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Abstract

It was investigated if high-intensity interval training (HIT) at the expense of total training volume improves performance,
maximal oxygen uptake and swimming economy. 41 elite swimmers were randomly allocated to a control (CON) or HIT
group. For 12 weeks both groups trained ,12 h per week. HIT comprised ,5 h vs. 1 h and total distance was ,17 km vs.
35 km per week for HIT and CON, respectively. HIT was performed as 6-10610-30 s maximal effort interspersed by 2–4
minutes of rest. Performance of 100 m all-out freestyle and 200 m freestyle was similar before and after the intervention in
both HIT (60.464.0 vs. 60.364.0 s; n = 13 and 133.266.4 vs. 132.667.7 s; n = 14) and CON (60.263.7 vs. 60.663.8 s; n = 15
and 133.567.0 vs. 133.367.6 s; n = 15). Maximal oxygen uptake during swimming was similar before and after the
intervention in both the HIT (4.060.9 vs. 3.861.0 l O26min21; n = 14) and CON (3.860.7 vs. 3.860.7 l O26min21; n = 11)
group. Oxygen uptake determined at fixed submaximal speed was not significantly affected in either group by the
intervention. Body fat % tended to increase (P = 0.09) in the HIT group (15.461.6% vs. 16.361.6%; P = 0.09; n = 16) and
increased (P,0.05) in the CON group (13.961.5% vs. 14.961.5%; n = 17). A distance reduction of 50% and a more than
doubled HIT amount for 12 weeks did neither improve nor compromise performance or physiological capacity in elite
swimmers.

Citation: Kilen A, Larsson TH, Jørgensen M, Johansen L, Jørgensen S, et al. (2014) Effects of 12 Weeks High-Intensity & Reduced-Volume Training in Elite
Athletes. PLoS ONE 9(4): e95025. doi:10.1371/journal.pone.0095025

Editor: Jeffrey M. Haddad, Purdue University, United States of America

Received December 27, 2013; Accepted March 22, 2014; Published April 15, 2014

Copyright: � 2014 Kilen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by Team Danmark. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nnordsborg@nexs.ku.dk

Introduction

High-intensity interval training (HIT), such as 4-6630 s all-out

exercise bouts interspersed by 3–5 minutes of rest, has proved to

be a potent stimulus for muscular and cardiovascular adaptation in

untrained persons [1] and athletes [2]. In untrained participants,

as little as three sessions of HIT per week for 6 weeks causes a

,7% increase of maximal oxygen uptake (VO2 max) and reduces

the respiratory exchange ratio ,0.01 at 65% of VO2 max [3].

Thus, adaptations after HIT are comparable to adaptations after

40–60 minutes of cycling at 65% of VO2max [3]. In highly trained

cyclists, VO2max has been found to improve ,6–8% after HIT [4]

but also to be unaffected in other athletic populations such as

recreational runners [5]. In addition, HIT can improve work

efficiency ,3–6% in recreational runners and soccer players [5–7]

which is of importance for performance [8]. With regards to

performance, brief intense exercise capacity can be improved

,7% and time to exhaustion in a prolonged endurance exercise

test can be more than doubled in untrained individuals following

HIT [3,9]. In trained individuals performance of brief intense

exercise, intermittent running and endurance exercise, such as a

40 km cycling time trial improves ,5–6% after HIT [2,4].

At the muscular level in untrained subjects HIT induces

mitochondrial biogenesis [9], reduces lactate production [10] and

increases capacity for lipid oxidation [3]. In trained subjects,

skeletal muscle oxidative enzymatic potential is not always

improved [5,6] but has been observed to increase after one week

of HIT in elite distance runners [11]. Thus, the mechanisms

responsible for performance improvements with HIT may be

different in untrained and trained subjects. There is evidence that

HIT leads to a reduction in plasma K+ concentration and

increased ability to work at high intensities. Reduced plasma K+

appears to result from increased skeletal muscle Na+, K+ pump

[5]. However, the role of K+ in muscle fatigue is unclear [12]. If

HIT improves performance either by inducing mitochondrial

biogenesis or by increasing Na+, K+ pump expression or both, an

associated physiological response can be expected. For example,

reduced blood lactate concentration, reduced blood acidity and/or

reduced blood K+ concentrations during standardized exercise

could be expected. However, only a very limited number of studies

have investigated changes in metabolic markers in response to

HIT in elite athletes [11,13] and no studies have done so when

HIT has been performed for more than four weeks. Thus, it is

unclear if an added amount of HIT in elite athletes at the expense

of total training volume for a prolonged period causes changes in

blood markers of metabolism such as pH, lactate and K+.

