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Abstract

Many (dietary) bitter compounds, e.g. flavonoids, activate bitter receptor hTAS2R39 in cell-based assays. Several flavonoids,
amongst which some flavanones, are known not to activate this receptor. As certain flavanones are known to mask bitter
taste sensorially, flavanones might act as bitter receptor antagonists. Fourteen flavanones were investigated for their
potential to reduce activation of hTAS2R39 by epicatechin gallate (ECG), one of the main bitter compounds occurring in
green tea. Three flavanones showed inhibitory behavior towards the activation of hTAS2R39 by ECG: 49-fluoro-6-
methoxyflavanone, 6,39-dimethoxyflavanone, and 6-methoxyflavanone (in order of decreasing potency). The 6-
methoxyflavanones also inhibited activation of hTAS2R14 (another bitter receptor activated by ECG), though to a lesser
extent. Dose-response curves of ECG at various concentrations of the full antagonist 49-fluoro-6-methoxyflavanone and
wash-out experiments indicated reversible insurmountable antagonism. The same effect was observed for the structurally
different agonist denatonium benzoate.

Citation: Roland WSU, Gouka RJ, Gruppen H, Driesse M, van Buren L, et al. (2014) 6-Methoxyflavanones as Bitter Taste Receptor Blockers for hTAS2R39. PLoS
ONE 9(4): e94451. doi:10.1371/journal.pone.0094451

Editor: Johannes Reisert, Monell Chemical Senses Center, United States of America

Received December 5, 2013; Accepted March 16, 2014; Published April 10, 2014

Copyright: � 2014 Roland et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financially supported by the Food & Nutrition Delta of the Ministry of Economic Affairs, the Netherlands (FND 08019, http://www.
agentschapnl.nl/subsidies-regelingen/innovatieprogramma-food—nutrition). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors were asked to include amended statements of competing interests and financial disclosure that declare the affiliation of the
companies Unilever and Valio. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

* E-mail: jean-paul.vincken@wur.nl

¤ Current address: Valio Ltd R&D, Helsinki, Finland

Introduction

Even though bitter taste can be appreciated in some food

products, such as beer, coffee, dark chocolate and red wine [1], in

most cases bitterness in food is unwanted and efforts are taken to

reduce bitter taste [2]. One approach for masking bitter taste is the

use of so-called bitter receptor blockers, which inhibit the taste

receptor activation caused by the bitter compound. On the human

tongue, bitterness is perceived by human bitter taste receptors

(hTAS2Rs, TAS2Rs or T2Rs). The in-vitro activation of these

hTAS2Rs by bitter compounds has been studied intensively

during the last decade. For 21 of the 25 the bitter receptors, an

agonist, or in some cases dozens of agonists, have been identified

[3,4]. On the contrary, bitter receptor antagonists are still quite

rare.

The small molecule (4-(2,2,3-trimethylcyclopentyl)butanoic acid

(or GIV 3727) has been reported as inhibitor of six bitter taste

receptors [5]. It was able to decrease the sensory perception of

bitter aftertaste of the sweeteners acesulfame K and saccharin, as

well as the activation of hTAS2R31 and hTAS2R43, the bitter

receptors activated by these two compounds. Another compound,

the decreased bitter receptor activation of which could be linked to

sensory perception, was p-(dipropylsulfamyl)benzoic acid (better

known as probenecid). It has been reported to inhibit activation of

hTAS2R16, hTAS2R38, and hTAS2R43, and to suppress the

bitter taste perception of salicin in sensory tests [6]. It has been

reported that a compound can act as an agonist towards one

subset of bitter receptors, whereas it can act as an antagonist

towards another subset of bitter receptors. This has been described

for the two sesquiterpene lactones 3b-hydroxydihydrocostunolide

(3HDC) and 3b-hydroxypelenolide (3HP) [7].

Recently, a pharmacophore model for maskers of the bitter taste

of caffeine has been developed [8]. This pharmacophore was

docked into a homology model of hTAS2R10 (one of the bitter

receptors activated by caffeine). Docking of the two substances

enterolactone and enterodiol predicted their bitterness modulating

activities, which could be confirmed by sensory tests. Docking was

also applied for the compound GIV 3727 in a model of

hTAS2R31, and the presence of a single binding pocket was

reasoned [5], in which both agonist and antagonist can bind.

