(t)~f (svi

(t),svi
(t{t1)). The complex network can be consid-

ered to achieve P-cluster synchronization when the following

condition is satisfied:

lim
t?0

ei(t)k k~0, vi~vj

lim
t?0

ei(t)k k=0, vi=vj

8<
: ð2Þ

Adaptive Cluster Synchronization

In order to make complex network Eq. (1) achieved cluster

synchronization, an adaptive controller ui(t) is added on each

node. The controlled dynamic network can be rewritten as

_xxi(t)~fi(xi(t),xi(t{t1))z

XN

j~1

aijxj(t{t2)zui(t); i~1,2,:::,N
ð3Þ

The controller is designed as following:

ui(t)~{
XN

j~1

aijsvj
(t{t2){kei ð4Þ

Here, the constant kw0. The error system of Eq. (2) can be

obtained as

_eei~ _xxi{_ssvi
~fi(xi(t),xi(t{t1)){

fi(svi
(t),svi

(t{t1))z
XN

j~1

aijxj(t{t2)zui

ð5Þ

Throughout this paper, the following assumptions are needed to

prove the main theorem.

Assumption 1. If there is a nonlinear dynamical function f ,

to any state vectors x,y[RN|1, there exists a constant Mw0 to

make the following equation established:

f (x(t),x(t{t)){f (y(t),y(t{t))k kƒM

( x(t){y(t)k kz x(t{t){y(t{t)k k)
ð6Þ

Remark 1. Assumption 1 holds as long as
Lf

Lx
are uniformly

bounded. Almost all well-known dynamical chaotic and hyper

chaotic systems have the form of Eq. (3), which meets the

condition of assumption 1 [31].

Assumption 2. There exists a constant m which can make a

differentiable time-varying delay t(t) satisfied the following

equation.

0ƒ _tt(t)ƒmv1

It is clearly that assumption 2 is valid for constant t(t).

1. When the network has no 0-in-degree node.

Theorem 1. Under assumption 1 and 2, the controlled

complex network Eq. (3) with adaptive controller Eq. (4) can

achieve cluster synchronization if k is satisfied with the following

equation

Mz1

2
z

Mz1

2(1{m)
{kzlmax(�AA)v0 ð7Þ

Here, M and m are positive constants, and

�AA~
AzAT

2
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Proof. Define a Lyapunov function:

2V (t)~
XN

i~1

eT
i (t)ei(t)z

ðt

t{t1

M

1{m

XN

i~1

eT
i (z)ei(z)dz

z

ðt

t{t2

1

1{m

XN

i~1

eT
i (z)ei(z)dz

ð8Þ

Calculating the time derivative of V (t) along the trajectories of Eq.

(4), one has

If the equation E~(eT
1 ,eT

2 ,:::,eT
N )T[RN|1 is denoted, one gets

_VVƒ(
Mz1

2
z

Mz1

2(1{m)
{k)ET EzET AE(t{t2)z

1

2
ET AAT Ez

{(1{ _tt2)

2(1{m)
ET (t{t2)E(t{t2)

According assumption 1, one gets

ET AE(t{t2)ƒ
1

2
ET AAT Ez

1

2
ET (t{t2)E(t{t2)

Thus, under assumption 2 and Eq. (7), the following equation can

be established.

_VVƒ(
Mz1

2
z

Mz1

2(1{m)
{k)ET Ez

1

2
ET AAT E

z
M( _tt1{m)

2(1{m)
ET (t{t1)E(t{t1)z

_tt2{m

2(1{m)
ET (t{t2)E(t{t2)

ƒ(
Mz1

2
z

Mz1

2(1{m)
{kzlmax(�AA))ET E

v0

Thus Eq. (2) can be satisfied by the condition as Eq. (7), the proof

is completed.

2. When the network has some 0-in-degree nodes.

0-in-degree nodes just send information into network but do not

receive information from other nodes. That is to say, 0-in-degree

nodes are hard to achieve synchronization. This can be proved as

following. The linearization of Eq. (5) with controller Eq. (4) can

be rewritten as

_ee~(Dfi(xi){
XN

j~1

aij)ei ð9Þ

Here, Dfi(xi) is the Jacobi matrix of function f (xi) at xi. If the ith

node is 0-in-degree node, one has

XN

j~1

aij(i=j):

So 0-in-degree node has

_eei~(Dfi(xi))ei:

Since Dfi(xi)=0, ei=0, the error system of 0-in-degree node is

hardly to equal 0. It means that the network is hardly to achieve

synchronization.

In order to make the network which has 0-in-degree nodes

achieved cluster synchronization, this paper designs a feedback

adaptive strategy on 0-in-degree nodes.