Most HIT studies have investigated interventions lasting from

two weeks [3] to ten weeks [2,14,15] and it is unknown if HIT at

the expense of training volume continues to induce physiological

and performance beneficial adaptations if the intervention period

is prolonged. In addition, studied populations are either untrained

[3] or elite trained without prior systematic engagement in HIT,
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such as recreational runners [5,6,16] or highly trained cyclists

[4,13]. Thus, it also remains unanswered if a substantial increase

in the amount of HIT training in an elite population that regularly

perform HIT is of similar benefit as populations not previously

engaged in HIT. Finally, most studies have included less than ten

athletes. Thus, there is a need for studies to include a larger

number of subjects in order to detect possibly small differences in

outcome measures.

In the present study, performance and physiological adaptations

to HIT was investigated in competitive swimmers. Swimmers were

selected because HIT training has been a part of competitive swim

training for decades [17], however swim training often focuses on

a high distance at medium to low intensity [18]. This appears

contradictory to the high anaerobic energy demand that exists

during competition, where 13 of the 16 Olympic events have race

times less than 130 seconds. Thus, competitive swimmers appear

to be a good model to investigate if more HIT training at the

expense of low intensity high-volume training induces further

physiological adaptations and improves performance. A few

studies have addressed the impact of HIT in swimming, but these

were either performed on children [19], after a 4 months break

[20] or without physiological measurements, except from blood

lactate [21].

When training volume is drastically reduced in endurance

athletes, total caloric intake is not necessarily adjusted accordingly

[22]. Additionally, the low total exercise time spent on HIT does

not allow the higher intensity to compensate for the reduced total

volume in terms of total energy expenditure. Thus, added HIT at

the expense of total training distance for a prolonged period of

time may increase body weight and/or body fat percentage. This

possibility is of obvious importance for elite athletes but has never

been addressed in an elite population subjected to HIT at the

expense of total training volume. In swimming, added body weight

may both be detrimental to performance due to increased frontal

area but could also be of benefit due to increased buoyancy.

The purpose of the present study was to investigate if an

increased amount of HIT at the expense of a reduced training

volume would 1) improve swimming performance; 2) improve

swimming specific VO2max; 3) improve swimming economy; 4)

alter the metabolic response to swimming at a fixed speed and 5)

induce increased body fat.

It was hypothesized that the intervention would improve

performance, which could be explained by improved swimming

economy and increased swimming maximal oxygen uptake and

possibly be associated with reduced disturbances of lactate, pH

and K+ levels at submaximal swimming speeds. Further, it was

hypothesized that the reduced training volume would result in

elevated body weight due to increased body fat.

Methods

Participants
Forty-one healthy Danish national level senior elite swimmers

(30 males and 11 females) were recruited for the study. Age:

20.062.7 years, height 179.966.5 cm and body mass

72.0610.6 kg. The athletes had been training and competing on

a regular basis for a minimum of 5 years, and they were swimming

8–16 hours per week with an average weekly distance of

20.000 m–60.000 m. The enrolled swimmers primarily competed

in 50 m–200 m events. Two swimmers were specialized in 400 m

and 800 m events. All participants were fully informed of possible

risks and discomforts associated with the experimental procedures

before they gave their written informed consent to participate.

Written informed consent was obtained from one parent if

participants were under 18 years. This study conformed to the

code of Ethics of the World Medical Association (Declaration of

Helsinki) and all procedures were approved by the Ethics

Committee of Copenhagen and Frederiksberg communities.

Intervention Period and Training
An intervention period lasting 12 weeks was carried out in the

competitive mid-season from February to May. A two-group

parallel longitudinal study design was used. Subjects from four

different teams were randomly assigned to either an intervention

group (HIT group; n = 20, 14 males and 6 females) or control

group (CON group; n = 21, 16 males and 5 females). From each

team, swimmers were assigned to both HIT and CON groups. In

the HIT group, regular training volume was reduced by 50% and

the amount of high intensity training was more than doubled. In

table 1, a simplified summary of training data is provided based on

team coaches’ registration and training reports from participating

swimmers. In the CON group, training was continued as usual. All

training sessions were supervised and logged by team coaches who

had received detailed instructions by the research team. Additional

dry-land training with focus on core-stability was performed for

approximately 20 minutes per day and strength training with focus

on upper body strength was performed for up to 2 hours per week.

Participating swimmers were instructed to maintain their regular

eating habits but this was not controlled.