Apart from in-vitro studies on bitter receptor blocking, several

molecules are reported to mask bitter taste in-vivo [2], amongst

which the flavanones homoeriodictyol, its Na-salt, and eriodictyol.

They reduced the bitter taste of different chemical classes of bitter

molecules up to 40% with unknown mechanism [9]. Their

sensorial bitter masking effect has not been proven to be caused by

inhibition of bitter taste receptor activation. Two other flavanones

(sakuranetin and 6-methoxysakuranetin) have been described as

antagonists for hTAS2R31 [10]. Hence, flavanones seem to be of

importance in reduction of bitter taste and bitter taste receptor

activation.
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The human bitter taste receptor hTAS2R39 seems to be a bitter

receptor for dietary compounds, as many agonists are dietary

compounds, such as thiamine (vitamin B1), quinine [3] used in

tonic water, catechins from green tea [11], wine tannin precursors

[12], small peptides from casein hydrolysates [13] and cheese [14],

isoflavones from soy bean [15], and many other flavonoids from

several plant sources [16]. Hence, it is of interest to identify a bitter

blocker for this receptor. It is likely that an antagonist might have

similar structural elements to an agonist in order to fit into the

same binding pocket. In our previous study on (iso)flavonoid

agonists of hTAS2R39, several of the compounds tested, amongst

which flavanones, did not activate the bitter receptor despite

structural similarity to active compounds [16]. The aim of the

present study was to investigate whether these and other

flavanones could act as antagonists towards hTAS2R39. It was

demonstrated that some flavanones showed antagonistic behavior,

while others did not.

Materials and Methods

Materials
Compounds tested were obtained from Extrasynthese (Genay,

France), Indofine Chemical Company (Hillsborough, NJ, USA),

Interbioscreen (Moscow, Russia), and Sigma-Aldrich (Steinheim,

Germany). The majority of compounds were $99% or $98%

pure; compound (4) was 95% pure and compound (6) was 92–

95% pure. Each compound was dissolved in DMSO (Sigma-

Aldrich) to a 100 mM stock concentration. Trypan blue solution

(0.4% w/v) and isoproterenol were purchased from Sigma-

Aldrich.

Tyrode’s buffer (140 mM NaCl, 5 mM KCl, 10 mM glucose,

1 mM MgCl2, 1 mM CaCl2, and 20 mM Hepes, pH 7.4) with

0.5 mM probenecid (Sigma-Aldrich) was used for dilution of

compound-DMSO stock solutions and for calcium imaging assays.

The presence of probenecid in the buffer did not lead to inhibition

of hTAS2R14 or hTAS2R39. Comparisons of assays with and

without the use of probenecid are shown in File S1. All

compounds were tested for autofluorescence and toxic effects on

the cells (File S2) used at a concentration of 1 mM as described

before [15].

Expression of hTAS2R39 and hTAS2R14 in HEK293 cells
For functional expression of the human bitter taste receptor

hTAS2R39, HEK293 T-Rex Flp-In cells (Invitrogen, San Diego,

CA, USA) were used, stably expressing the chimeric G-protein a-

subunit Ga16-gust44 (cloned into pcDNA4 (Invitrogen)) [17] and

the human bitter receptor genes for hTAS2R39 (cloned into

pcDNA5/FRT (Invitrogen)). The bitter receptor gene contained a

DNA sequence encoding the first 45 amino acids of rat

somatostatin receptor type 3 at its 59 end (the receptor expression

was achieved according to [18] with exception of the HSV-tag), in

order to improve membrane targeting of the receptor protein. The

same procedure was applied for stable expression of hTAS2R14.

Cells were maintained in Dulbecco’s Modified Eagle’s Medium

(DMEM) and 10% (v/v) tetracycline-free FBS (both Lonza,

Verviers, Belgium) supplemented with blasticidin (5 mg/mL),

geneticin (400 mg/mL) and hygromycin (100 mg/mL) (all from

Invitrogen). Cells were grown and maintained at 37 uC and 5%

(v/v) CO2.

