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Abstract

This study aimed to classify different emotional states by means of EEG-based functional connectivity patterns. Forty young
participants viewed film clips that evoked the following emotional states: neutral, positive, or negative. Three connectivity
indices, including correlation, coherence, and phase synchronization, were used to estimate brain functional connectivity in
EEG signals. Following each film clip, participants were asked to report on their subjective affect. The results indicated that
the EEG-based functional connectivity change was significantly different among emotional states. Furthermore, the
connectivity pattern was detected by pattern classification analysis using Quadratic Discriminant Analysis. The results
indicated that the classification rate was better than chance. We conclude that estimating EEG-based functional connectivity
provides a useful tool for studying the relationship between brain activity and emotional states.
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Introduction

The question of whether different emotional states are

associated with specific patterns of physiological response has

long captivated emotion research [1–3]. Although some evidence

for autonomic (i.e., peripheral physiological response) specificity

has been reported [4–7], many other studies have indicated that

the physiological correlates of emotions are likely to be found in

the central nervous system (CNS) rather than simply in peripheral

physiological responses [8–10]. Researchers have supported this

viewpoint using electroencephalographic (EEG) or other neuro-

imaging (e.g., functional Magnetic Resonance Imaging, fMRI)

approaches to investigate the specificity of brain activity associated

with different emotional states [11] However, most of the available

studies on emotion-specific EEG response have focused on EEG

characteristics at the single-electrode level, rather than at the level

of EEG-based functional connectivity. Contrary to this trend of

single-electrode-level analysis, Mauss and Robinson (2009), in

their recent review paper, have indicated that ‘‘emotional state is

likely to involve circuits rather than any brain region considered in

isolation’’ [11], neuroimaging methods that examine interrelated

activity among multiple brain sites may hold more promise for

understanding whether and how emotional specificity is instanti-

ated in the brain. In agreement with this view, we believe that

analyzing emotional specificity at the level of EEG-based

functional connectivity in the brain is a more ecologically valid

approach. Therefore, the current study aimed to elucidate whether

emotional specificity can indeed be better characterized through

EEG-based functional connectivity, using the evaluation criterion

of whether the latter serves as a better predictor for recognizing

different emotional states.

Earlier EEG-based studies of emotional specificity, with analyses

at the single-electrode level, have demonstrated that asymmetric

activity at the frontal site (especially in the alpha (8–12 Hz) band)

is associated with emotion. For example, Ekman and Davidson

(1993) found that voluntary facial expressions of smiles of

enjoyment produced higher left frontal activation [12], whereas

another study found decreased left frontal activity during the

voluntary facial expressions of fear [13]. In addition to alpha band

activity, theta band power at the frontal midline (Fm) has also been

found to relate to emotional states. For example, Sammler and

colleagues proposed that pleasant (as opposed to unpleasant)

emotion is associated with an increase in frontal midline theta

power [14]. To further demonstrate whether these emotion-

specific EEG characteristics, i.e., alpha asymmetry or activity in

other frequency bands, are strong enough to differentiate between

various emotional states, some studies have utilized a pattern

classification analysis approach, and the resulting recognition

accuracy has generally been above chance [15–18].

Nevertheless, as previously mentioned, emotion is a complex

process; hence, examining the issue of EEG-based emotional

specificity and the recognition of different emotional states may be

more valid if the issue is examined via EEG-based functional

connectivity rather than being based simply on analyses at the

single-electrode level. There are various ways to estimate EEG-

based functional brain connectivity. Correlation, coherence and

phase synchronization indices between each pair of EEG

electrodes had been used in emotional research. In the early era

of EEG research, correlation was most commonly used to

investigate the similarity between two EEG signals [19]. Based

on the assumption that a higher correlation map indicates a

stronger relationship between two signals, correlation has been

used in various areas of research, such as the study of sensory
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stimulation, clinical problems and sleeping [20]. Coherence gives

similar information as correlation, but coherence includes the

covariation between two signals as a function of frequency, a

measure that has been used in many research fields, including

physiology [21] neurological disorder [22], and exercise physiology

[23]. Phase synchronization among the participating neuronal

groups is another way to estimate the EEG-based functional

connectivity among brain sites; it is estimated based on the phase

difference between two signals. Measures of phase synchronization

in EEG are usually used in the study of neurological disease [24].

More recently, some researchers have noted the importance of

functional brain connectivity in emotion research and have started

examining emotional specificity using EEG-based functional brain

connectivity; however, most researchers have focused on only one

type of connectivity index. For example, Shin and Park (2011)

proposed that when emotional states become more negative at

high room temperatures, correlation coefficients between the

channels in temporal and occipital sites increase more than they

do when room temperatures are more moderate [25]. Hinrichs

and Machleidt (1992) proposed that coherence decreases in the

alpha band during sadness, compared to happiness [26]. Miskovic

and Schmidt (2010) found that EEG coherence between the

prefrontal cortex and the posterior cortex increases when viewing

highly emotionally arousing (i.e., threatening) images, compared to

viewing neutral images [27]. Costa and colleagues were the first to

apply the synchronization index to detect interaction in different

brain sites under different emotional states [28]. Costa et al.’s

(2006) results showed an overall increase in the synchronization

index among frontal channels during emotional stimulation,

particularly during negative emotion (i.e., sadness); furthermore,

phase synchronization patterns were found to differ between

positive and negative emotions. Costa et al. (2006) also found that

sadness was more synchronized than happiness at each frequency

band and was associated with a wider synchronization both

between the right and left frontal sites and within the left

hemisphere; in contrast, happiness was associated with a wider

synchronization between the frontal and occipital sites.

Although the aforementioned emotional specificity EEG studies

that have used functional connectivity have nicely demonstrated

that EEG-based functional connectivity can effectively differenti-

ate among different emotional states, none of these studies have

yet directly compared these different connectivity indices in a

single study. We believe that this research topic is worth pursuing

because different connectivity indices are sensitive to different

characteristics of EEG signals. Correlation is sensitive to phase and

polarity, but it is independent of amplitudes, and changes in both

amplitude and phase lead to a change in coherence [20]; similarly,

the phase synchronization index is influenced only by a change in

phase [29]. Therefore, the present study aimed to re-address the

issue of EEG-based emotional specificity using the three functional

connectivity indices and to compare which of the indices are better

able to recognize different emotional states based on pattern

classification analyses.