Experimental protocols
Before (PRE) and after (POST) the HIT intervention period,

participants underwent a series of physiological evaluations: body

composition analyses; determination of swimming economy and

swimming peak oxygen uptake in a custom built swim flume; a

pool based 56200 m freestyle swim test with increasing speeds and

blood analyses. Additionally, performance was evaluated by

analyses of 100 m freestyle all-out and 200 m freestyle completed

in competition. Details for each procedure are given below. All

subjects completed familiarization to all physiological tests six

weeks before PRE-testing. The familiarization trial; PRE-trial and

POST-trials followed the same time schedule so that an individual

underwent testing at the same time of day on all occasions. First

experimental day was always a Friday and the second experimen-

tal day was either the following Saturday or Sunday. Swimmers

were instructed not to do any training on the experimental days

prior to testing. Swimmers were also instructed to eat at least two

hours before the first test and to keep a record of food intake.

Participants received written and verbal instructions to repeat the

food consumption schedule on the three test occasions. For logistic

reasons, several of the enrolled swimmers did not complete the

evaluations. Thus, the number of evaluated swimmers is given for

each reported variable.

Laboratory analyses
On the first experimental day, body composition was deter-

mined by Dual x-ray absorptiometry (DEXA) scanning (Lunar

Prodigy, GE Healthcare, UK). Subsequently, swimming economy

and maximal oxygen uptake during freestyle swimming was

measured in a custom built swimming flume. Pulmonary oxygen

uptake and ventilation were measured breath-by-breath (Cosmed

Quark b2, Milan, Italy). Swimmers completed a five minutes

warm-up at submaximal speed chosen so that the swimmers

reported the swim to be ‘‘easy’’. Subsequently, swimming

economy was analyzed by completion of a six minutes continuous

swim at the same speed as during warm-up. Based on the pre-test

results, the speed was selected to represent ,60% of VO2 max.

After three minutes of rest, a progressive test to exhaustion was
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completed with speed increasing ,0.1 m6s21 every minute. The

duration of the incremental test varied between four and eight

minutes. The incremental test design was based on pilot studies,

where it was found that longer test durations caused premature

fatigue.

Pool testing
On the second experimental day, pool tests were completed in a

25 m six lane pool. All testing was performed using freestyle

technique. First, the swimmer completed a warm-up of ten

minutes followed by 56200 m at increasing pace. The pace was

determined so that the first three 200 m were submaximal

(subjectively rated as ‘‘very easy’’ to ‘‘somewhat hard’’). For the

first three 200 m, two groups were designed based on individual

level in the initial testing. One group paced at 160.261.7 s;

155.561.9 s and 150.661.9 s. The other group paced at

170.061.0 s; 165.361.9 s and 160.861.0 s. The final two

200 m were paced individually (subjective rating ‘‘hard, but not

maximal’’ and ‘‘maximal’’) with average pacing of all trials being

138.065.6 s and 130.065.9 s in the first group and 149.265 s

and 142.667.3 s in the second group. The same pace scheme was

used on all test occasions. Pacing was controlled by the scientific

staff with audio signals given every 25 m. Each 200 m was started

in the water from the wall and swimmers used tumble turns. One

minute after each swim, a finger capillary blood sample was

obtained and used for analyses of blood lactate concentration (YSI

1500 Sport, Yellow Springs Instruments, USA). Additionally, after

the first, third and fifth 200 m and three minutes after the fifth

200 m an additional capillary sample was obtained and analyzed

for blood pH and [K+] (GEM premier 4000). Arm stroke

frequency and swim time was registered for each 200 m using a

stop watch with frequency count function (Seiko S141, Tokyo,

Japan).

After 4K hours of recovery, swimmers did a 15-minute warm-

up followed by an all-out 100 m freestyle. Subjects started with a

standardized push off from the wall. To avoid pacing and racing

strategies, the 100 m was completed by one swimmer at a time.

After 20 minutes of recovery (range from 15–25 minute), the

swimmers completed a 200 m freestyle at competition like

conditions with heats of three swimmers and start from the block.

In this analysis, subjects were matched according to expected best

time.

Statistics and calculations
Statistical analyses were performed using SPSS, Statistics 20.0.

Data distribution and variance was visually inspected and found to

be normally distributed with homogeneous variance between

groups. Differences between groups were analyzed using a mixed

model [23] with fixed factors: ’’Group’’ (Control, Intervention);

‘‘Trial’’ (PRE, POST) and subject specified to identify repeated

observations. If significant main effects or interactions were

present post hoc test were applied by use of t-tests with Bonferroni

adjustment. The level of significance was set to p,0.05. Results

are reported as means 6 standard deviations (SD). The number of

participants varies between analyses due to either logistic or

technical difficulties. The number of participants is reported for

each analysis. An inference about population effects approach was

applied to the primary outcome variables of the present study [24].