Monitoring bitter receptor activation by intracellular
calcium release

Cells were seeded into poly-L-lysine-coated (Sigma-Aldrich) 96-

well plates (black wall, clear bottom, Greiner bio-one, Frick-

enhausen, Germany) at a density of 7*103 cells in 100 mL/well and

cultured for 24 h. Transcription of the receptors was induced by

adding 0.25 mg/mL doxycycline (Sigma-Aldrich). Cells were

induced for 24 h and then loaded with the calcium-sensitive

fluorescent dye Fluo-4-AM (2.5 mM, Invitrogen), which was

dissolved in Tyrode’s buffer containing 5% (v/v) tetracycline-free

FBS (Lonza). One hour after loading, cells were washed with

Tyrode’s buffer and taken up in Tyrode’s buffer. Stock solutions of

test compounds were prepared in DMSO and diluted to the

appropriate concentration in Tyrode’s buffer, not exceeding a

DMSO concentration of 1% (v/v).

Receptor activation or inhibition was measured via intracellular

Ca2+ release [19] in a FlexStation II 384 or FlexStation III

(Molecular Devices Corporation, Sunnyvale, CA, USA) by

measuring fluorescence (excitation 485 nm/emission 520 nm) for

either 90 s or 240 s at 37uC. Two methods of compound

administration were applied: simultaneous and stepwise addition

of potential antagonist and agonist. The first 17 s before

compound addition were used for baseline determination. For

the simultaneous method, agonist and potential antagonist were

pre-mixed, administered after 17 s, and fluorescence was mea-

sured for in total 90 s. For the stepwise method, after 17 s, the

potential antagonist was added, fluorescence was measured until

120 s, and after 120 s the agonist was added and measured for

another 120 s, in total 240 s. Non-induced cells, which did not

express the taste receptor, were measured in parallel to verify

specificity of receptor activation. Each experiment was performed

at least in duplicate in separate experiments (as indicated for each

figure).

Calcium assay data processing
Data processing was done as reported previously [15]. In brief,

SoftMax Pro 5.4 software (Molecular Devices Corporation) was

used to plot the fluorescence signals. The fluorescence value (DF/

F0), representing receptor activity, was calculated by subtracting

the baseline fluorescence (F0) prior to loading from the maximum

fluorescence (F) after compound addition, divided by the signal of

Figure 1. Chemical structures of hTAS2R39 agonist epicatechin
gallate (ECG) (A), investigated flavanones (residues specified in
Table 1) (B) and hTAS2R39 agonist denatonium benzoate (C).
The commonly applied ring-nomenclature for flavonoids (A-, B-, and C-
ring) is shown in the general structure formula for flavanones.
doi:10.1371/journal.pone.0094451.g001

Bitter Blockers for hTAS2R39

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e94451



the baseline in order to normalize background fluorescence [20].

Dose-response curves were established as non-linear regression

curves using Graph Pad Prism (version 4 for Windows, Graph Pad

Software, San Diego, CA, USA). Half-maximal effective concen-

trations (EC50) and half-maximal inhibitory concentrations (IC50)

were calculated. Error bars reflect the standard error of the mean

(SEM). Statistical analysis was performed in Graph Pad Prism

(one-way ANOVA at 5% risk level, followed by Bonferroni’s post

hoc test).

Investigation of inhibitory behavior of flavanones
Measuring dose-response curves of ECG on hTAS2R39 under

the conditions used in this study revealed an EC80 concentration of

200 mM. Screening for hTAS2R39 inhibition by flavanones was

performed with simultaneous application of agonist (200 mM

ECG) and putative antagonist (250 mM flavanone). Inhibition was

indicated when
DF=F0(agonistzflavanone)

DF=F0(agonist)
v1. In case of

indicated inhibition, flavanones were applied at different concen-

trations, in order to test for dose-dependent inhibition, at the EC80

concentration of the agonist. Another agonist of hTAS2R39,

denatonium benzoate, was used in inhibition experiments at

1.7 mM (EC80). hTAS2R14 inhibition was tested with 640 mM

ECG or 70 mM genistein as agonists, representing their respective

EC80 concentrations. To investigate the specificity of flavanones

for inhibition of hTAS2R39 and hTAS2R14, another bitter taste

receptor, hTAS2R16 (not known to be activated by flavonoids),

was used in inhibition experiments (File S3) towards its agonist

salicin.