Although previous studies have tried to classify emotional states

by means of recording and statistically analyzing EEG signals from

the central nervous systems [16–18,30–32], however most of these

pioneer works focused on EEG features extracted at the single

electrode level. We believed that connectivity indices such as

correlation, coherence, and synchronization index may also

provide meaningful information, since processing of emotions is

a complex procedure and is not completed solely by one or few

specific brain regions.

We used emotional film clips to elicit three different emotional

states. These emotional states are based on the dimensional theory

of emotion, which asserts that there are neutral, positive, and

negative emotional states, because numerous studies have

suggested that the responses of the central nervous system [33–

36] correlate with emotional valence and arousal. More critically,

as suggested by Mauss and Robins (2009), ‘‘measures of emotional

responding appear to be structured along dimensions (e.g.,

valence, arousal) rather than discrete emotional states (e.g.,

sadness, fear, anger)’’ [11]. This study can be considered a

pioneering study that investigates emotional specificity in patterns

of EEG-based functional connectivity using three different

connectivity indices and directly compares the connectivity indices

to determine which are the most powerful in correctly recognizing

different emotional states.

Materials and Methods

1. Ethics Statement
All subjects signed informed consent before the experiments,

which was approved by the Chung Cheng University ethical

review committee (IRB).

2. Participants
Participants were 40 healthy, right-handed students from

National Cheng Kung University (21.4361.33 yr, 21 males;

21.8361.70 yr, 19 females). Individuals with a prior history of

neurological or psychiatric illness or current or prior psychoactive

medication use were excluded. Participants were asked to abstain

from caffeine and tobacco use for 24 hours before testing. Each

participant was paid NT $1,000 (US $30) for approximately 6

hours of participation.

Table 1. Significant Results of F-test and Tukey Test of Correlation (p,.05).

h FP1-F8 F = 3.41 FP1-Cz F = 3.22 FP1-T8 F = 5.42 FP1-P7 F = 3.84 FP2-F7 F = 5.28

FP2-F8 F = 11.44 FP2-C3 F = 4.33 FP2-Cz F = 3.42 FP2-T8 F = 7.69 FP2-P8 F = 3.50

F7-F8 F = 3.42 F7-F4 F = 3.56 F7-P7 F = 5.82 F7-O1 F = 3.21 F3-F4 F = 3.83

F3-P7 F = 4.79 F3-O1 F = 3.58 F4-C3 F = 3.96 F4-T8 F = 8.73 F4-P8 F = 3.53

Fz-T8 F = 7.09 C4-P7 F = 3.96 T7-T8 F = 4.29 T8-P7 F = 7.33 T8-P3 F = 3.90

T8-O1 F = 7.91 T8-O2 F = 5.81 P7-P8 F = 5.57 P8-O1 F = 6.02 P8-O2 F = 4.88

O1-O2 F = 4.12

a F7-F8 F = 3.18 F7-P7 F = 3.45 C3-T8 F = 3.41 T7-T8 F = 3.92 T7-P7 F = 3.19

P7-Pz F = 3.65 P8-O1 F = 4.45 P3-Pz F = 4.30 P4-O1 F = 5.45 Pz-O1 F = 5.27

doi:10.1371/journal.pone.0095415.t001
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3. Emotion-Eliciting Film Clips
Six emotion-eliciting film clips with visual and auditory

components were retrieved from the Standard Chinese Emotional

Film Clips Database [37] to induce positive (an amusing & a

surprising film clip), neutral (two ‘‘neutral’’ film clips), or negative

(a fear & a disgust film clip) emotions. The duration of each film

clip ranged from 0.5 to 5 minutes. Previous studies have also used

film clips with varied durations as emotional stimuli (see Christie

and Friedman, 2004; Gross and Levenson, 1995). We believed

that varied durations of the film clips would not influence stimulus

processing per se.Each film clip was edited to create a coherent

segment and thus maximize the emotional meaning of each clip.

The auditory volume was kept constant for each film clip. To

avoid order effects on emotion elicitation, the presentation of the

six film clips was counterbalanced using a Latin square design.

4. EEG Measurement
EEG was recorded with 64-channel Neuroscan equipment

(NeuroScan 4.3.1, USA), according to the international 10–20

system. A ground electrode was attached to the center of the

forehead. Electrooculography (EOG) was measured to control for

ocular artifacts. Vertical eye movement was measured using

electrodes placed above and below the left eye, and horizontal eye

movement was measured with electrodes placed lateral to the left

and right external canthi. EEG and EOG signals were amplified

using a multichannel biosignal amplifier (band pass 0.1–100 Hz)

and A/D converted at 500 Hz per channel with 12-bit resolution.

The impedance of each electrode had to be less than 5 kV.

5. Experimental Procedure
The experiment began with a 60-s go/nogo task to keep

participants in a neutral emotional state before watching a film

clip. Then, two 90-s baseline resting EEGs were recorded, with the

participant’s eyes open in the first and closed in the second. These

baselines were followed by the emotional film clips trial. Each clip

trial consisted first of a brief countdown to increase attention (from

5 to 1 with a step of 1 count per second), presented on the monitor,

followed by the clip presentation, which was approximately 0.5–

5 mins long. As participants were unlikely to always manifest an

emotional response at a consistent time segment for each flim clip,

some studies asked participants to press a button when he thought

that he had reached a specific emotional status [38]. Hence, in this

study, our participants were likewise asked to press the spacebar

once and only once while watching each film clip, whenever they

felt their emotion had changed as a result of watching the clip.

Finally, each clip trial ended with a 60-s post-film resting period.

