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Abstract

Analyzing Functional Magnetic Resonance Imaging (fMRI) of resting brains to determine the spatial location and activity of
intrinsic brain networks–a novel and burgeoning research field–is limited by the lack of ground truth and the tendency of
analyses to overfit the data. Independent Component Analysis (ICA) is commonly used to separate the data into signal and
Gaussian noise components, and then map these components on to spatial networks. Identifying noise from this data,
however, is a tedious process that has proven hard to automate, particularly when data from different institutions, subjects,
and scanners is used. Here we present an automated method to delineate noisy independent components in ICA using a
data-driven infrastructure that queries a database of 246 spatial and temporal features to discover a computational
signature of different types of noise. We evaluated the performance of our method to detect noisy components from
healthy control fMRI (sensitivity = 0.91, specificity = 0.82, cross validation accuracy (CVA) = 0.87, area under the curve
(AUC) = 0.93), and demonstrate its generalizability by showing equivalent performance on (1) an age- and scanner-matched
cohort of schizophrenia patients from the same institution (sensitivity = 0.89, specificity = 0.83, CVA = 0.86), (2) an age-
matched cohort on an equivalent scanner from a different institution (sensitivity = 0.88, specificity = 0.88, CVA = 0.88), and (3)
an age-matched cohort on a different scanner from a different institution (sensitivity = 0.72, specificity = 0.92, CVA = 0.79).
We additionally compare our approach with a recently published method [1]. Our results suggest that our method is robust
to noise variations due to population as well as scanner differences, thereby making it well suited to the goal of
automatically distinguishing noise from functional networks to enable investigation of human brain function.
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Introduction

It is now well established that knowledge of functional brain

networks is fundamental to understanding how the human brain

produces cognition. In recent years, resting-state fMRI (rsfMRI)

has emerged as a powerful tool for studying functional brain

networks [2–5]. Resting-state fMRI measures the spontaneous,

synchronized fluctuations in the BOLD signal involved with

information processing [6] and general maintenance and coordi-

nation of functional networks [7–9]. It allows examination of the

functional organization of the brain outside of the demands of a

particular task [10,11], making it ideal for the study of functional

brain networks in a wide range of ages and clinical populations

[12–18]. Critically, resting-state fMRI can give valuable insight to

normal and atypical development [19,20] as well as disorder-

specific aberrancy [21].

Although there is a general consensus about the importance of

rsfMRI for investigating human brain function, its potential has

not been fully exploited due to several reasons. Chief among them

is the issue of recognizing and removing noise inherent in rsfMRI

data [22,23]. There are a significant amount of physiological,

respiratory, and mechanical artifacts [24–26]. Typical strategies

for dealing with such noise include statistically adjusting for spikes

in data, removing time-points entirely, and filtering out noise

based on a global metric such as percentage of high frequency

signal. This task of detecting noise is challenging due to the

complex mixing of artifact and physiological signal; thus,

researchers have used independent component analysis (ICA)

[27] as a solution [28,29]. Mckeown et.al first applied ICA to

fMRI with simulated noise, and later addressed the ability of ICA

to separate the signals, and to reliably interpret and reproduce

these signals [30,31]. In this early work, it was clear that a standard

for what constitutes noise (or equivalently, what comprises a

functional brain network) would be needed; however, due to

variability in datasets, this has proven to be a challenge.
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To address this problem of identifying ICA components that

represent noise, researchers first relied on the same approaches

used to remove it from rsfMRI data, including filtering based on

simple metrics of the time-course, as well as manual annotation

and template matching [32–34]. More recently, researchers have

developed more sophisticated learning algorithms to group

independent components [1,29,34–37]. While the performance

of these approaches is promising, more work is needed to employ

flexible feature selection that makes no a-priori assumptions about

the signature of noise. A recent method contributes to this goal by

employing ensemble learning [38], and we extend this flexible

approach by (1) addressing this challenge through a novel strategy,

(2) going further to include a formal performance evaluation

through direct comparison with other published methods, and (3)

testing our method on more than two datasets that cross

institutions, scanners, and disorder types. The automatic filtration

of components is critical for accurately identifying and removing

ICA components that represent noise from the ever-growing

publicly available resting-fMRI datasets that contain data from

different populations collected at different sites [11,39–41].

In this paper, we describe a novel approach to automatically

identify those ICA components derived from rsfMRI datasets that

represent noise. We use ICA analysis to extract functional

networks and noise, followed by a supervised learning algorithm

to define identifying features of the noise. We make these features

and methods available in a publicly accessible database (http://

www.vbmis.com/bmi/noisecloud). We demonstrate the utility and

robustness of this method by developing models of noise using a set

of healthy control rsfMRI datasets, and then extending the models

to age- and scanner-matched cohorts of (1) patients from the same

institution with a neuropsychiatric disorder, (2) healthy control

datasets acquired on an equivalent scanner from a different

institution, and (3) healthy control datasets acquired on a different

scanner from a different institution. We also develop a model to

detect noisy components in a group decomposition of the original

healthy control rsfMRI to demonstrate application of our methods

to group ICA, as well as formally compare our method to a

recently-published approach [1]. Our approach has the potential

to become an efficient and useful tool for filtering large rsfMRI

datasets to make possible large-scale, data-driven neuroscience

research.

Materials and Methods

2.1 Overview of Our Approach
An overview of our approach is provided in Figure 1. The goal

of our methodology is to enable automatic identification of noisy

ICA components by assessing the spatial and temporal features of

these components. We adopt a machine learning approach to this

task which uses sparse logistic regression with elastic net

regularization to both build a model and to select relevant

features. We first select four datasets with differences in the

institution where the data was acquired, population, and scanner

type (see 2.2 Study data). We use independent component analysis

to extract both individual and group ICA components (see 2.3

Independent component analysis), and develop a database of compre-

hensive spatial and temporal features for the classifier to choose

from to describe these components (see 2.4 Characterizing independent

components using spatial and temporal features). We then use sparse

logistic regression to build seven models of components from

individual ICA, and one model of components from group ICA

(see 2.5 Distinguishing noise-related from network-related components using

sparse logistic regression) to demonstrate that this approach is

advantageous in being able to build custom filters for different

component types. The successful models concurrently provide

human-interpretable spatial and temporal features that distinguish

each component subtype with weights that reflect the strength of

the contribution of each feature in the model. This particular

quality of our method is essential in that we are able to

computationally and semantically characterize components. Fi-

nally, we evaluate our approach by applying it to datasets across

different institutions, scanners, and subject populations, and by

comparing it with a recently published method (see 2.6 Evalua-

tion).

2.2 Study Data
An overview of the data used in our study is shown in Table 1.

We compiled 4 datasets that are used to build and to evaluate our

methods.