Theorem 2. Under assumption 1 and 2, if complex network

Eq. (3) has 0-in-degree nodes, it can achieve the desired cluster

synchronization if controller Eq. (4) and adaptive condition Eq. (7)

hold, and adaptive feedback strategy is given as Eq. (10), and Eq.

(11) is established.

_VV (t)~
XN

i~1

ei
T _eeiz

Mz1

2(1{m)

XN

i~1

ei
T eiz

{M(1{ _tt1)

2(1{m)

XN

i~1

eT
i (t{t1)ei(t{t1)z

{(1{ _tt2)

2(1{m)

XN

i~1

eT
i (t{t2)ei(t{t2)

~
XN

i~1

ei
T ½fi(xi(t),xi(t{t1)){fi(svi

(t),svi
(t{t1))z

XN

j~1

aijxj(t{t2){
XN

j~1

aijsvj
(t{t2){kei�

z
Mz1

2(1{m)

XN

i~1

eT
i eiz

{M(1{ _tt1)

2(1{m)

XN

i~1

eT
i (t{t1)ei(t{t1)z

{(1{_tt2)

2(1{m)

XN

i~1

eT
i (t{t2)ei(t{t2)

ƒ

XN

i~1

½Mz1

2
eT

i eiz
M

2
eT

i (t{t1)ei(t{t1)�z
XN

i~1

ei
T ½
XN

j~1

aijxj(t{t2){
XN

j~1

aijsvj
(t{t2){kei�

z
Mz1

2(1{m)

XN

i~1

eT
i eiz

{M(1{ _tt1)

2(1{m)

XN

i~1

eT
i (t{t1)ei(t{t1)z

{(1{_tt2)

2(1{m)

XN

i~1

eT
i (t{t2)ei(t{t2)

~(
Mz1

2
z

Mz1

2(1{m)
{k)

XN

i~1

ei
T eiz

XN

i~1

XN

j~1

eT
i aijej(t{t2)

z
M( _tt1{m)

2(1{m)

XN

i~1

eT
i (t{t1)ei(t{t1)z

{(1{ _tt2)

2(1{m)

XN

i~1

eT
i (t{t2)ei(t{t2)
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_kk~m
XN

i~1

ei
T ei ð10Þ

Mz1

2
z

Mz1

2(1{m)
{k0zlmax(�AA)v0 ð11Þ

where m is a positive constant, k0w0 is a known constant.

Proof. Define a Lyapunov function as

2V (t)~
XN

i~1

eT
i (t)ei(t)z

1

m
(k{k0)2

z

ðt

t{t1

M

1{m

XN

i~1

eT
i (z)ei(z)dz

z

ðt

t{t2

1

1{m

XN

i~1

eT
i (z)ei(z)dz

Calculating the time derivative of V (t) along the trajectories of Eq.

(4), one has

According the proof of theorem 1, under assumption 1 and 2,

one gets _VVv0 if the following equation is established.

Mz1

2
z

Mz1

2(1{m)
{k0zlmax(�AA)v0

The proof is complete.

Simulation

This section will give some examples to verify the effectiveness

of the proposed theorems in section 3. In the following numerical

simulations, 3-dimensonal Lorenz system is designed as the

dynamical of each node. Lorenz function can be described as

following:

f (xi)~

a(xi2{xi1)

bxi1{xi2{xi1xi3

xi1xi2{cxi3

8><
>: ð12Þ

When the parameters are chosen as a~10, b~28, c~8=3,

Lorenz system is chaotic. Under these parameters, the nodes’

dynamics can be described as

_xxi~fi(xi)~½10(xi2{xi1),28xi1{xi2{xi1xi3,xi1xi2{8=3xi3�Tð13Þ

Example 1
In this simulation, a directed BA scale-free network is

constructed. The detail generation algorithm for BA scale-free

network is introduced in [5]. The parameter are m~m0~5,

N~100. Because the network is directed, when the ith node and

the jth node are connected from node i to node j, then

aij~{aji~1. Each node of the network is controlled as Eq. (4),

and the in-degree of each node is not 0, which means the following

equation will be established for each node:

X100

j~1

aij=0:

_VV (t)~
XN

i~1

ei
T _eeiz

1

m
(k{k0) _kkz

Mz1

2(1{m)

XN

i~1

ei
T ei

z
{M(1{ _tt1)

2(1{m)

XN

i~1

eT
i (t{t1)ei(t{t1)z

{(1{ _tt2)

2(1{m)

XN

i~1

eT
i (t{t2)ei(t{t2)

~
XN

i~1

ei
T ½F(xi,t){F (svi

,t)z
XN

j~1

aijxj(t{t2){
XN

j~1

aijsvj
(t{t2){kei�z(k{k0)

XN

i

eT
i ei

z
Mz1

2(1{m)