After watching the film clips, the experimental affect was assessed

using the self-assessment manikin (SAM) developed by Lang,

which assessed the participants’ valence, arousal, dominance level,

using 9-point scales.

6. Signal Preprocess and Data Analysis
A 16.384-s (8192 data-points) signal was extracted before the

time point at which the participant had clicked on the spacebar to

indicate his or her felt emotion. We used 16.384 sec interval (8192

data points, 500 Hz sampling rate) for the following reasons: (1). In

order to obtain a stable estimate of spectral power, Davidson

suggested that a minimum of approximately a 10 s signal would be

required if the dependent measure was an electroencephalogram

Table 2. Significant Results of F-test and Tukey Test of Coherence (p,.05).

h FP1-P7 F = 3.93 FP2-F8 F = 15.019 FP2-C4 F = 3.86 F7-P8 F = 3.73 F8-F4 F = 4.29

F8-P7 F = 3.54 F8-O2 F = 3.44 F3-F4 F = 5.65 F3-T8 F = 7.61 F3-P7 F = 3.85

F4-P8 F = 4.57 Fz-T8 F = 9.00 C3-O1 F = 4.94 C3-O2 F = 3.80 C4-T7 F = 3.39

C4-P7 F = 3.38 T8-O2 F = 3.78 P7-P8 F = 4.40 P8-O1 F = 6.25 P8-O2 F = 5.62

a FP2-F3 F = 3.33 F4-P8 F = 3.74 C4-Cz F = 3.46 Cz-T8 F = 3.72 T7-O1 F = 3.86

T8-O2 F = 4.25 P7-P4 F = 3.50 P8-O1 F = 5.07 P3-Pz F = 3.80 O1-O2 F = 3.55

b F7-P7 F = 4.52 F7-P8 F = 3.44 T7-P8 F = 6.57 P7-P4 F = 3.59

doi:10.1371/journal.pone.0095415.t002

Table 3. Significant Results of F-test and Tukey Test of Phase Synchronization Index (p,.05).

h FP1-Cz F = 3.25 FP2-P3 F = 4.22 FP2-Pz F = 4.88 F4-T8 F = 5.28 C3-C4 F = 3.56

C4-P3 F = 4.21 Cz-Pz F = 3.38 T7-Pz F = 6.08 T8-P7 F = 4.46 P7-P8 F = 3.66

P7-O2 F = 4.80

a FP2-F7 F = 4.22 FP2-P3 F = 3.47 F7-Cz F = 6.47 F7-P7 F = 4.93 F3-F4 F = 4.49

F4-T8 F = 3.85 Fz-C4 F = 4.09 Fz-P4 F = 4.94 C3-C4 F = 3.45 C3-P3 F = 3.39

C3-P4 F = 3.57 T7-O1 F = 3.31 P8-O1 F = 3.28

b FP1-F7 F = 3.64 FP2-T8 F = 3.54 FP2-Pz F = 3.26 F7-O2 F = 3.28 F8-Fz F = 5.97

F8-P8 F = 4.57 F3-Fz F = 5.73 Fz-P4 F = 4.36

c FP1-P7 F = 3.97 FP1-P4 F = 3.24 FP2-Fz F = 4.85 FP2-T7 F = 4.68 FP2-T8 F = 3.91

FP2-Pz F = 3.53 F8-P7 F = 3.39 C3-C4 F = 4.07 Cz-Pz F = 4.84 Cz-O2 F = 3.27

T8-Pz F = 3.58 P3-P4 F = 3.39

doi:10.1371/journal.pone.0095415.t003
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(EEG) (Davidson, 1990). He also mentioned that brain activity

occurring over long period might be interfered with by factors

which are unrelated to the elicited emotion. (2). For Coherence

estimation, EEG signal was transfer to frequency domain via fast

fourier transform (FFT). To increase transform speed, the number

of data points should be power of 2. A custom Matlab 2009b

(Waltham, MA, USA) program was used for offline data analysis.

To remove 60-Hz noise coming from the power line, the EEG

signal was passed through a low-pass filter with a 50-Hz cutoff

frequency. EEGLAB, an open-source toolbox for analysis of

single-trial EEG dynamics, was used in this research [39]. The eye

movement component in the raw data was detected and removed

using an independent component analysis (ICA) routine in

EEGLAB. The artifact remove procedure was applied to all

EEG epochs for every subject under different emotion conditions

since it is hard for participants to keep eyes fixed during watching

entire film clips. The amount of artifact removal was similar across

different emotion conditions. A 2nd order bandpass Butterworth

filter was used to extract the specific EEG frequency bands. To

estimate the EEG-based functional connectivity among brain sites,

the following three indices were calculated for the theta band (4–

7 Hz), alpha band (8–12 Hz), beta band (13–30 Hz) and gamma

band (31–50 Hz).

7. Functional Connectivity Indices
Following the suggestion by Costa [28], EEG-based functional

connectivity was estimated in the theta, alpha, beta, and gamma

bands for all pairs of 19 electrodes, including Fp1, Fp2, F7, F8, F3,

F4, Fz, C3, C4, Cz, T7, T8, P7, P8, P3, P4, Pz, O1, and O2.

7.1 Correlation. For two different signals A and B, the

correlation at each frequency (f) is defined as

r(f )~CAB(f )=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(CAACBB)

p
, ð1Þ

where CAB is the cross-covariance between signals A and B; CAA is

the auto-covariance of signal A; and CBB is the auto-covariance of

signal B. Correlation is sensitive to phase and polarity and its value

ranges from 21 to 1. A higher correlation corresponds to a

stronger relationship between two brain sites.

7.2 Coherence. For two different signals A and B, the

coherence at each frequency (f) is defined as

Coh (f )~ SAB(f)j j2= (SAA(f )SBB(f )), ð2Þ

where SAB(f)j j is the cross-spectral density between signals A and

B; SAA is the auto-correlation of signal A; and SBB is the auto-

correlation of signal B. Coherence is sensitive to amplitude and

phase change, and its value ranges from 0 to 1. Similar to

correlation, higher coherence indicates that two brain sites are

working more closely together, but at a specific frequency.