Data A: We obtained an existing dataset of rsfMRI for 29

healthy controls (mean age 29.48 years, 16 Male/13 Female) from

the Mind Research Network [42]. Data were motion-corrected,

spatially smoothed with a 6 mm full width at half-maximum

Gaussian kernel, bandpass filtered (0.008 to 0.1 Hz) and spatially

normalized into the standard Montreal Neurological Atlas Space

in preparation for probabilistic ICA [43]. These data were used to

build our initial model of noise in individual ICA to be extended to

other data, and combined with Data B to build a model of noise

for group ICA components.

Data B: This comprised a dataset with 24 individuals with

Schizophrenia acquired with the same scanner and pulse

sequences (mean age 35.125, 21 Male/3 Female) [44]. Schizo-

phrenia was chosen because significant differences in connectivity

of functional brain networks have been shown to exist [18]. Data

were motion corrected, spatially smoothed, bandpass filtered, and

spatially normalized. These data were used to test our initial model

of noise in individual ICA components, and combined with data A

to test a model of noise for group ICA components.

Data C: This comprised rsfMRI data from 24 healthy controls

from the NKI Rockland resource [45]. Data C was used as a

secondary testing of the model on data from a different institution

and equivalent scanner. These data were processed equivalently to

Data A and B, and individual ICA components extracted to test

our initial model of noise.

Data D: These data were acquired from a different institution

and a different scanner and was provided by the first release from

the Human Connectome Database. To maintain anonymity, ages

are provided in ranges (16 Male/13 Female datasets, 17 in range

of 26–30, 11 in range of 31–35, and 1 in range of 22–25). Data

were processed equivalently to all other datasets. This data

collection and sharing was provided by the MGH-UCLA Human

Connectome Project (HCP; Principal Investigators: Bruce Rosen,

M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Weeden, MD).

These data were used for the last test of our initial model of noise

in individual ICA.

2.3 Independent Component Analysis
Independent Component Analysis, performed with MELODIC

(Multivariate Exploratory Linear Decomposition into Independent

Components) Version 3.10, part of FSL (FMRIB’s Software

Library), decomposed each of the individual datasets into

independent components [43]. We allowed the software to employ

automatic order selection, selecting the number of components to

extract by using the Laplace approximation to the Bayesian

evidence of the model order (Minka, 2000; Beckmann, 2004), and

used the fast fixed-point-algorithm (fastICA), also built into

MELODIC [46–48]. The fastICA approach finds the weight

matrix (w) to solve for the independent components by iteratively
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maximizing the non-Gaussianity of the projection of the weights

onto the observed data. This step in the analysis resulted in 880,

638, 1658, and 681 total components for each of Data A, B, C,

and D, respectively.

Group independent component analysis was performed with

MELODIC by doing a temporal concatenation with automatic

dimensionality estimation for each of Data A and Data B, resulting

in 25 and 19 components for each of Data A and B, respectively.

These components were combined to build and test a model of

group noise, an important task as group components are also

commonly used in analysis of functional networks [17,49,50].

Additionally, the consolidation of data into a much smaller

number of components allowed for the development of a set of

noise labels curated by more than one expert.

2.4 Characterizing Independent Components using
Spatial and Temporal Features

A total of 246 spatial and temporal features and automatic

extraction methods, some based on current literature

[32,33,37,51,52], and some novel, were developed, and features

were extracted from all components. All features and extraction

scripts are publicly available (http://www.vbmis.com/bmi/

noisecloud). Spatial features included voxel counts for each of

the 116 regions of the Automated Anatomical Labeling (AAL)

Figure 1. Overview of our approach. We preprocessed our four fMRI datasets (fMRI), and used independent component analysis to extract both
individual and group ICA components, indicated at the top of the figure. We concurrently developed comprehensive spatial and temporal features to
describe our components (feature extraction from components), and manually labeled our components as noise or not noise (expert classification of
components). Both features and labels allowed for the use of sparse logistic regression to build seven models (model development with elastic net)
of components from individual ICA, and one model of components from group ICA (Noise Models: all noise types, eyeballs, head motion, and
ventricles). The four successful individual ICA models and group model (N = 5) were then evaluated. This evaluation included using unclassified
components from external data (automatic classification with elastic net) to predict component types (classified components) and ROC curve
analysis. Summarized results are indicated in Table 1.
doi:10.1371/journal.pone.0095493.g001
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atlas, metrics to describe the distribution of Z-score values of the

spatial map (kurtosis, skewness, spatial entropy), clustering metrics

(average distance between 10 most highly connected node pairs,

minimum and maximum cluster sizes), mirror-likeness of a

component (percent overlap of one hemisphere’s voxels reflected

onto the other hemisphere), and region and tissue-specific

activation percentages (white, gray, cerebral spinal fluid (CSF),

eyeballs, edges, midbrain, skull, ventricles, cerebellum, spinal cord)

[53]. Temporal features included equivalent metrics to describe

the temporal time course (kurtosis, skewness, temporal entropy,

mean response over time), percentage of high frequency energy,

average number of local maximums and local minimums, average

distances between local maximums and minimums, average and

biggest jump from a minimum to a maximum value, power in

multiple bands (0–0.008 Hz, 0.008–0.02 Hz, 0.02–0.05 Hz, 0.05–

0.1 Hz, 0.1–0.25 Hz), autocorrelation (one through five lag),

power spectral densities, and dynamic ranges and counts (the

difference between peak power or counts and minimum or

maximum power at frequencies to the right and left of the peak). A

complete overview of spatial and temporal features is included in

Table S2. Features are not biased by preprocessing parameters

(for example, we include the band 0–0.008 despite bandpass

filtering our data) to ensure extendibility to data processed with

different strategies. Software to query the database and automat-

ically extract features was developed, and employed to character-

ize all individual (Data A, B, C, and D) and group components

(each of groups Data A and B).

2.5 Distinguishing Noise-related from Network-related
Components using Sparse Logistic Regression

We developed an automated classifier to detect noisy rsfMRI

components using logistic regression with the elastic net penalty, a

cost function added to the optimization step of regression [54]. For

N as the number of components to classify, yi as a vector of class

labels, l and a as parameters determined by cross validation and

grid search (explained later), b as the vector of weights to optimize,

and xi a feature matrix with 246 spatial and temporal features

(columns) for each of N components, the elastic net optimization

problem is defined as follows:

min
b0b

1

2N

XN

i~1

(yi{b0{xT
i b)2zlPa(b)