XN

i~1

eT
i eiz

{M(1{ _tt1)

2(1{m)

XN

i~1

eT
i (t{t1)ei(t{t1)z

{(1{ _tt2)

2(1{m)

XN

i~1

eT
i (t{t2)ei(t{t2)

ƒ

XN

i~1

½Mz1

2
eT

i eiz
M

2
eT

i (t{t1)ei(t{t1)�z
XN

i~1

ei
T ½
XN

j~1

aijxj(t{t2){
XN

j~1

aijsvj
(t{t2){k0ei�

z
Mz1

2(1{m)

XN

i~1

eT
i eiz

{M(1{ _tt1)

2(1{m)

XN

i~1

eT
i (t{t1)ei(t{t1)z

{(1{ _tt2)

2(1{m)

XN

i~1

eT
i (t{t2)ei(t{t2)

~(
Mz1

2
z

Mz1

2(1{m)
{k0)

XN

i~1

ei
T eiz

XN

i~1

XN

j~1

eT
i aijej(t{t2)

z
M( _tt1{m)

2(1{m)

XN

i~1

eT
i (t{t1)ei(t{t1)z

{(1{ _tt2)

2(1{m)

XN

i~1

eT
i (t{t2)ei(t{t2)
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The attractor of Lorenz system is bounded by xi1j jƒ29,

xi2j jƒ29, {1ƒxi3ƒ57, s1j jƒ29, s2j jƒ29, {1ƒs3ƒ57, thus

the network has three clusters. In the following simulation, this

paper will use the method in section 3 to confirm the number of

clusters is three. According to theorem 1, the dynamic network Eq.

(2) with controller Eq. (4) can achieve cluster synchronization when

Eq. (7) is established. In order to measure the quality of the process

of cluster synchronization, this paper uses the following quantities:

Ek(t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
vi~k

xi(t){sk(t)k k2

s
; i~1,2,:::,N; k~1,2,3:

Figure 1. The average value of error system in BA scale-free network without 0 in-degree nodes.
doi:10.1371/journal.pone.0095505.g001

Figure 2. The value of each cluster’s stable state in BA scale-free network without 0 in-degree nodes.
doi:10.1371/journal.pone.0095505.g002
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Here Ek(t) represents the average of each error system. When the

network achieves cluster synchronization, the following equation

will be satisfied:

lim
t?0

Ek(t)~0; k~1,2,3:

The simulation result is shown in the following. It’s easy to see

that each error system is 0 at last which means that each cluster

achieves synchronization from Fig. 1. Fig. 2 shows the value of

sk(t). Because s1=s2=s3 when E1~E2~E3~0, it is shown that

the nodes in different cluster cannot achieve synchronization

Figure 3. The average value of error system without adaptive feedback in NW small-world network with 0 in-degree nodes.
doi:10.1371/journal.pone.0095505.g003

Figure 4. The average value of error system with adaptive feedback in NW small-world network with 0 in-degree nodes.
doi:10.1371/journal.pone.0095505.g004
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clearly. The network has three clusters according to the simulation

result.

Example 2
In this example, this paper uses a directed WS small-world

network. The number of nodes as the BA scale-free in example 1.

In detail, this paper will use the parameter to construct a WS

small-world network as [4], the rewiring probability is p~0:2, the

number of nodes is 100, and k~5. In this example, there are some

nodes will be chosen randomly as 0-in-degree nodes.

At first, controller Eq. (4) is added on each node. The simulation

result is shown as Fig. 3. It is easy to see that each cluster can’t

achieve synchronization at all because each error system cannot

achieve 0. Then the adaptive feedback strategy Eq. (10) is added

on each 0-in-degree node, here. The simulation result shows that

the network can achieve cluster synchronization as Fig. 4 and

Fig. 5. It is easy to see that the network can achieve cluster

synchronization when the adaptive feedback strategy as Eq. (10) is

used. It is easy to see that the number of clusters is three in Fig. 5.

Conclusion

In this paper, cluster synchronization of directed complex

dynamic network with time delays was investigated. An adaptive

controller is added on each node and feedback strategy is added on

0-in-degree nodes. When the cluster synchronization is achieved,

the community of the network also can be recognized. The

numerical simulation has demonstrated the effectiveness of the

proposed approach. First, a BA scale-free network without 0-in-

degree node was investigated. The number of the clusters is

unknown. After adding an adaptive controller in theorem 1 on

each node, the network can achieve cluster synchronization, and

the community of the network also can be recognized correctly.

Then, a WS small-world network with some 0-in-degree nodes was

investigated. The simulation result showed that only adding the

controller in theorem 1 cannot make network achieved cluster

synchronization. But if using the adaptive feedback controller in

theorem 2, the network can achieve cluster synchronization, and

the community of the network can be recognized.
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