7.3 Phase synchronization index. Phase synchronization

between two nonlinear oscillation systems is defined as

Qn,m~ nQ1(t){mQ2(t)j jva,

Q1 and Q2 are the phases of two oscillation systems and a is a

constant. To compute phase synchronization, it is necessary to

obtain the phase of the signal. The instantaneous phase of any

signal x(t) is defined as

Figure 1. Brain maps of correlation. The lines connecting electrode sites indicate significant higher (solid) and lower (dashed) of correlation
values for condition listed on left site.
doi:10.1371/journal.pone.0095415.g001
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Q(t)~ tan{1 xH (t)

x(t)
,

where xH (t) is the Hilbert transform of x(t).

After finding the instantaneous phases of two signals, the phase

differences between two signals (Q~Q1{Q2) can be obtained by

setting m = n = 1. For two signals with data length L, the phase

synchronization index (PSI) is defined as

PSI~
1

L

XL

t~0

eiw(t)

�����
�����: ð3Þ

The phase synchronization index is sensitive to phase change

and its value ranges from 0 to 1. The phase synchronization

index = 1 if and only if the condition of strict phase locking is

obeyed. In contrast, the phase synchronization index = 0 for

uniformly distributed phases.

8. Statistical Analysis
To determine the different connectivity indices among all pairs

of 19 electrodes, repeated-measures analyses of variance (ANO-

VAs) for each frequency band were used, with two within-subject

factors: electrode pair (171 pairs) and condition (neutral, positive,

and negative emotion). Post-hoc analyses were calculated using

Tukey tests to compare functional connectivity patterns within the

specific states of neutral, positive, and negative.

9. Using Pattern Classification Analysis to Recognize
Emotional States Based on EEG Connectivity Indices

To test whether the pattern of connectivity indices could be

used to predict emotional states, the connectivity indices for all

pairs of electrodes at each frequency band were selected as features

Figure 2. Brain maps of coherence. The lines connecting electrode sites indicate significant higher (solid) and lower (dashed) of coherence values
for condition listed on left site.
doi:10.1371/journal.pone.0095415.g002
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for pattern classification. The term ‘‘feature’’ in pattern classifi-

cation analysis refers to a psychophysiological variable [40]. To

define an optimal set of features, a criterion function should be

defined. Thus, an exhaustive search in all possible subsets of input

features was required to guarantee an optimal set. To limit this

enormous search space, we performed feature selection based on

ANOVAs (Kreibig et al., 2007). Features for which ANOVAs

were significant at p#0.05 (Tables 1, 2, & 3) were selected, as this

led to the best precision. A simple classifier named Quadratic

Discriminant Analysis (QDA), contained in the MATLAB Arsenal

software [41], was used in this study. QDA is closely related to

Linear Discriminant Analysis (LDA). It provides extremely fast

Figure 3. Brain maps of phase synchronization index. The lines connecting electrode sites indicate significant higher (solid) and lower
(dashed) of phase synchronization index for condition listed on left site.
doi:10.1371/journal.pone.0095415.g003
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evaluations of unknown inputs performed using distance calcula-

tions between a new sample and the mean of training data samples

in each class, weighted by their covariance matrices. A quadratic

discriminant Analysis tries to find an optimal hyperplane to

separate the three emotional states (neutral, positive and negative).

In this study, 2-fold cross validation was used for pattern

classification. For each fold, we randomly assigned data points to

two sets as ‘‘data 1’’ and ‘‘data 2’’, so that both sets of data were of

equal size. We first trained on data 1 and tested on data 2, and

then trained on data 2 and tested on data 1. This has the

advantage that training and test data are both large, and each data

point is used for both training and testing on each fold. If the

predicted emotion matched the target emotion (in testing data),

that indicated the data were correctly classified. Accuracy was

defined as the percentage of data which were correctly classified.

For example, if there were 100 testing data, and 60 of the data

were correctly classified, then the accuracy was 60%. The 2

accuracies from the 2 folds then averaged to produce a single

accuracy estimation; However, Brodersen et al. 2010 argued that

the average accuracy may lead to false conclusions since a classifier

was tested on an imbalanced dataset. To overcome the shortcom-

ing, they proposed the ‘‘balanced accuracy’’ instead of average

accuracy [42].

Base on the confusion matrix.

Actual (+) Actual (2)

Predicted (+) TP FP

Predicted (2) FN TN

The balanced accuracy which was used in this study can be

defined as

1

2

TP

P
z

TN

N

� �
Where P~TPzFN, N~TNzFP:

Thus, the discriminability of the emotional states, based upon

respective input features, was tested against chance.

In this study, we also compared classification performance using

features extracted at the single electrode level to that derived from

EEG-based functional connectivity in pairs of electrodes. We

followed two methods of feature extraction: one proposed by Dan

[15], which is carried out using the Fourier transform. In their

study, Fast Fourier Transform (FFT) with a 1 s non-overlapping

window was used to compute the energy of each channel and

frequency band. Then the log energy was calculated for each 1 s

EEG epoch as classification features. Another method was

proposed by Murugappan [17], which is based on wavelet

analysis. The raw EEG signals were decomposed into sub

frequency bands by using Discrete Wavelet Transform (DWT).

‘‘db4’’ wavelet function was used for deriving a set of conventional

and modified energy based features for classification. However, we

extracted features from 19 electrodes used for EEG-based

functional connectivity estimation. These electrodes are not

exactly the same as those used in previous studies. Therefore,

the classification performance used in our study might not be the

same as that proposed in these two studies.

Results

1. Data Preprocessing: Participants Screening
To verify if a film clip successfully elicited the targeted

emotional valence states, participants SAM score for each film

Table 4. Comparison of Classification Accuracy in Different Frequency Bands With and Without Feature Selection Base on
Correlation.