 !
ðAÞ

where

Pa bð Þ~ 1{a

2
bk k2

2za bk k1

Xp

j~1

1{a

2
b2

j za bj

�� ��� �
ðBÞ

The first term in Equation A can be recognized as the least

squares optimization technique, and the second is an additional

penalty term, defined in Equation B. This penalty term is a

weighted sum of (1) the ‘1{ norm, which enforces the sparsity of

the solution, and (2) the square of the ‘2{ norm of the coefficients

b which selects groups of correlated features that are not known a-

priori [55]. This technique employs intelligent feature selection by

way of fluctuating between the Least Absolute Shrinkage and

Selection Operator (LASSO), and the ridge regression penalty

[56,57]. The term alpha (a) allows this fluctuation between

LASSO (a = 1) and ridge regression (a = 0). Ridge regression is

suited to shrink the coefficients of correlated predictors toward one

another, making it ideal for many predictors with non-zero

coefficients [58]. The LASSO is more suited to choose one

predictor and disregard the rest, by setting a small subset of

predictors to have large coefficients and the rest to have

coefficients close to zero. Combining the two (the elastic net)

allows for intelligent feature selection by fine tuning the degree of

sparsity, controlled by the tuning parameter alpha. A second

parameter lambda (l) controls the sparsity and ridge regression

simultaneously. By selecting these parameters via maximization of

cross validated accuracy, the ideal threshold (meaning the number

of non-zero coefficients (b) and features used to build the model) is

automatically determined. This intelligent feature selection is an

ideal strategy for this application, as it selects the minimum feature

set from a much larger set to maximize the performance of the

classifier, and one can quickly select a custom set and number for

each component type.

We optimized the value of these parameters by finding the

combination of values that maximized the 10-fold cross validation

accuracy for each component type. During this optimization,

alpha is varied ranging from 0 (produces a ridge regression

solution, meaning that betas of correlated variables are made

equal) to 1 (produces most sparse solution). Optimizing the weights

in this iterative procedure also folds feature selection into one step,

meaning that this machine learning method performs both feature

selection and classification during the process of creating the

model. The classifier takes as input a normalized set of spatial and

Table 1. An individual and group model of ‘‘all noise types’’ (M1)(M5) was built using Data A, to be tested on three other datasets,
Data B, C, and D.

Model Labels Individual/Group Training Data Testing Data

M1 All Noise Types Individual Data A Data A, Data B, Data C, Data D

M2 Eyeballs Individual Data A Data A, Data B

M3 Head Motion Individual Data A Data A, Data B

M4 Ventricles Individual Data A Data A, Data B

M5 All Noise Types Group Data A, Data B Data A, Data B

M6 Primary Visual Cortex Individual Data A Model not successful

M7 Parieto-occipital Cortex Individual Data A Model not successful

M8 Ventral Primary Somatosensory Cortex Individual Data A Model not successful

Specific noise types (M2)(M3)(M4) were successfully built with Data A, and then extended to Data B. Models of functional networks (M6)(M7)(M8) were not successful,
and were not extended to other datasets. Ten-fold cross validation was used for evaluation of all models.
doi:10.1371/journal.pone.0095493.t001

A

B
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temporal features describing each component, and ultimately

produces, for each component, an output value between 0 and 1

that is typically thresholded at 0.5 to determine a binary decision

(0 or 1) indicating whether or not a component represents noise (or

the label of interest). The spatial and temporal features with non-

zero coefficients (the selected features) represent a computational

‘‘signature’’ to describe the component type. The final classifier is

constructed using these non-zero weights, to be used to predict the

class of a novel component. To make a prediction, h(xi), we are

interested in the probability of a noisy component given the

selected features, xi a subset of the entire set x, as determined by

our subset of non-zero coefficients, b
0

selected by the elastic net.

The selected parameters are applied to a new data, X , using the

logistic function, shown in Equation C:

h(X )~p(y~1 xj 0)~ eb0zb
0
x
0

1zeb0zb
0
x
0 ðCÞ

The output is between 0 (not noise) and 1 (noise), which is

thresholded to produce a binary class label. The choice of

threshold comes by way of receiver operator characteristic (ROC)

curve analysis, where we select a threshold that maximizes overall

accuracy, discussed in 2.6.5 Evaluation of classifier performance.

2.6 Evaluation
2.6.1 Overview of our evaluation. To demonstrate the

utility and robustness of this method for automatically character-

izing and identifying noisy components, we first developed a

‘‘ground truth’’ by manual annotation of ICA components in

rsfMRI data (see 2.6.2 Human curation of independent components) and

then built 7 models of different kinds of components, including one

model of all noise types (see 2.6.3 Building models of component types).

Finally, we tested these models with data from different institutions

and scanner types (see 2.6.4 Testing models of individual and group

noise). We evaluated our classifiers’ performance (see 2.6.5

Evaluation of classifier performance), and we compare that with results

obtained with a recently-published method (see 2.6.6 Comparison

with a recently developed method). A summary of our evaluation

approach is included in Figure 2.

2.6.2 Human curation of independent components. We

established a benchmark for validating our methods to identify

noisy ICA components in two ways. First, a single expert reader

(VS) carefully evaluated the components obtained from cases in

Data A and B using a custom tool in Matlab and provided labels

for seven specific types of ICA components, including noise

subtypes (comprehensive noise ‘‘all noise types’’, eyeballs, head

motion, and ventricles), and functional network subtypes (primary

visual cortex, parieto-occipital cortex, and ventral primary

somatosensory cortex) across the 880 and 638 components

(10,626 evaluations). This subset of component types was selected

for annotation based on the ease of manual identification using the

spatial map and time course. General indicators of noise used to

create the labels included signal outside of gray matter (in

ventricles, white matter, CSF, skull or surrounding tissue), high

frequency time-courses, and the presence of rings or stripes that

represent motion. The reader also provided labels for a standard

that encompasses ‘‘all noise types’’ for Data C and D (2,339

evaluations). Representative spatial maps for noise and functional

network subtypes are detailed in Figure 3.

Our second goal was to establish a benchmark for noise based

on more than one expert reader. Since it would have been a

formidable task to have multiple experts evaluate all individual

component labels, we used multiple readers to assess the group

components (requiring only 44 assessments per curator). Three

expert readers undertook this task (VS, KS, CA). Each reader

provided one set of labels for group components extracted from

the group decompositions of Data A and B using a secure web

interface (132 evaluations). The interface showed the equivalent

spatial maps and component signals to the readers, who were

instructed to label each component as ‘‘not noise’’ or ‘‘noise.’’ Any

disagreement among the experts in the type of component was

resolved through consensus.

2.6.3 Building models of component types. We built

models using both individual and group ICA decompositions to

demonstrate the extendibility of our method to both. For

individual ICA, a set of healthy control rsfMRI (Data A) was

used to build seven models encompassing different kinds of noise

and functional networks (all noise types, eyeballs, head motion,

ventricles, primary visual cortex, parieto-occipital cortex, and

ventral primary sensorimotor cortex). For group ICA, separate

group ICA decompositions were done for Data A and Data B to

create a set of combined healthy control and disorder-specific

components, and a model encompassing ‘‘all noise types’’ was built

using these combined group components.