To determine whether inhibition was specific for the bitter taste

receptor, the effect of the antagonists was tested on the b2-

adrenergic receptor agonist isoproterenol (50 mM). To this end,

the antagonists were applied at ,IC50 concentrations (100 mM 49-

fluoro-6-methoxyflavanone, 500 mM 6,39-dimethoxyflavanone,

and 500 mM 6-methoxyflavanone). To distinguish between

reversible and irreversible inhibition, washout experiments were

performed. Cells were stimulated with 200 mM ECG in the

Figure 2. Screening of flavanones for reduction of ECG response on hTAS2R39. Screening was performed with simultaneous application of

agonist (200 mM ECG) and putative antagonist (250 mM flavanone). Inhibition was indicated when
DF=F0(agonistzflavanone)

DF=F0(agonist)
v1. Data are

presented as mean 6SD of n separate experiments conducted in duplicate. Compounds 1, 2, 4, 5, 7, 10: n = 2, compounds 8, 9, 12, 13, 14: n = 3,
compound 3: n = 4, compound 6, 11: n = 5. Significance of signal reduction is indicated by ** (p#0.01) and * (p#0.05).
doi:10.1371/journal.pone.0094451.g002

Table 1. Flavanones tested for reduction of activation of
hTAS2R39 by ECG.

R5 R6 R7 R8 R39 R49

6-Chloro-4-methylflavanone (1) H Cl H H H CH3

8-Chloro-4-methylflavanone (2) H H H Cl H CH3

6,39-Dimethoxyflavanone (3) H OCH3 H H OCH3 H

Eriodictyola (4) OH H OH H OH OH

Flavanoneb (5) H H H H H H

49-Fluoro-6-methoxyflavanone (6) H OCH3 H H H F

Homoeriodictyola (7) OH H OH H OCH3 OH

6-Hydroxyflavanone (8) H OH H H H H

7-Hydroxyflavanone (9) H H OH H H H

49-Hydroxyflavanoneb (10) H H H H H OH

6-Methoxyflavanoneb (11) H OCH3 H H H H

7-Methoxyflavanone (12) H H OCH3 H H H

49-Methoxyflavanone (13) H H H H H OCH3

Sakuranetinc (14) OH H OCH3 H H OH

Residues relate to Figure 1B.
aactivated hTAS2R39 in a previous study [16], but was selected for testing as
antagonist due to ability to reduce bitter taste perception in sensory tests [9].
bno activation of hTAS2R39 in a previous study [16].
creported as antagonist of hTAS2R31 [10].
doi:10.1371/journal.pone.0094451.t001
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absence and in the presence of each antagonist (,IC50 concen-

trations), washed with Tyrode’s buffer (80 mL/well), and again

stimulated with 200 mM ECG.

Results

Identification and characterization of hTAS2R39
inhibitors

Epicatechin gallate (ECG) (Figure 1A), one of the main bitter

compounds in green tea [11], was chosen as agonist of

hTAS2R39. In a previous study we identified nine flavanones as

agonists of hTAS2R39, whereas three other flavanones did not

activate this receptor [16]. As some flavanones have been reported

as bitter blockers [9,10], it was investigated whether the three

inactive flavanones, as well as other flavanones, might have

antagonistic properties towards hTAS2R39. Fourteen flavanones

(Table 1 and Figure 1B) were screened for their ability to

reduce the activation of hTAS2R39 by ECG. Inhibition was

indicated when the ratio between ECG response in the presence of

a flavanone and the ECG response in the absence of a flavanone

was ,1 (Figure 2). In this figure, it can be seen that three

compounds showed reduction of ECG responses on hTAS2R39:

6,39-dimethoxyflavanone (3), 49-fluoro-6-methoxyflavanone (6),

and 6-methoxyflavanone (11). The inhibitory effects of (3) and (6)

at screening concentrations were significant. The effect of (11) was

not significant, but as there was a trend of reduced ECG responses

visible, also (11) was selected for investigation of dose-response

behavior.