Correlation Without feature selection With Feature selection

Mean (S.D.) Mean (S.D.) p

Theta 0.47 (0.03) 0.55 (0.02)** 1.26610225

Alpha 0.42 (0.03) 0.53 (0.02)** 5.79610232

Beta 0.40 (0.02) NS

Gamma 0.40 (0.02) NS

Note: NS: No couples of electrodes were selected since there was no main effect among emotional states (i.e. no feature selection was performed);
**Accuracy with feature selection is significant higher than that without feature selection, p,.01.
doi:10.1371/journal.pone.0095415.t004

Table 5. Comparison of Classification Accuracy in Different Frequency Bands With and Without Feature Selection Base on
Coherence.

Coherence Without feature selection With Feature selection

Mean (S.D.) Mean (S.D.) p

Theta 0.46 (0.03) 0.55 (0.03)** 7.38610229

Alpha 0.44 (0.03) 0.54 (0.03)** 4.15610232

Beta 0.40 (0.02) 0.53 (0.04)** 1.64610246

Gamma 0.40 (0.04) NS

Note: NS: No couples of electrodes were selected since there was no main effect among emotional states (i.e. no feature selection was performed);
**Accuracy with feature selection is significant higher than that without feature selection, p,.01.
doi:10.1371/journal.pone.0095415.t005
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clip was assessed. We used the following criteria to screen

participants based on the valence scores they reported on the

SAM. A negative emotional state was defined as low in valence

(less than 3), a positive emotional state was defined as high in

valence (more than 7), and a neutral emotional state was defined as

a valence score between 4 and 6. Only data from participants,

whose three targeted emotional states were all successfully elicited

by the film clips, were used for further analysis (29 out of 40

individuals). Using this screening procedure, twenty-nine out of

the forty participants were selected.

Because the number of film clips for each emotional state that

could successfully induce these twenty-nine participants’ targeted

emotional states could vary, i.e., some participants had a positive

emotional state successfully induced by only one film clip, whereas

others had such a state induced by two film clips, our next step was

to select one of the two film clips for each targeted emotional state

based on these 29 participants’ SAM arousal scores. The data for

the positive and negative emotional states with the highest arousal

scores were selected as target emotion data for further analysis,

and the data for neutral emotional states with the lowest arousal

scores were selected. Following this selection procedure, 16

participants had positive emotional states induced by an amusing

film clip, 13 participants had positive states induced by a surprising

film clip, 13 participants had negative emotional states induced by

a fear-related film clip, 16 participants had negative states induced

by a disgust-related film clip, 20 participants had a neutral

emotional state induced by one of the ‘‘no emotion’’ film clips, and

9 participants had a neutral state induced by the other ‘‘no

emotion’’ film clip.

2. EEG-Based Functional Connectivity Indices
As Tables 1, 2, and 3 show, the main effect for emotional state

was statistically significant for a number of different electrode

pairs. Post-hoc analyses were performed using Tukey tests to

compare connection patterns under the specific emotional states of

neutral, positive, and negative. Since Tukey tests were used in this

analysis, multiple comparisons correction was not necessary here.

The connections with significant difference tested of three

connectivity indices value are shown in Figures 1, 2, and 3 (the

solid lines connecting electrode sites indicate the index that have

significant higher and dashed lines a lower values for condition

listed on left site). The details are described below.

2.1 Correlation. The correlation analysis of emotional states

is shown in Table 1. The F-test of these correlations produced

significant results, mainly in the theta and alpha bands. Significant

post-hoc analyses for each frequency band between emotional

states are shown in Figure 1 and described below.

1) Theta band. Compared to neutral emotions, a significantly

lower correlation at the frontal site and higher correlations at

the temporal and occipital sites were found when watching

negative films. No differences between a negative state and a

positive state were found in the theta band. A significantly

lower correlation was found in a positive state than in a

neutral state at the frontal and parietal sites. A positive state

showed higher correlations than a neutral state mainly at the

temporal, parietal and occipital sites.

2) Alpha band. A significantly higher correlation was found in

a neutral state only in the case of F7-P7 activity. A negative

state showed a significantly higher correlation than a positive

state, especially at the parietal and occipital sites. A neutral

state showed a lower correlation than a positive state mainly at

the right temporal site.

3) Beta band. No significant difference in correlation was

observed among emotional states in the beta band.

4) Gamma band. No significant difference in correlation was

observed among emotional states in the gamma band.

2.2 Coherence. The coherence analysis of emotional states is

shown in Table 2. The F-test of these correlations produced

significant results, mainly in the theta, alpha and beta bands.

Significant post-hoc analyses for each frequency band between

emotional states are shown in Figure 2 and described below.

1) Theta band. Compared to a neutral state, there was

significantly higher coherence at the frontal and right parietal

sites when watching a negative film. Compared to a positive

state, significantly higher coherence was found during a

negative state only for FP2-C4 electrodes. A positive state

Table 6. Comparison of Classification Accuracy in Different
Frequency Bands With and Without Feature Selection Base on
Phase Synchronization Index (PSI).

PSI

Without feature
selection

With Feature
selection

Mean (S.D.) Mean (S.D.) p

Theta 0.53 (0.05) 0.69 (0.05)** 2.33610230

Alpha 0.50 (0.05) 0.64 (0.05) ** 9.49610225

Beta 0.48 (0.04) 0.65 (0.05)** 1.05610231

Gamma 0.52 (0.06) 0.70 (0.04) ** 5.33610232

Note: **Accuracy with feature selection is significant higher than that without
feature selection, p,.01.
doi:10.1371/journal.pone.0095415.t006

Table 7. Comparison of Classification Accuracy by Using All Frequency Bands Base on Correlation, Coherence and Phase
Synchronization Index (PSI) With and Without Feature Selection.

Without feature selection With feature selection

Mean (S.D.) Mean (S.D.) p

Correlation 0.43(0.04) 0.61 (0.03)** 2.22610247

Coherence 0.44 (0.03) 0.62 (0.04) ** 3.32610247

PSI 0.52 (0.06) 0.82 (0.06) ** 9.48610238

Note: **Accuracy with feature selection is significant higher than that without feature selection, p,.01.
doi:10.1371/journal.pone.0095415.t007
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showed significantly higher coherence than a neutral state,

mainly at the frontal and temporal sites.