2.6.4. Testing models of individual and group noise. We

tested each of our seven models described above encompassing

different kinds of noise and functional networks with cross

validation using the same healthy control (Data A). To test the

generalizability of our methods and the extendibility of our

models, we tested the four successful models from this set (all noise

types, eyeballs, head motion, and ventricles) in an age- and

scanner-matched cohort of patients from the same institution with

a neuropsychiatric disorder (Data B). Finally, we extended one of

the models (all noise types) to healthy control datasets acquired on

an equivalent scanner from a different institution (Data C), and

healthy control datasets acquired on a different scanner from a

different institution (Data D). For evaluation of the method applied

to group decomposition, a separate model was built and tested

using the group temporal concatenation of Data A (25 compo-

nents) combined with the group temporal concatenation of Data B

(19 components). Details of how the testing was carried out and

evaluated are given in Section 2.6.5.

2.6.5 Evaluation of classifier performance. For each

classifier, the output is a set of weights corresponding to the

contribution of each of the 246 spatial and temporal features in the

model. A weight of zero indicates that a particular feature was not

used in the model, and the largest weight values (both positive and

negative) indicate features that are most informative in identifying

the component type. This set of features serves as a ‘‘signature’’ for

the component type, and the non-zero coefficients were used as

input features to a logistic regression to classify novel components,

outputting a score between 0 (e.g., ‘‘not noise’’) and 1 (e.g.,

‘‘noise’’). A threshold applied to the output score provides a binary

decision between noise and not noise. For each dataset tested

above, we evaluated overall accuracy by receiver operator

characteristic (ROC) curve analysis. The ROC curve is a plot

that shows a model’s tradeoff between sensitivity (the true positive

rate) and 1-specificity (the false positive rate). To generate the

ROC curve, we subjected the output of the logistic regression to

different thresholds between the values of 0 and 1 in order to

calculate a range of sensitivity and specificity values. A threshold

closer to 0 means that we label most components as noise

(ascribing a label of 1), maximizing the true positive rate

(sensitivity), and a threshold closer to 1 means that we label most

components as not noise (ascribing a label of 0), maximizing the

true negative rate (specificity). We used thresholds between 0 and 1

C
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determined by the best cross validation accuracy (CVA),

specificity, sensitivity, and area under this curve (AUC) to assess

the overall classifier performance, and calculated confidence

intervals for these metrics. The ninety-five percent confidence

interval for our results was determined based on the standard error

of a binomial. Given k correctly identified networks out of a total

of n networks, the observed proportion p~
k

n
with a standard

error:

SE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � (1{p)

n

r

the ninety-five percent confidence interval is pz={1:96 � SE.

2.6.6 Comparison with a recently developed

method. We tested a recently published method, the Spatially

Organized Component Klassifikator (SOCK) with our data to

compare the two approaches. SOCK is a method that automat-

ically distinguishes artifacts in ICA decompositions of fMRI, and

differs in that classification is based on more ‘‘hard-coded’’

assessments, and so the algorithm does not require any sort of

training set [1]. Like our method, the input to SOCK are ICA

decompositions performed with FSL’s MELODIC, and this

allowed for extending the method to test its ability to predict

noisy components in our data. Since the method does not

distinguish different kinds of noise, we evaluated it using our data

and labels representing ‘‘all noise types’’ for combined individual

decompositions (created by combining Data A and Data B) as well

as group decompositions (combined group decompositions of Data

A and Data B).

2.7 Ethics Statement
Data from the Mind Research network were legacy data from

a study approved by the Institutional Review Board at the

University of New Mexico, and all participants provided written

informed consent including a data sharing clause for the MRN

Data Exchange. All data were de-identified before use in these

analyses. Remaining datasets were publicly available, including

(1) the NKI Rockland resource (Nooner et al., 2012), and (2)

the MGH-UCLA Human Connectome Project (HCP; Principal

Investigators: Bruce Rosen, M.D., Ph.D., Arthur W. Toga,

Ph.D., Van J. Weeden, MD). All data were analyzed

anonymously.

Results

3.1 Predictive Models for Individual Components
3.1.1 Individual Component Models trained on Data A,

tested on Data A: Classifier built using 880 components

from healthy control data. The ‘‘all noise types’’ classifier

(model M1) was successful in distinguishing noisy components

(sensitivity = 0.91, specificity = 0.82, CVA = 0.87, AUC = 0.93)

using a subset of 147 features. The features having the greatest

weight in the model pertained to regional activation (in gray

matter, CSF, and Montreal Neurological Institute (MNI) 152 atlas

template edges) and the kurtosis of the time-course. The other

classifiers for eyeballs, head motion, and ventricles (models M2,

Figure 2. ROC analysis for ‘‘All Noise Types’’ Models. ROC Analysis of the classifiers trained and tested with ten-fold cross validation on Data A,
B (same institution, different population), C (different institution, same scanner), and D (different institution, different scanner) for the ‘‘all noise types’’
models. The red line represents performance of a classifier that does no better than random chance.
doi:10.1371/journal.pone.0095493.g002
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M3, and M4, respectively), were able to accurately identify

components of their particular type (specificity = 1.0, 0.99, and

0.99, respectively), but they all had high false negative rates

(sensitivity = 0.46, 0.39, 0.43, respectively). Top selected features

encompassing subsets of 40, 16, and 5 features for the eyeballs,

head-motion, and ventricles models included ‘‘percent activation

in eyeballs,’’ ‘‘percent total activation in gray matter,’’ ‘‘spatial

entropy of the IC distribution,’’ and the ‘‘average distance between

local maximum’’ (eyeballs), ‘‘percent total activation in the skull,’’

‘‘percent total activation in white matter,’’ ‘‘average jump from

maximum to minimum intensity,’’ and ‘‘percentage of activation

that is left/right symmetric’’ (head-motion), and ‘‘percent total

activation in ventricles,’’ ‘‘percent total activation in white

matter,’’ ‘‘activation in left caudate,’’ and ‘‘percent total activation

in gray matter’’ (ventricles). The top 10 selected features and

weights for each model are included in Table 2, and complete

results are in Table S1.

Attempts to build classifiers to distinguish functional networks

(primary visual cortex, parieto-occipital cortex, and ventral

primary somatosensory cortex) were not successful, performing

no better than chance and having no value for prediction. Thus,

these models were not extended to other data. Table 3 shows the

classifier model M1 performance tested with 10-fold cross

validation with Data A, and Table 2 shows the top features used

in each model. The receiver operator curves, representing the

tradeoff between sensitivity and specificity for each model of noise,

are displayed in Figures 3 and 4. The optimal sensitivity and

specificity values reported above for each model represent the

point on these curves that maximizes the cross validated

Figure 3. Component types. Representative spatial maps for noise and functional network subtypes used in the study including (1) eyeballs, (2)
head motion, (3) ventricles, (4) primary visual cortex, (5) parieto-occipital cortex, and (6) ventral primary somatosensory cortex. For the ‘‘all noise
types’’ models (not illustrated), criteria included signal outside of gray matter, high frequency time-courses, and the presence of rings or stripes that
represent motion or scanner artifact.
doi:10.1371/journal.pone.0095493.g003
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accuracies. The red lines on the plots represent a classifier that

performs no better than random chance.