The change from pre to post was calculated and evaluated relative

to 0 by a one-sample t-test. A 90% confidence interval was

calculated and the probability of a beneficial or harmful effect was

inferred by defining threshold values and using a t-distribution.

Results

Performance
Performance of 100 m all-out freestyle (Fig. 1A) was similar

before and after the intervention (Trial: p = 0.34; Group: p = 0.97;

Trial6Group: p = 0.16) in both the HIT (60.464.0 s vs.

60.364.0 s; n = 13; p = 0.75) and CON (60.263.7 s vs.

60.663.8 s; n = 15; p = 0.09) group. Likewise, performance of

200 m freestyle (Fig. 1B) in simulated competition was similar

Table 1. Training intensity and volume.

Total volume and hours Li -Aerobic Hi - Aerobic HIT

Week CON HIT CON HIT CON HIT CON HIT

PRE 13 h 13 h 10.7 h 10.7 h 1.3 h 1.3 h 1.0 h 1.0 h

34 km 34 km 31.7 km 31.7 km 1.5 km 1.5 km 0.8 km 0.8 km

1–2 13 h 13 h 10.7 h 6.7 h 1.3 h 1.3 h 1.0 h 5.0 h

34 km 17 km 31.7 km 12.0 km 1.5 km 1.0 km 0.8 km 4.0 km

3–4 20 h 20 h 16.4 h 10.4 h 2.0 h 2.0 h 1.6 h 7.6 h

52 km 26 km 48.4 km 17.6 km 2.3 km 2.3 km 1.3 km 6.1 km

5–6 13 h 13 h 10.7 h 6.7 h 1.3 h 1.3 h 1.0 h 5.0 h

34 km 17 km 31.7 km 12.0 km 1.5 km 1.0 km 0.8 km 4.0 km

7–8 13 h 13 h 10.7 h 6.7 h 1.3 h 1.3 h 1.0 h 5.0 h

34 km 17 km 31.7 km 12.0 km 1.5 km 1.0 km 0.8 km 4.0 km

9–10 11 h 11 h 8.5 h 5.0 h 1.0 h 1.0 h 1.5 h 5.0 h

24 km 12 km 22.0 km 7.2 km 0.8 km 0.8 km 1.2 km 4.0 km

11–12 13 h 13 h 10.7 h 6.7 h 1.3 h 1.3 h 1.0 h 5.0 h

34 km 17 km 31.7 km 12.0 km 1.5 km 1.0 km 0.8 km 4.0 km

Training time and milage averaged for every 2nd week and split into three major training categories. CON: Control groups; INT: intervention group. Li-Aerobic: Technical
training, Recovery and low to moderate aerobic training with % of maximal heart rate , 70%. Hi-Aerobic: Intense aerobic training aiming at eliciting close to maximal
heart rate and .90% of VO2max. HIT: ‘‘High-Intensity Training’’ with maximal effort for 20–90 s and a rest: work ratio . 4.
doi:10.1371/journal.pone.0095025.t001
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(Trial: p = 0.65; Group: p = 0.97; Trial6Group: p = 0.99) before

and after the intervention in both the HIT (133.266.4 s vs.

132.667.7 s; n = 14; p = 0.75) and CON (133.567.0 s vs

133.367.6 s; n = 15; p = 0.75) group. Also, average speed of a

200 m freestyle performed after four preceding 200 m swims with

increasing speed was similar (Trial: p = 0.36; Group: p = 0.32;

Trial6Group: p = 0.48) before and after the intervention in both

the HIT and CON group (1.4860.10 m6s21 vs.

1.5060.08 m6s21; n = 15; p = 0.26 and 1.5260.09 m6s21 vs.

1.5260.09 m6s21; n = 16;p = 0.88). Stroke- rate and length was

similar (Trial: p = 0.39; Group: p = 0.52; Trial6Group: p = 0.65)

during the paced 200 m before and after the invention in both the

HIT (29.962.3 strokes6min21 vs. 29.862.3 strokes x min21;

n = 15; p = 0.70) and CON (29.463.3 strokes6min21 vs.

29.063.6 strokes6min21; n = 16; p = 0.43) group.

Maximal oxygen consumption during flume swimming
VO2 max determined during freestyle swimming with increasing

speed in a flume (Fig. 2) was similar (Trial: p = 0.08; Group:

p = 0.76; Trial6Group: p = 0.35) before and after the intervention

in both the HIT (4.060.9 lO26min21 vs. 3.861.0 lO26min21;

n = 14; p = 0.09) and CON group (3.860.7 lO26min21 vs.