2) Alpha band. A negative state showed significantly higher

coherence than a neutral state in the case of FP2-F3 and T8-

O2 activity. Compared to when watching a positive film,

significantly higher coherence was observed mainly at the

temporal and occipital sites when watching a negative film.

Compared to a positive state, a neutral state showed

significantly higher coherence in the case of Cz-T8 activity

and significantly lower coherence in the case of T7-O1

activity.

3) Beta band. A negative state showed significantly higher

coherence than a neutral state, mainly at the temporal site. A

negative state showed significantly higher coherence than a

positive state only in the case of T7-P8 activity. A neutral state

showed significantly lower coherence than a positive state in

the case of F7-P7 activity.

4) Gamma band. No significant differences were observed

among emotional states in the gamma bands.

2.3 Phase synchronization index. The statistical analysis of

the phase synchronization index for emotional states is shown in

Table 3. The F-test of these correlations produced significant

results at each frequency band. Significant post-hoc analyses for

each frequency band between emotional states are shown in

Figure 3 and described below.

1) Theta band. A negative state was associated with more

synchronization than a neutral state, mainly at the frontal site.

A positive state was associated with more synchronization

than a negative state in the case of F4-T8 and T8-P7 activity,

which are associated with temporal sites. A neutral state was

associated with more synchronization at the temporal and

parietal sites, compared to a positive state.

2) Alpha band. A negative state was associated with more

synchronization than a neutral state in the case of C3-P3

activity and less synchronization in the case of P8-O1 activity.

Compared to both a negative and a neutral state, a positive

state showed more synchronization, mainly at the frontal site.

3) Beta band. A neutral state was associated with more

synchronization than a negative state, mainly at the frontal

site. A negative state was associated with more synchroniza-

tion at frontal and temporal sites and less synchronization at

the temporal site. A neutral state showed higher synchroni-

zation than a positive state in the case of F3-Fz activity.

4) Gamma band. Compared to a neutral state, a negative state

showed more synchronization in the case of Fp1-P4 and T8-

Pz activity and less synchronization in the case of F8-P7 and

C3-C4 activity. A positive state showed more synchronization

than a negative state at the frontal and parietal sites. A neutral

state showed less synchronization than a positive state only in

the case of FP2-T7 activity.

3. Pattern Classification Analysis Based on EEG
Connectivity

Classification performance was estimated by calculating accu-

racy, which is defined as the correspondence between the

classification result and the input (i.e., when the predicted emotion

state matches the actual emotion state). Paired t-test was used to

assess the significance of the accuracies.

Table 8. Comparison of Classification Accuracy by Using Single Frequency Band Against Using Total Frequency Bands Base on
Correlation, Coherence and Phase Synchronization Index with Feature Selection.

Total -Theta Total -Alpha Total - Beta Total - Gamma

df t p df t p df t p df t p

Correlation 49 10.37** 4.84610217 49 14.65** 2.76610226 – –

Coherence 49 11.77** 2.41610220 49 14.05** 2.26610224 49 16.19** 2.80610228 –

PSI 49 17.11** 1.18610227 49 24.08** 2.34610237 49 21.27** 1.19610232 49 18.78** 2.20610232

Note: **Accuracy by using total frequency band is significant higher than that using single frequency band, p,.01.
doi:10.1371/journal.pone.0095415.t008

Table 9. Comparison of Classification Accuracy by Different Connectivity Index.

ANOVA Tukey HSD test

Connectivity index Mean (S.D.) F Correlation Coherence PSI

Correlation 0.61 (0.03)

Coherence 0.62 (0.04) 12492.56** . Correlation**

(p = 0.03)

PSI 0.82 (0.06) . Correlation**

(p = 1.52610257)

. Coherence**

(p = 3.22610251)

df = 2/49.
Note: *p,.05. **p,.01.
doi:10.1371/journal.pone.0095415.t009
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Tables 4, 5, 6 show the mean classification accuracy across 50

trials, based on different connectivity indices with and without

feature selection. Classification accuracy based on correlation is

shown in Table 4. The results indicate that this classification

accuracy was significantly improved with feature selection (in the

theta (t(49) = 14.64, p,.01) and alpha (t(49) = 17.61, p,.01) bands)

and was significantly better than chance in the theta and alpha

bands. Classification accuracy based on coherence is shown in

Table 5. With feature selection, classification accuracy was

significantly improved (in the theta (t(49) = 16.01, p,.01), alpha

(t(49) = 18.02, p,.01), and beta (t(49) = 26.52, p,.01) bands) and

was significantly better than chance in the theta, alpha and beta

bands. Classification accuracy based on the phase synchronization

index is shown in Table 6. This classification accuracy was

significantly improved with feature selection (in theta

(t(49) = 16.67, p,.01), alpha (t(49) = 13.90, p,.01), beta

(t(49) = 17.64, p,.01, and gamma (t(49) = 18.92, p,.01) bands)

and was significantly better than chance at all frequency bands.

We used the connectivity indices for all frequency bands as

features; the results are shown in Table 7. Classification accuracy

was significantly improved with feature selection (for correlation

(t(49) = 27.36, p,.01), coherence (t(49) = 27.09, p,.01), and the

phase synchronization index (t(49) = 28.45, p,.01)). Furthermore,

classification performance based on all frequency bands was

significantly better than classification performance based on any

single frequency band (Table 8). Bonferroni correction was used for

this multiple comparison. (Statistically significant p-value after the

Bonferroni correction for correlation comparison: 0.025; for coherence

comparison: 0.016; for PSI comparison: 0.0125).