3.1.2 Individual Component Models trained on Data A,

tested on Data B: Testing models on different data from

same institution, same scanner. Four successful models built

with Data A (healthy control) were tested to automatically identify

noisy ICA components in Data B (638 schizophrenia components

from the same institution and the same scanner). The ‘‘all noise

types’’ model (model M1) was again successful in distinguishing

noisy components (sensitivity = 0.89, specificity = 0.83,

CVA = 0.86), and the remaining noise-type component classifiers

(models M2, M3, and M4) for eyeballs, head motion, and

ventricles, were able to accurately identify noisy components of

their particular type (specificity = 1.0, 0.99, and 0.99 respectively).

Once again, these classifiers had high false negative rates

(sensitivity = 0.56, 0.25, 0.2, respectively). See Table 4 for

classifier performance and Figure 2 for the receiver operator

curve.

3.1.3 Individual Component Model M1 trained on Data A,

tested on Data C, Data D: Testing model M1 on data from

different institutions. The ‘‘all noise types’’ model (model M1)

built with the 880 components from healthy control was tested to

distinguish noisy components for Data C and Data D, which

comprise data from (1) a different institution with an equivalent

scanner, and (2) a different institution with a different scanner.

Model M1 was successful in distinguishing noisy components for a

different institution and equivalent scanner (sensitivity = 0.88, 95%

CI [0.86 0.90]; specificity = 0.88, CVA = 0.88), and a different

institution and different scanner (sensitivity = 0.72, specifici-

ty = 0.92, CVA = 0.79). Table 5 includes M1 performance when

tested on Data C, and Data D, and Data B (same institution, same

scanner) is also included for comparison. See Figure 2 for the

receiver operator curve for M1 tested on Data C, and for M1

tested on Data D.

3.2 Predictive Model for Group Components
3.2.1 Group Component Model M5 trained and tested on

combined Data A and Data B: Validation of method with

multi-expert standard. To test the method using a standard

developed by a cohort of experts, a model to distinguish noisy

components ‘‘all noise types’’ (model M5) was built using 44 group

components (combined Data A and B). Model M5 was able to

successfully distinguish noisy components (sensitivity = 0.91, spec-

ificity = 0.81, CVA = 0.87, AUC = 0.82) using a set of 15 spatial

and temporal features, detailed in Table 6.

3.3 Comparison with Recent Automated Method
The Spatially Organized Component Klassifikator (SOCK) was

used to identify artifact for both our individual decompositions

(combined Data A and Data B), as well as for combined group

components from the same two datasets. To compare with our

method, we generated an equivalent model for individual ICA

using combined Data A and Data B with the same procedure

outlined in 3.1. For classifying artifact in individual ICA, SOCK

had moderate performance (sensitivity = 0.52, specificity = 0.89,

CVA = 0.69), as compared to our method (sensitivity = 0.91,

specificity = 0.89, CVA = 0.90). The low sensitivity is reflective of

the method’s high number of false negatives, or not flagging

components as noise when they should be flagged. For classifying

artifact in group ICA, SOCK again performed moderately, having

high specificity and low sensitivity (sensitivity = 0.42, specifici-

ty = 0.91, CVA = 0.68) as compared to our approach (sensitivi-

ty = 0.91, specificity = 0.81, CVA = 0.87). Complete results are

included in Table 7.

Discussion

Though ICA is a powerful technique to identify components of

functional connectivity networks, the method is limited since it

extracts functional networks as well as noise. Reviewing rsfMRI

studies by hand to identify noisy ICA components is problematic

in the paradigm of Big Data where there are numerous imaging

studies to be analyzed, and approaches that do not employ

automatic, intelligent feature selection would be challenging to

apply across institutions, scanners, populations, and component

types. Our goal was to develop an automated method to identify

noisy ICA components to allow automated filtering of rsfMRI data

to exclude them prior to data analysis, and we were able to

develop an automated classifier that can identify noisy components

with reasonable accuracy. Specifically, we built a model that can

identify an abstraction of all noise, as well as models to describe

specific components related to head motion, eyeball motion, and

ventricles. The ability of these models to accurately predict noise

using flexible feature selection across different populations, sites,

acquisition parameters, and scanner types makes it advantageous

to previous work that makes a-priori assumptions about the

signature of noise.

4.1 A Model to Distinguish All-encompassing Noise
The superior performance of models M1 and M5 representing

‘‘all noise types’’ is likely a reflection of the ability of the researcher

to have a good sense for what encompasses a component not

related to functional networks. Within the ‘‘all noise types’’

component set there are undoubtedly components that the

researcher would specify as noise, even if he or she cannot apply

a specific label such as ‘‘ventricles’’ or ‘‘eyeballs,’’ and so viewing

noise as an abstraction without needing to specify the particular

noise type (as is done with the ‘‘all noise types’’ labels) has proven

to be a successful strategy for filtering a dataset.

Confidence in the method is raised by assessing the spatial and

temporal features selected for each component type. For example,

the top selected feature for ‘‘all noise types’’ components between

individual and group classifiers is ‘‘percent activation in gray

matter.’’ Given that activation in gray matter is a prime feature of

a functional network, this result makes sense. The top selected

features for noise subtypes included ‘‘percent total activation in

eyeballs’’ (eyeballs model), ‘‘percent activation in white matter’’

(head-motion model), and ‘‘percent total activation in ventricles’’

(ventricles model). A particular feature of interest is the highly

weighted ‘‘dynamic count diff low’’ from model M5. This feature

is the difference between the peak power and minimum power at

lower frequencies to the left of the peak. This feature is a

derivation of one defined by Allen et. al, namely the ‘‘dynamic

range’’ as ‘‘the difference between the peak power and minimum

power at frequencies to the right of the peak.’’ This feature was

developed to reflect this same idea, but to the left side of the peak.

It is likely the case that many noisy components have high power

at specific frequencies, and this is reflected by assessing the

difference from both the right and the left. However, it is salient

that the feature ‘‘dynamic count diff high,’’ the feature defined by

Allen et. al reflecting difference between peak power and

minimum power to the right of the peak, was not selected. This

could be reflective of noisy components having several high counts

for higher frequencies, but not for lower frequencies [51]. We find

it plausible that our ‘‘all noise types’’ included a substantially larger

feature set to achieve equivalent classification performance, as the

definition of noise is extended beyond that of one subtype.

This classifier by no means encompasses a domain-wide

standard for noise in resting state fMRI, but rather is represen-
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tative of an individual or group standard that would be desired to

filter a larger component set. It is not clear if artifact selection

should be handled prior to or following group ICA, however the

method is useful in either case. Our method would greatly

accelerate the data review process currently performed by

researchers, even if researchers want to review the automated

results for accuracy.