3.860.7 lO26min21; n = 11; p = 0.56). In contrast, VO2 max

expressed relative to body weight was affected by the intervention

(Trial: p = 0.01; Group: p = 0.95; Trial6Group: p = 0.26) with a

decrease in HIT (55.767.2 mlO26min216kg21 vs.

52.767.0 mlO26min216kg21; n = 14; p = 0.02) and no signifi-

cant difference in CON (55.065.9 mlO26min216kg21 vs.

53.866.4 mlO26min216kg21; n = 13; p = 0.31).

Swimming economy
VO2 determined at a fixed submaximal speed before and after

the intervention was similar (Trial: p = 0.37; Group: p = 0.37;

Trial6Group: p = 0.74) in both the HIT (2.460.7 lO26min21 vs.

2.460.7 lO26min21; n = 13; p = 0.39) and CON (2.660.6 lO26
min21 vs. 2.660.6 lO26min21 n = 14; p = 0.68) groups.

Ventilation
VE determined at a fixed submaximal speed before and after the

intervention was similar (Trial: p = 0.17; Group: p = 0.58;

Trial6Group: p = 0.92) in both the HIT (63.0626.9 l6min21

vs. 61.4627.1 l6min21; n = 15; p = 0.40) and CON

(58.9613.5 l6min21 vs. 57.0611.1 l6min21; n = 15; p = 0.26)

groups. VE6VO2
21 determined at a fixed submaximal speed

before and after the intervention was similar (Trial: p = 0.59;

Group: p = 0.29; Trial6Group: p = 0.95) in both the HIT

(2464 l6min21 vs. 2364 l6min21; n = 15; p = 0.67) and CON

(2464 l6min21 vs. 2264 l6min21; n = 15; p = 0.73) groups.

Figure 1. Swimming performance. Performance of 100 m freestyle all-out, starting with wall push-off and one swimmer in the pool at a time (A)
and 200 m freestyle in a competition setting, starting from blocks in heats of 3–4 swimmers (B) as determined before (PRE) and after (POST) a training
intervention. One group performed usual swim-training (CON) and another group reduced their training volume by 50% and more than doubled the
amount of high-intensity training (HIT). On average, both the 100 m and 200 m performance was similar before and after the 12 week intervention
period in both groups. Individual data is presented. Open circles: male; Closed circles: female.
doi:10.1371/journal.pone.0095025.g001

Figure 2. Oxygen uptake. Maximal oxygen uptake (VO2max)
determined during freestyle swimming in a swimming flume with
increasing water speed until exhaustion in two groups of swimmers
before (PRE) and after (POST) a training intervention. One group
performed usual swim-training (CON) and another group reduced their
training volume by 50% and more than doubled the amount of high-
intensity training (HIT). On average, VO2max was similar before and after
the 12 week intervention period in both groups. Individual data is
presented. Open circles: male; Closed circles: female.
doi:10.1371/journal.pone.0095025.g002
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Respiratory exchange ratio
The respiratory exchange ratio determined at a fixed submax-

imal speeds before and after the intervention was similar (Trial:

p = 0.47; Group: p = 0.37; Trial6Group: p = 0.61) in both the

HIT (0.8760.04 vs. 0.8760.04; n = 13; p = 0.88) and CON

(0.8860.02 vs. 0.8860.04; n = 13; p = 0.38) groups.

Blood lactate, pH and K+ response to increasing
swimming speed

Blood lactate response to increasing swimming speeds during

five times 200 m freestyle was similar (Trial: p = 0.60; Group:

p = 0.90; Sample: p,0.001; Trial6Group6Sample: p = 0.31)

before and after the intervention in both the HIT and CON

group (Fig. 3). Furthermore, the change in blood lactate

concentration from the 3rd 200 m to the sample obtained after

the 5th 200 m (Table 2) was similar (Trial: p = 0.66; Group:

p = 0.32; Trial6Group: p = 0.55). Blood pH response to the third

and fifth swim interval was similar (Trial: p = 0.81; Group:

p = 0.74; Trial6Group: p = 0.82 and Trial: p = 0.62; Group:

p = 0.25; Trial6Group: p = 0.77, respectively) before and after the

intervention in both groups (Table 2). Likewise, blood K+ response

to the third and fifth swim interval was similar (Trial: p = 0.89;

Group: p = 0.57; Trial6Group: p = 0.74 and Trial: p = 0.36;

Group: p = 0.74; Trial6Group: p = 0.99, respectively) before and

after the intervention in both groups (Table 2).