To determine which index for emotion classification was best,

we compared classification performance using the connectivity

indices for all frequency bands, with feature selection; the result is

shown in Table 9. Classification accuracies were analyzed using

repeated-measures ANOVAs; if these analyses were significant,

post-hoc Tukey tests were performed. The mean accuracy was

0.61 for correlation, 0.62 for coherence and 0.82 for the

synchronization index, separately. The results of repeated-

measures ANOVAs showed that significant main effects were

present. Post-hoc Tukey tests indicated that the prediction

accuracy of the phase synchronization index was significantly

higher than that of the correlation and coherence analyses

(F(2,49) = 12492.56, p,.01).

Discussion

The goal of this study was to demonstrate EEG-based functional

connectivity among different emotional states, which was inves-

tigated by estimating the dynamic coupling between EEG

channels associated with emotion. This study is the first to

investigate brain functional connectivity among emotional states

using three different indices. The main prediction, i.e., that

different patterns of functional connectivity would be associated

with different emotional states, was supported by our results.

Furthermore, differences in functional connectivity can be

considered a feature, and this feature can be used to predict

emotional states.

One might argue that the EEG pattern was elicited by the

specific features of film clips (i.e. image, sound…), not emotion per

se. However, we think this is unlikely for two reasons. First, in our

study, we found that even the same movie clip might induce

different emotions for different individuals, which led to the

emotional valence did not match the targeted emotion for some

individuals (15% in positive emotion, 9% in neutral emotion and

29% in negative emotion). To overcome this problem, in our

study, the experimental affect was assessed using the self-

assessment manikin (SAM). Only data from participants whose

two targeted emotional states were all successfully elicited by the

film clips were used for further analysis.

Second, two different films for each emotion were used which

are positive (one amusing & one surprising film clip), neutral (two

‘‘neutral’’ film clips), and negative (one fear & one disgust film clip)

emotions. Two sets of clips (two clips for each target emotion) were

usually used in emotional research which allowed us to test

whether EEG reactions were specific to the emotion domain

represented by the film clips or to specific aspect of the film clips. If

similar EEG patterns were observed in two different film clips for

single target emotion, we can conclude that the EEG pattern

difference was due to emotion but not some basic aspect of the film

clips.

Table 10. Classification Accuracy when Feature Selection Process was Only Applied to The Training Data.

Without feature selection With feature selection

Mean (S.D.) Mean (S.D.) p

Correlation 0.42 (0.05) 0.54 (0.03)** 1.04610219

Coherence 0.40 (0.03) 0.61 (0.05)** 1.44610231

PSI 0.44 (0.04) 0.68 (0.04)** 1.86610230

Note: **Accuracy with feature selection is significant higher than that without feature selection, p,.01.
doi:10.1371/journal.pone.0095415.t010

Table 11. Classification Accuracy by Features Extracted from
Signal Electrode.

Feature extraction method Mean(S.D.)

Features base on power (Dan et al., 2011) 0.53 (0.04)

Features base on wavelet analysis (Murugappan et al., 2010) 0.48 (0.06)

doi:10.1371/journal.pone.0095415.t011

Table 12. Comparison of Classification Accuracy by Using All
Frequency Bands Base on Correlation, Coherence and Phase
Synchronization Index (PSI) between male and female.

Correlation Coherence PSI

Male 0.61(0.05) 0.65(0.05) 0.75(0.04)

Female 0.57(0.08) 0.64(0.06) 0.79(0.06)*

Note: *Accuracy in female is significant higher than that in male, p,.05.
doi:10.1371/journal.pone.0095415.t012
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1. EEG-Based Functional Connectivity among Scalp
Regions

As observed in Tables 1 to 3 and Figures 1 to 3, different EEG-

based functional connectivity patterns were observed among

different emotional states. Shin and Park (2011) proposed that

correlation coefficients between the channels in temporal and

occipital scalp regions would increase with negative emotion [25].

Similar results were found in this study; for the theta and alpha

bands, a negative emotional state was associated with higher

correlations in the occipital site than were neutral and positive

emotional states. The current results also showed that a positive

emotional state was associated with higher correlations in the

temporal site, especially in the right hemisphere, than was a

neutral state.

Some studies have reported that coherence was greater during

negative emotion than during positive emotion [27]. Similar

observations have been reported for prefrontal–temporal EEG

coherence while participants were watching stressful versus

enjoyable film sequences [43]. In line with these findings, our

results showed that coherence was greater during negative

emotion than during positive emotion in the theta, alpha and

beta bands. Most of these coherence differences were located in

the right parietal and occipital sites.

Aftanas et al. used Kolmogorov entropy as a measure and found

that positive emotion was associated with a smaller degree of

entropy, which indicated more synchronization, especially in

frontal sites [44]. Our results similarly indicated that positive

emotion was more synchronized than negative emotion at each

frequency band. However, in Costa et al.’s (2006) study, the

researchers proposed that sadness was more synchronized than

happiness at each frequency band. This inconsistency might occur

because the emotional stimuli used in the current study were

different from those in Costa et al.’s (2006) study. Specifically, we

used fear and disgust films as stimuli for negative emotion, which is

different from Costa et al.’s study. Kreibig has indicated that

sadness and fear might be expected to differ physiologically [40];

hence, different emotions might cause divergent brain synchroni-

zation even when both are considered to be negative emotions.

Taken as a whole, the results of the present study agreed with

the findings in previous studies that have highlighted the role of

integration of brain information in emotional processing. Corre-

lation and coherence analyses showed similar patterns, in that

negative emotional states had higher correlation (or coherence)

than positive emotional states, especially at the occipital and

temporal sites. This is not surprising, considering that Guevara

and Corsi-Cabrera’s (1996) research reveals that correlation and

coherence show high degrees of statistical equivalence in EEG

analysis [20]. However, the phase synchronization index during

negative states was smaller than it was during positive states at the

frontal site. These divergent findings might be due to differences in

the essence of each of these three connectivity indices: they are

sensitive to different characteristics of the EEG signal (i.e.,

amplitude, phase and polarity).

2. Pattern Classification Analysis Based on EEG
Connectivity

Tables 1 to 3 demonstrate that EEG-based functional connec-

tivity indices show different patterns among emotions. To address

whether a pattern can be used as a feature to predict emotional

states, QDA classification was used in this research. The results

showed that emotional states could be accurately predicted.