4.2 Models to Distinguish Specific Noise Types
The top chosen features for each of the component classifiers

encompass both spatial and temporal features, suggesting the

importance of both. We believe that the high false negative rate for

specific noise types (models M2, M3, and M4) can be attributed to

the idea that different types of noise often are mixed in the same

component. For example, when testing model M2 (eyeballs), 11

components that were identified by the researcher as eyeballs were

missed by the classifier. More careful inspection of these

components revealed that, while they did have obvious signal in

Table 2. ‘‘Signatures’’ of Component Groups.

All Noise (M1) Eyeballs (M2) Head Motion (M3) Ventricles (M4)

1 Percent total activation in GM Percent total activation in eyeballs Percent total activation skull Percent total activation ventricles

2 Kurtosis of IC distribution Percent total activation in GM Percent total activation in WM Percent total activation in WM

3 Percent total activation MNI152
all edges

Spatial Entropy of IC distribution avg jump max min Caudate R

4 Percent total activation in CSF Avg distance btw 10 local max Percentage activation voxels LR symmetric Percent total activation in GM

5 Angular L Max cluster size 10 local max region
growing thresh 2.5

Amygdala R Caudate L

6 Angular R Mean cluster size 10 local max region
growing thresh 2.5

Percent total activation MNI152 all edges

7 Cingulum Ant R Percent total activation in WM power band 0.008 to 0.02 Hz

8 Temporal Sup L Skewness of IC distribution Percent total activation in CSF

9 Avg distance btw 10 local max Percentage activation voxels LR symmetric four lag auto correlation

10 Temporal Sup R Percentage activation voxels LR symmetric Amygdala L

Weights

1 0.5586 0.5032 0.549 0.5201

2 0.2665 20.1894 20.1565 0.2634

3 20.2467 0.1884 20.1077 0.2459

4 20.2153 0.1797 0.0893 20.2025

5 0.2098 20.0674 20.0711 20.0674

6 0.1924 20.0653 0.0571

7 0.1859 20.0444 0.0519

8 0.1637 0.0354 0.051

9 0.1619 0.0288 0.044

10 0.1604 20.017 20.0425

Top 10 Chosen Features for classifiers M1, M2, M3, and M4 built using Data A (top), and associated weights (bottom). Gray Matter (GM), white matter (WM), cerebral
spinal fluid (CSF). complete set of results included as Tables S1.
doi:10.1371/journal.pone.0095493.t002

Table 3. Classifier performance.

Model Sensitivity [95% CI] Specificity [95% CI] Best CVA [95% CI] AUC Features Used Noise/Not Noise

Noise M1 All Noise 0.91
0.88 0.93

0.82
0.78 0.86

0.87
0.84 0.89

0.93 147 475/880

M2 Eyeballs 0.46
0.25 0.61

1.0
1.0 1.0

0.98
0.97 0.99

0.93 40 30/880

M3 Head
Motion

0.39
0.21 0.57

0.99
0.99 1.0

0.97
0.97 0.98

0.99 16 28/880

M4 Ventricles 0.43
0.29 0.62

0.99
0.99 1.0

0.97
0.96 0.98

0.93 5 37/880

Performance metrics (sensitivity, specificity, best cross validation accuracy (CVA), area under the curve (AUC)), number of features selected, and proportion of noise
components in data for four successful models, including comprehensive noise (All Noise, M1) and three noise subtypes (M2)(M3)(M4), built with and tested with ten -
fold cross validation on Data A (healthy control).
doi:10.1371/journal.pone.0095493.t003
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the eyeballs, there was additional signal in other parts of the brain.

Given that the model weights the feature ‘‘percent activation in

eyeballs’’ highly (0.5032), a component with eyeballs activation

might be missed if it has activation in these other areas. This

observation is a good rationale for the approach taken by Allen et.

al, for which he ascribed components with the labels ‘‘good,’’

‘‘bad,’’ and ‘‘mixed’’ [51]. However, in these cases of a high level

of false negatives, it is notable that there were no false positives,

meaning that for our example, the labeled components that were

tagged as eyeballs were in fact eyeballs. In practice, this means that

we could use the model to confidently remove strong eyeball

components and reduce the size of the remaining subset to be

reviewed by the researcher. We have shown that the model is

flexible enough to perform well with an abstraction of all noise,

and for specific noise types.

4.3 Comparison with Recent Automated Approach
We believe that the SOCK algorithm’s high false negative rate

(missing noisy components) is due to the algorithm’s ‘‘hard-coded’’

approach, meaning its inability to learn the noise signature of a

dataset. While the specificity is high (meaning that components

flagged as artifact indeed were likely to be artifact), many noisy

components were unfortunately missed. More careful investigation

of these components revealed many spatial maps with mostly

voxels for eyeball activation, suggesting that the algorithm may

benefit from a feature that is based on a mask of this area, which

may not be included in the ‘‘edge activity measure’’ that the

algorithm does consider. The algorithm missed many noisy

components with temporal signatures limited to a narrow

frequency range across time-points, given that the range did not

exceed 0.08 Hz. The lower sensitivity might also be explained by

the SOCK method’s aim to not eliminate any components that

could be of neuronal origin when there is a mixture of noise and

biological signal. This rejection criterion differs from our approach

that aims to maximize overall accuracy. We believe that it can be

risky to make a-priori assumptions about noise; however testing

this method gave us confidence in the approach’s sensitivity, or

that the components flagged as artifact are likely to be artifact. The

discrepancy between our analysis and the SOCK algorithm

finding a small number of discordant ICs in the original paper is

likely attributable to the different data used in both cases. We were

unable to evaluate the approach with any sort of ROC curve

analysis because the output of SOCK is a binary decision

indicating artifact or not. We report combined evaluation metrics

for combined individual ICA for both Data A and B because we

saw equivalent performance of the algorithm when the data were

separated.

4.4 Independent Component Analysis
While there are many modifications of the general decompo-

sition algorithm to perform independent component analysis

[46,47,59], we used fastICA in our work because it is a solid,

practical approach that is commonly used with the MELODIC

toolbox in FSL. While it is arguably challenging to compare

components between individuals, the Z score maps were chosen

for comparison because they normalize each component data,

reflecting comparable degrees of activation from the individual-

specific means. Using Z score maps, extracted temporal features

Table 4. Classifier performance.