Body composition
Body fat percent as determined by DEXA scanning was affected

by the intervention (Trial: p = 0.01; Group: p = 0.51;

Trial6Group: p = 0.99). For the HIT group (n = 16) the increase

did not reach statistical significance (15.461.6% vs. 16.361.6%;

p = 0.09). In the CON group (n = 17) body fat percent increased

from 13.961.5% to 14.961.5% (p = 0.04).

Results from the inference about population effects approach is

presented in Table 3.

Discussion

The major findings were that more than a doubling of high-

intensity training (HIT) in combination with a 50% reduction of

training volume for 12 weeks did not change swimming

performance, swimming specific VO2max, swimming economy,

blood metabolic markers or body composition as compared to a

control group. However, VO2max normalized to body weight was

reduced in the HIT group only.

The current observation that added HIT and reduced training

volume for 12 weeks does not improve performance as compared

to high volume training is in agreement with a previous study of

ten elite swimmers, where 6.5 weeks of HIT after a four months

break yielded similar performance improvements as in a control

group [20]. The result is also consistent with unaltered perfor-

mance after 5 weeks in-season HIT training in younger (,16-17

years) swimmers [21]. However, in children (,10 years) 5 weeks of

HIT improved swimming performance in competition [19]

indicating that the investigated age group may be of importance.

The unaltered performance after HIT in adult swimmers is in

contrast to recreational runners who improved time to exhaustion

in tests lasting 1–3 minutes [5,16,25] and ,5–6 minutes [15].

Furthermore, in athletes that have not previously engaged in HIT

performance can also be improved by added HIT and reduced

volume [26,27]. Because the swimmers investigated in the present

study had performed HIT for a number of years as a part of their

regular training, an upper limit may exist to the amount of HIT

that can be applied and still yield physiological adaptation and

performance enhancement. In this context it may be of

importance to consider that technique in swimming is a major

determinant of performance [28] and thus HIT induced

physiological adaptations may be less important in swimming as

compared to for example running or cycling. Notably, the

reduction of training volume in the CON group did not

compromise performance. Thus, the increased amount of HIT

allowed a drastic distance reduction without compromising

performance. The reduced distance and increased recovery time

is important for yearly training planning because periodic HIT

may allow time to other important training focuses such as

technical and/or tactical skills.

The present observation of unaltered swimming specific

VO2max after a prolonged period of HIT training is in accordance

with observations from moderately trained runners [5,6] but in

contrast to the increase observed in well-trained cyclists after 4

Figure 3. Blood lactate. Blood lactate determined from a finger capillary sample obtained 1 minute after each of five 200 m freestyle completed at
increasing speeds (see methods) in two groups of swimmers before (PRE) and after (POST) a training intervention. One group performed usual swim-
training (CON) and another group reduced their training volume by 50% and more than doubled the amount of high-intensity training (HIT).
doi:10.1371/journal.pone.0095025.g003
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weeks of added HIT [13] and in moderately trained cyclist after 6

weeks of HIT [29] as well as findings from untrained subjects [3].

There are several possible explanations for the observed unaltered

VO2max. Importantly, the current population had a much higher

training volume and longer history than previously studied

populations. Thus, a natural plateau in VO2max may have been

reached prior to the initiation of the study. This suggestion is

somewhat supported by the observation that HIT induces similar

increases in VO2max as low-intensity high-volume training in

young swimmers aged ,10 years [19] as well as in adult swimmers

when preceded by a four months break [20]. It may also be

considered that swimming VO2max may not have been limited by

the central cardiovascular capacity as expected during running or

cycling [30] but more so by the upper body capacity to extract

oxygen. This suggestion is substantiated by the finding that

seasonal fluctuations in a Olympic level swimmers VO2peak

appears unrelated to running VO2peak [31]. As such, the current

finding of unaltered VO2max may indicate unaltered muscular

respiratory capacity and this suggestion is in agreement with a

previous study that found unaltered muscular oxidative capacity in

trained populations after a period of HIT [2]. It is of interest to

note that the previously reported improvement of running

economy, which was associated with reduced VO2 but unchanged

RER at submaximal speeds [6] could not be verified in the present

study of elite athletes. Importantly, a reduced VO2max relative to

body weight was apparent in the HIT group but not the CON

group. However, it could not be demonstrated that the change in

normalized VO2max differed between groups. Further, both groups

experienced a gain of body weight of ,1 kg which was not

significantly different between groups (data not shown).