Classification accuracy was significantly better than chance when

using feature selection, which indicates that emotional states might

be characterized by unique patterns of EEG-based functional

connectivity indices.

Some studies have proposed that appropriate feature selection is

essential for achieving good performance. By reducing the number

of feature vectors, a more compact and more easily interpretable

set of data is provided to the system, the performance of the

learning algorithm is improved and the speed of the system

increases [45,46]. Tables 4 to 6 show that classification without

feature selection resulted in worse performance than classification

with feature selection, indicating that feature selection is relevant

for emotion recognition. In this study, we performed the feature

selection approach using all data (including training and testing

data). However, this might introduce a bias in the final accuracy

estimation. In order to preclude the possible bias, we re-analyzed

the data with the procedure that the feature selection process was

only applied to the training data and not to the testing data for

each fold of the cross validation. The results are shown in Table 10.

These results are similar to the results reported in this paper, i.e.,

the classification accuracy was significantly improved with feature

selection. Hence we believe that the improvement in classification

performance was due to feature selection.

The results of this study demonstrate that connectivity indices at

each frequency band can seemingly be used to distinguish different

emotional states. Although changes in alpha band activity between

different emotions have been well documented [47], it has been

proposed that activity in the theta [14,48–53], beta [14,54] and

gamma [55–58] bands could also be associated with emotional

states. Our data show that EEG-based functional connectivity at

each frequency band reveals specific patterns for different

emotional states (Tables 4 to 6). Thus the connection between

emotions and EEG patterns does not occur in only one particular

band, but it is evident in all frequency bands. Several studies have

tried to use features extracted from all frequency bands to predict

human emotional states [16–18], but these studies did not

compare classification performance when only features within a

single, specific frequency band were used. Tables 7 and 8

demonstrate that if we consider features from all frequency bands,

better classification performance is achieved than when only one

frequency band is considered. Dan and colleague (2011) proposed

that classification performance using all frequency bands was

better than that based on individual frequency bands under the

same condition [15], and similar results were found in our study.

This finding points to the important conclusion that all frequency

bands need to be considered in emotion research, rather than

restrict an analysis to one particular frequency band.

Table 9 shows that classification based on the phase synchro-

nization index was significantly more accurate than classification

based on correlation and coherence. Many studies have attempted

to directly study brain interaction by measuring coherence.

However, some researchers have asserted that coherence is only

suitable for stationary signals because it is a measure of the linear

co-variance between two spectra in the frequency domain

[29,59,60]. Classical methods of spectral estimation were based

on the Fourier transform. To estimate coherence, data were

subdivided into several segments and were then transferred to the

frequency domain. This method requires that each segment have

the same spectral properties because the assumption of stationary

is not easy to attain in EEG research. Another point, made by

Guevara and Corsi-Cabrera (1996), is that changes in both the

amplitude and the phase lead to changes in coherence; the relative

importance of amplitude and phase change in the coherence value

is thus not clear. Similarly, correlation is sensitive to both phase

and polarity [20]; hence, the same controversy has existed in

correlation estimation. In contrast, the phase synchronization
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index is influenced only by the change of phase and therefore

reveals clearer information about brain interaction; thus, classifi-

cation performance is better when the phase synchronization

index is used.

3. Classification Performance Based on Connectivity
versus Single-Electrode-Level Measurement

In our study, features from these 19 electrodes were extracted

via two methods. The classification accuracy by features extracted

base on EEG power was 0.53(0.04) and by features extracted base

on wavelet analysis was 0.48(0.06). The results, shown in Table 11,

indicate that classification performance was better when using

features extracted from EEG-based functional connectivity in pairs

of electrodes with feature selection, compared to using single

electrodes; thus, EEG-based functional connectivity seems to

provide an interesting and useful tool for studying and under-

standing the mechanisms underlying emotional processing.

4. The Gender Difference in Classification Performance
Some research had suggested that the sex differences in

reactivity patterns to emotional stimuli in psychophysiological

measures [61,62]. In our study, although the function connectivity

patterns might be different, EEG-based functional connectivity

reveals similar effect on classification for different emotional states

in either male or female groups. Table 12 shows that classification

performance based on correlation and coherence are similar

between male and female groups. However, better classification

performance was observed in female than male group base on

phase synchronization index (t(49) = 4.90, p,.01 ). Some studies

demonstrated that women tend to show hypersensitivity to

emotional stimuli [62]. Furthermore, according to Table 9, phase

synchronization index seems to be more sensitive to emotions.

These might be the reason why better classification performance

in female group base on phase synchronization index. Whether the

functional connectivity shows different pattern between male and

female groups and the underlying mechanism might be an

interesting topic in the future.

5. Recommendations for Further Research
This study provided evidences which imply that brain activity is

associated with emotional states by estimating three functional

connectivity indices. Nonetheless, the present work presented a

number of limits and more studies will be needed. First, this study

use film clips for emotion induction, however, some experimental

manipulations utilized picture viewing [63], facial expression [5],

music [14] for emotion induction. Some studies indicated that

different kinds of stimuli led to different brain activity [64]. Further

studies of EEG-based functional connectivity for different kinds of

stimuli would be necessary to build a better understanding of

relationship between brain activity and emotion. Second, although

correlation, coherence and synchronization index had been used

in emotional research, other multivariate methods such as Partial

Directed Coherence (PDC) and Directed Transfer Function (DTF)

[65] were commonly used to estimate the brain functional

connectivity. In the future, further studies of whether such

methods can be used as indices for emotion recognization will

be needed.

Conclusion

In summary, our data demonstrate that EEG-based functional

connectivity reveals different patterns for different emotional

states, in either single or combined frequency bands. This finding

provides evidence that emotional states are characterized by their

own individual patterns of central nervous system response.

Considering both the complex procedure involved in processing

emotion and that emotion involves several neural systems at

different brain sites, we can conclude that research using EEG-

based functional connectivity among brain sites might be a fruitful

direction for future research on emotions.
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