Model
Sensitivity
[95% CI]

Specificity
[95% CI]

Best CVA
[95% CI] Noise/Not Noise

Noise M1 All Noise 0.89
0.86 0.93

0.83
0.78 0.87

0.86
0.83 0.88

343 (295)

M2 Eyeballs 0.56
0.31 0.80

1.0
1.0 1.0

0.98
0.96 0.99

16 (622)

M3 Head Motion 0.25
0.05 0.49

0.99
0.99 1.0

0.98
0.96 0.99

12 (626)

M4 Ventricles 0.2
0.05 0.34

0.99
0.99 1.0

0.96
0.94 0.97

30 (608)

Performance metrics (sensitivity, specificity, best cross validation accuracy (CVA), area under the curve (AUC)), and proportion of noise components in data for
comprehensive noise (All Noise, M1) and three noise subtypes (M2)(M3)(M4), built with Data A and tested with ten -fold cross validation on Data B (data from the same
institution, same scanner, different subject population).
doi:10.1371/journal.pone.0095493.t004

Figure 4. ROC analysis for noise subtype models. ROC analysis of the classifiers trained and tested with ten-fold cross validation on Data A for
the ‘‘eyeballs,’’ ‘‘head motion,’’ and ‘‘ventricles’’ models, respectively.
doi:10.1371/journal.pone.0095493.g004
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can be used to compare overall levels and changes in these levels,

meaning that for the networks in any two particular individuals,

we are not comparing the values themselves, but rather the relative

strength of the networks. Our choosing to threshold the maps to

include only the highest and lowest activation voxels was arbitrary,

and based on the idea that not thresholding the maps would mean

including activation that is not statistically significant in many

more spatial areas. Thresholding the maps emphasizes regions

with the most contribution to the component. Additional

activation from not thresholding the maps would likely lower the

variance for the voxel count of regional spatial features, and we

speculate that this change would make it harder for the classifier to

find uniqueness between the components. This hypothesis has not

been formally evaluated. In the case of looking for differences in

networks between groups it could be the case that more

meaningful network differences are found at subtle differences at

the edges of these maps, and we see this as an area for future work.

However, for this work to identify noisy components, we believe

that a thresholding strategy that favors more sparse spatial maps is

favorable.

4.5 Regional, Abstracted Spatial and Temporal Features
In demonstrating that it is possible to characterize noisy

components based on higher level spatial and temporal features

over standard voxel-wise approaches, this work is a strong

proponent for the development of more abstract methods to make

inferences over large data. We believe that voxel counts for each

regional spatial feature (regions and tissue-types) represent the

component map abstractly, and this abstraction can better group

different component types across large data. For example, while

components pertaining to head motion may not overlap perfectly

on a voxel-wise level, components of these types will have voxels

that are generally grouped around the brain, and so this similarity

is better reflected in a regional voxel count. We used the AAL atlas

Table 5. Summary of classifier performance.

Model Testing Dataset
Sensitivity
[95% CI]

Specificity
[95% CI]

Best CVA
[95% CI] Noise/Not Noise

M1 Schizophrenia
Same institution, same scanner

0.89
0.86 0.93

0.83
0.78 0.87

0.86
0.83 0.88

343 (295)

M1 NKI Rockland Institute
Different institution, same scanner

0.88
0.86 0.90

0.88
0.86 0.91

0.88
0.86 0.89

947 (711)

M1 Human Connectome Database
Different institution, different scanner

0.72
0.68 0.77

0.92
0.88 0.95

0.79
0.75 0.82

451 (230)

Performance metrics (sensitivity, specificity, and best cross validation accuracy (CVA)) and proportion of noise components in data for model of all comprehensive noise
(All Noise, M1) built with Data A and tested with ten -fold cross validation on three novel datasets: Data B (same institution, same scanner, different subject population),
Data C (different institution, same scanner), Data D (different institution, different scanner).
doi:10.1371/journal.pone.0095493.t005

Table 6. Group Model Performance.

Noise (Not Noise)
Sensitivity
[95% CI]

Specificity
[95% CI]

Best CVA
[95% CI] AUC

All Noise 21 (23) 0.91
0.83 1.0

0.81
0.75 0.86

0.87
0.77 0.97

0.82

All Selected Features Weights

Percent total activation in GM 20.7905

Dynamic count diff low 20.5534

Frontal Inf Tri L 20.5432

Temporal Pole Mid L 0.4395

Kurtosis measure how outlier-prone 0.3655

Cerebellum Crus1 L 20.3348

Insula L 20.2233

Angular R 20.1752

Cuneus R 20.1367

Skewness of IC distribution 0.1189

Cingulum Mid L 20.0743

Occipital Sup R 20.0314

Four lag auto correlation 0.0131

Frontal Med Orb R 20.0129

SupraMarginal L 20.0077

‘‘All Noise types’’ Group ICA Classifier (M5) (built with combined group ICA decompositions of Data A and Data B) performance, selected features, and weights.
doi:10.1371/journal.pone.0095493.t006
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to define these regional voxel counts because it provides a

resolution that can abstract to generalized anatomical regions.

Using individual voxel activations as features would have the

potential to over-fit the data, and further, would drastically

increase the number of features to hundreds of thousands.

A huge benefit of a set of regional features defined by a standard

atlas means that they can be ascribed with anatomical labels to

allow for easy human interpretability, which is not always true of

features that have been used to distinguish noisy components.

Beckmann recently explored the possibility of using the spatial and

temporal nature of components to detect different kinds of noise

[22], and Thomas et.al suggested that features of the power

spectral density of the components could be valuable for

identifying ‘‘structured noise’’ (regular, non-neurological signal

like respiration and cardiac) and ‘‘white noise’’ (unstructured noise)

[52]. Perlbarg defined subject-specific respiratory and cardiac

noise signatures as time-courses isolated to ventricles, brainstem,

and arteries, and characterized structured noise in the rest of the

brain by correlating components with these signatures [60]. While

these approaches can be used to filter a set of components,

classification based on comparing similarity of time-courses and

spectral features is less humanly interpretable than a clear list of

features and associated weights.

We believe that a robust set of abstract features with an adaptive

algorithm is also strong in that it does not make assumptions about

the noise signature of a particular dataset. Recent work to

automatically identify noisy components makes these assumptions,

assuming that a particular spatial location or temporal frequency is

always true of noise [1], or that noise follows a static pattern in the

time-course alone [34]. While these methods work well when the

noise in the signal has an expected pattern, these methods do not

allow for noise that deviates from this expectation, do not support

identifying the signature of specific noise types, and could not be

extended to learning a signature for a novel kind of component.

We strongly believe that a solid approach should allow for the

flexibility of selecting small subsets of features from a larger set to

best define different types of noise.

4.6 Limitations
Our work has several limitations. First, we recognize that it is

challenging to automatically recognize all kinds of noise and that

the quality of our automatic classification approach is limited by

the case data we used to develop our model. The determination of

noisy ICA components could vary among readers; however we are

not aiming to establish an all-encompassing classifier for noise in

resting fMRI, but rather to demonstrate that different component

types carry computational signatures which can be identified using

an automated approach combined with intelligent feature

selection. Perhaps more important than the classifier itself is

discovery of the types of features that abstractly define noise and

which can be used to create automated, robust filtering pipelines

for the ever increasing amount of data becoming publicly

available. While there is likely to be variance in values based on

acquisition protocol, preprocessing and analysis parameters, and

subject population, we will likely see the same types of noise across

many datasets. For example, motion-related artifact will likely

have a substantial amount of signal in the skull and surrounding

tissue. While researchers studying schizophrenia in children would

likely have more substantial motion artifact in their data than an

equivalent adult study, the researchers could employ these

methods to create customized filtering pipelines for their particular

datasets, and further, identify components that share a computa-

tional signature of noise that would be difficult to identify without

these methods.