The present investigation of blood metabolic markers in

response to increasing swimming speed demonstrated the expected

increases of blood lactate, K+ and H+ concentrations. However,

the hypothesis of reduced extracellular accumulation of blood

lactate, K+ and H+ in the HIT group after the intervention period

could not be verified. This is in apparent contrast to the

observation that HIT can increase muscle Na+, K+ ATPase

expression and reduce plasma K+ concentration at the end of 1–2

minutes exhaustive runs in recreational runners [5,32]. After HIT

plasma K+ may also be reduced during the recovery from exercise

[32,33], but this is not always the case [5]. In the present study,

samples were obtained one minutes after an exhaustive 200 m

swim that lasted ,2 minutes, which corresponds well to the

samples obtained during early recovery in previous studies [16,33].

The present observations are in accordance with unaltered plasma

K+ concentrations after HIT during submaximal workloads and

after an incremental test [5]. It can be speculated that reduced

plasma K+ concentrations may have existed in the present study if

the swimmers had been evaluated after a constant speed swim to

exhaustion [5]. However, this type of test does not correspond to

the competition performed by swimmers and most other athletes.

During the 56200 m pool test with gradually increasing

swimming speed, blood lactate concentration was unaltered.

Additionally, the change in blood lactate concentration from the

3rd to the 5th 200 m was unaltered by the intervention, indicating

that the muscular lactate production and release was similar before

and after HIT. This is supported by the unaltered changes in

plasma pH observed during the 56200 m steptest before and after

the HIT period. The current observations are in agreement with

the finding that blood and muscle lactate as well as muscle H+

accumulation and muscular expression of monocarboxylate

transporters (MCT) 1 and 4 is unaltered after HIT in recreational

runners [5,16]. However, muscular MCT1 expression has also

been observed to increase after HIT in recreational runners [25]

and the reason for this discrepancy between previous studies is

unclear but may be related to differences in the applied HIT

protocols.

Metabolites were measured in plasma during recovery in the

present study and it cannot be excluded that undetected changes

in other compartments and at other time-points existed. Previous

studies have demonstrated that HIT reduces K+ accumulation in

the interstitial space in untrained subjects [34] and that changes in

K+ plasma concentrations occurs within 10–30 s after onset and

termination of exercise [35,36] and that plasma K+ concentration

is sensitive to training [37]. Additionally, muscle lactate and H+

accumulation can be reduced by HIT [38] and with respect to

sample timing, exercise induced changes in lactate and H+

homeostasis persist for several minutes into recovery in both

intramuscular [39] and in the plasma compartment [38]. Thus,

training induced changes in muscular capacity for handling K+,

H+ and lactate usually translates into altered plasma accumulation

[34] and is detectable during recovery, which suggests that the

present observations of unaltered plasma metabolite response is

representative for the events at the muscular level.

Only the CON group showed an increase of body fat during the

intervention period, but a similar and close to significant increase

was apparent in the HIT group. This finding demonstrates that a

drastic shift in training volume does not necessarily translate into

Table 2. Blood metabolites.

Intervention group Control group

Blood

variable Test Pre Post n Pre Post n

pH 3rd 200 m 7.3960.04 7.4060.04 15 7.3960.04 7.3960.03 16

pH 5th 200 m 7.2360.06 7.2260.07 15 7.2060.09 7.2060.07 17

DpH 3rd R 5th 0.1760.05 0.1860.06 15 0.1960.07 0.1960.06 16

DLactate 3rd R 5th 7.862.7 mM 7.262.6 mM 15 8.262.6 mM 8.362.6 mM 17

K+ 3rd 200 m 4.7860.35 mM 4.7460.44 mM 15 4.6960.23 mM 4.6660.36 mM 16

K+ 5th 200 m 5.1560.53 mM 5.0160.61 mM 15 5.0960.88 mM 4.9560.56 mM 17

DK+ 3rd R 5th 0.4360.54 mM 0.2760.67 mM 15 0.3860.85 mM 0.3460.56 mM 16

Blood variables obtained from a fingertip sample after the 3rd and 5th of five 200 m swims performed at increasing speeds before and after a 12 week intervention
period. The third 200 meter was swum on a identical speed before and after the intervention whereas the fifth 200 meter was swum with maximal effort.
doi:10.1371/journal.pone.0095025.t002
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to altered body composition. This observation is in agreement with

unaltered body composition, despite a one week change in total

daily energy expenditure in trained athletes [22].

The present study is the longest running HIT intervention in an

elite-population and at the same time includes more subjects than

most previous studies [2,18]. Despite the long intervention period,

relatively large group of subjects and carefully controlled training

and testing, some concerns need attention. It may be speculated

that some, but not all, swimmers can benefit from HIT and if there

is any chance that HIT can improve performance of some but not

all elite athletes, then it is of interest for coaches and athletes.