A second limitation is that our method requires choosing a

threshold for separating noisy from non-noisy ICA components.

While we chose to operate at the point that maximizes overall

accuracy, the choice of where to operate on the receiver operator

curve may vary depending on the goals of the researcher.

Minimizing false positives (identifying a component as noise when

it is not) would be achieved by maximizing specificity. This choice

would ensure that only components that are most likely to be noise

are filtered. The researcher could review all putative noisy ICA

components to make a final decision. In this scenario, the

researcher still receives benefit from the method, since a portion of

the cases need not be reviewed.

A third limitation is that component spatial maps and time

courses are influenced by order selection. Automatic order

selection is ideal for our application because it estimates order

from the data, meaning that more artifacts will lead to a higher

order, however a downside is that it leads to a comparison of

different orders between subjects. While this may be a point of

discomfort for some researchers, we believe that an automatic

estimation is ideal because it cannot be assumed that datasets share

equal biological or artifactual complexity. Additionally, the

different orders are comparable in our feature space as each

component is Z-transformed by subtracting the mean and dividing

by the standard distribution. The resulting voxel values are ‘‘Z-

scores,’’ and each Z-score map is thresholded to include the 5% of

voxels most strongly exhibiting the extracted signal. Another area

Table 7. Evaluation with other methods.

Method Component Type
CVA
[95% CI]

Sensitivity
[95% CI]

Specificity
[95% CI]

SOCK Individual All Noise Types 0.69
0.65 0.72

0.52
0.49 0.56

0.89
0.87 0.91

Our method Individual All Noise Types 0.90
0.89 0.91

0.91
0.88 0.92

0.89
0.86 0.92

SOCK Group All Noise Types 0.68
0.48 0.87

0.42
0.21 0.64

0.91
0.79 1.0

Our method Group All Noise Types 0.87
0.77 0.97

0.91
0.83 1.0

0.81
0.75 0.86

Summary of the evaluation of the Spatially Organized Component Klassifikator (SOCK) tested with our data and ‘‘all noise type’’ labels for individual decompositions
(combined Data A and B) and group decompositions (Data A and B), as well as our method’s performance with a new model tested and trained using the same
combined Data A and B. Accuracy, sensitivity, specificity, and CVA are reported below.
doi:10.1371/journal.pone.0095493.t007
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of concern is related to the possibility that the method could have

varying performance with components extracted from images of

varying resolution. It is notable that although the automatic order

estimation resulted in a larger number of components extracted

for the higher resolution data C, the model performs equivalently

well.

A fourth limitation is that we used a small number of datasets.

We strongly believe in evaluation of our approach across more

data, and this is reflected in our choice to publicly release our

software (http://www.vbmis.com/bmi/noisecloud) and include

results for data that is publicly available to other researchers (Data

C and Data D). We expect that our statistical-based classification

methodology would be extensible and generalizable to other

datasets, though feature weightings will likely be adjusted during

model creation to optimize performance. Within each individual

ICA decomposition we speculate that there are distinct probabil-

ities for seeing each component type, and so further work might

take these component type frequencies into consideration, possibly

allowing for more probabilistic approaches applied to classifying

the data.

A fifth limitation is that a metric of confidence was not obtained

during the creation of our standard labels. Neuroscience

laboratories often manually filter components based on visual

inspection of the data alone, and so our approach to developing a

gold standard of noisy ICA components mirrors that practice.

A final limitation is that although we attempted to build models

to distinguish functional networks, many of our features were

developed based on artifacts in rsfMRI, and we suspect this might

be why we were not successful in finding patterns of features to

predict specific functional networks. Additionally, we recognize

that even spatially consistent functional networks can be split into

an anterior and posterior portion, making the label creation

problematic. The manual annotation was done to select compo-

nents that were most strongly indicative of a particular noise or

network subtype, missing components that when put together

might comprise the same functional network. This could be

another strong reason that we were not successful in building a

classifier to predict any specific functional network. The variability

of components speaks to approaches that filter or manipulate

component data before attempting classification [36]. It would be

interesting to extend our feature set to include features that would

better define functional networks, as well as introducing a ‘‘mixed’’

label type that allows for components with elements of noise and

functional activation. We believe that more successfully classifying

functional components could be possible using this approach,

provided a suitable training set is acquired.

We believe that our approach is extendible beyond the domain

of distinguishing noise from functional networks. For example, the

approach would be flexible to non-traditional needs such as

finding networks with mirror-like qualities, given a suitable

training set, or creating a computational signature for other types

of brain maps. However the method may not perform well in the

case of gross brain pathology, as many of the spatial features are

based on standard atlas regions that assume spatial consistency

between individuals. In the case that a meaningful spatial or

temporal metric is not currently in the database, the method’s

ability to select a sparse set of features from a very large set makes

addition of this metric non-detrimental to the method’s perfor-

mance. Our infrastructure that stores features in a database, for

query at runtime, also means that adding a feature is easy to

accomplish. We find the possibility of researchers exploring

different component types and contributing to the database to

be exciting, and look forward to further work in exploring the

creation of new standards and features that might better classify

functional and other types of brain maps.

Conclusion

This work demonstrates that noisy ICA components can be

recognized using an automated classification method which we

developed. We show it is possible to accurately predict different

kinds of noisy ICA components using intelligent feature selection

paired with an automated method. This may have utility to

neuroscience researchers to automatically filter out noise compo-

nents as they analyze large publicly available functional neuroim-

aging datasets. While there will likely continue to be controversy

about what constitutes a particular functional network, our work

demonstrates that it is possible to computationally represent a

researcher’s or group’s labeling of components across different

datasets to identify components that match that standard. We

believe that our methods are generalizable and could be extended

to automated recognition and classification of other types of brain

maps beyond noisy components. Enabling researchers to use our

method with their data to more quickly and automatically identify

functional networks vs. noise components could greatly enable

pursuing data-driven methods for identifying brain-based bio-

markers of neuropsychiatric disorders in large scale neuroimaging

datasets [61].

Supporting Information

Table S1 Selected Features. Spatial and temporal features

and associated weights for each of the successful individual ICA

models for comprehensive noise (M1) and three noise subtypes

(M2)(M3)(M4), built with Data A, as well as the group ICA ‘‘All

Noise types’’ model (M5). A weight of zero indicates that the

feature was not selected in the model.

(XLSX)

Table S2 Spatial and Temporal Features. Names, descrip-

tions, and links to scripts for all spatial and temporal features used

to build the models.

(XLSX)
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