Thus, we report results of an inference statistical approach [40] for

the primary outcome variables in Table 3. This analysis supported

that no clear beneficial or harmful effect was apparent after 12

weeks of HIT. It should be noted that performance of 100 m and

200 m freestyle may have been impaired in the CON but not in

the HIT group whereas VO2max may have decreased in the HIT

group but not in the CON group. These observations may be

considered in a practical setting depending on the type of swimmer

that is exposed to HIT. Apparently, HIT may be of some value to

protect against reduced performance in short distance swimmers

but based on the possible reduction in VO2max, it can be

speculated that HIT would be detrimental for long distance

swimmers (i.e. . 800 m) but this remains to be investigated. The

possible reduction of VO2max is somewhat supported by the low p-

values observed for pre vs. post VO2max and the reduced VO2max

normalized to body weight in the HIT group. Another possible

concern is that all testing was completed in freestyle for practical

reasons. It cannot be ruled out, that for example, breast swimmers

benefitted from the training whereas back-strokers did not.

However, all swimmers completed more than 50% of the total

training volume in freestyle, including the HIT sessions. Thus, this

appears a reasonable but negligible concern. It can also be

speculated that the CON group achieved optimal adaptations

resembling those of HIT by the performed in-water HIT, dry-land

resistance training or even less intense but prolonged interval

based training that possibly could cause adaptations as fatigue sets

in. Even if the CON group somehow did achieve adaptations

similar to the HIT group the present findings still demonstrate that

a drastic distance reduction for 12 weeks does not compromise

performance. Thus, it becomes of interest to investigate if a drastic

distance reduction combined with a limited amount of HIT would

also be sufficient to sustain performance for a prolonged period of

time.

Both genders participated in the present study but the number

of subjects was too limited to allow for a separate analysis of

possible gender specific adaptation to the intervention. Previously,

it has been demonstrated that recreationally active young men and

women adapted similar to a 2–3 week period of HIT [41] but it is

not known if a gender effect exists in an elite population.

Perspective
The present data demonstrate that it is possible to reduce

training volume by 50% without compromising physical capacity.

Because time is limited in elite training HIT can be used as a

strategy to increase the focus on other types of training because of

the long recovery times and reduced time requirement. The

present findings indicate that for example technical and tactical

focus can be increased for periods of up to 12 weeks during the

season by reducing volume and increasing the amount of HIT. In

a physiological context, the present data demonstrate that added

HIT to a very well trained population all-ready engaging in HIT

does not necessarily improve performance as could be expected

from previous studies of HIT.

Conclusion
In conclusion, increasing the amount of HIT at the expense of

volume for 12 weeks in a group of elite swimmers did neither

Table 3. Inference of effects.

100 m 200 m VO2 max VO2 sub RER sub [La-]max pH max [K+]max

HIT

90% C.I. [20.3;0.5] [20.9;2.0] [2280;25] [2110;33] [20.02;0.02] [20.66;1.3] [20.03;0.01] [20.5;0.22]

P 0.72 0.48 0.09 0.44 0.90 0.59 0.49 0.51

Threshold 0.2 s 0.2 s 150 ml 2100 ml 20.02 0.5 mM 0.02 0.2 mM

Inference

- Beneficial 31% 68% 0% 9% 5% 36% 22% 6%

- Trivial 57% 15% 53% 91% 88% 56% 76% 55%

- Harmful 12% 17% 47% 0% 7% 8% 2% 39%

CON

C.I. [20.9;0.0] [22.3;0.7] [2150;67] [2110; 68] [20.02;0.01] [20.39;1.9] [20.04;0.03] [20.52;0.24]

P 0.12 0.375 0.49 0.707 0.285 0.267 0.901 0.525

Threshold 0.2 s 0.2 s 150 ml 2100 ml 20.02 0.5 0.02 0.2 mM

Inference

- Beneficial 1% 13% 0% 6% 9% 65% 18% 7%

- Trivial 19% 12% 94% 92% 91% 32% 70% 54%

- Harmful 80% 75% 6% 2% 0% 3% 12% 39%

The 90% confidence interval (90% C.I.) for the observed change in primary outcome variables within each group and the P-value (P) for a one-sample t-test with the
null-hypothesis m = 0. A subjectively chosen threshold for the minimal change that could be considered beneficial (Threshold) was used to calculate the chance that the
observed changes would be beneficial, trivial or harmful (Inference). One group performed usual swim-training (CON) and another group reduced their training volume
by 50% and more than doubled the amount of high-intensity training (HIT).
doi:10.1371/journal.pone.0095025.t003
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induce significant improvements nor deterioration of performance

or physiological variables.
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