They were further investigated by two different ways of

compound addition: simultaneous and stepwise addition. Simul-

taneous addition of agonist and antagonist to the receptor reflects

the situation of ideal blocker application in food products.

Stepwise addition of agonist and antagonist is commonly applied

in pharmaceutical research when examining pharmacodynamics

of receptor-antagonist interaction [21]. Figure 3 illustrates the

different ways of compound administration for representative

examples. Figure 3A shows simultaneous addition of agonist and

antagonist, which implies that after baseline fluorescence mea-

surement, agonist and antagonist were added simultaneously

(indicated with the arrow ‘‘1st addition’’). Figure 3B shows

stepwise addition of agonist and antagonist, which implies that

after baseline fluorescence measurement, first the antagonist (or

buffer) was added (indicated with the arrow ‘‘1st addition’’), and

subsequently the agonist was added (indicated with the arrow ‘‘2nd

addition’’). In both examples, calcium signals elicited by ECG

decreased in the presence of the 6-methoxyflavanones.

The inhibitory properties of the compounds 6,39-dimethoxy-

flavanone (3), 49-fluoro-6-methoxyflavanone (6), and 6-methoxy-

flavanone (11) towards hTAS2R39 were investigated using both

ways of compound addition. The compound 49-fluoro-6-methox-

yflavanone (6) showed inhibitory activity towards ECG on

hTAS2R39 both after simultaneous (Figure 4A) and after

stepwise addition (Figure 4B). Application of (6) prior to addition

of ECG led to 100% receptor blocking (Figure 4B). For this full

receptor blocker, the half-maximal inhibitory concentration (IC50)

was 102 mM. An overview of inhibition thresholds and IC50 values

is given in Table 2. When (6) was added simultaneously with

ECG, it had a lower inhibition threshold than when added in the

stepwise way. Upon simultaneous addition, a maximal signal

reduction of 65% was reached at 63 mM, and further signal

reduction could not be observed due to non-specific signals of the

compound itself. The same holds for the simultaneous addition of

Figure 3. Fluorescent counts of ECG-induced calcium responses in cells expressing hTAS2R39 (induced) and non-expressing
hTAS2R39 (non-induced). A: Simultaneous addition of agonist (ECG 200 mM) and antagonist (49-fluoro-6-methoxyflavanone (6) 16 mM) (%) versus
the signal elicited by ECG (antagonist replaced by buffer, final concentration ECG 200 mM) (e). Non-induced cells: ECG 200 mM and 49-fluoro-6-
methoxyflavanone (6) 16 mM (#) and ECG 200 mM (D). B: Stepwise addition of first antagonist (arrow ‘‘1st addition’’), and then agonist (arrow ‘‘2nd

addition’’) (1st 6-methoxyflavanone (11) 500 mM, 2nd ECG 200 mM) (%)) versus agonist (1st buffer, 2nd ECG 200 mM) (e). Non-induced cells: 1st 6-
methoxyflavanone (11) 500 mM, 2nd ECG 200 mM (#) versus 1st buffer, 2nd ECG 200 mM (D).
doi:10.1371/journal.pone.0094451.g003
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Figure 4. Inhibition of response of 200mM ECG (---) on hTAS2R39 (induced ( ), non-induced (N #)) by 49-fluoro-6-methoxyflavanone (6) after
simultaneous addition (n = 5) (A) and stepwise addition (n = 4) (B), by 6,39-dimethoxyflavanone (3) after simultaneous addition (n = 4) (C)

D), and by 6-methoxyflavanone (11) after simultaneous addition (n = 5) (E) and stepwise addition (n = 3) (F).
6SEM of n separate experiments conducted in duplicate.

doi:10.1371/journal.pone.0094451.g004

Table 2. Thresholds and IC50 values of 6-methoxyflavanones for inhibition of hTAS2R39 responses towards 200 mM ECG and
1.7 mM denatonium benzoate.

hTAS2R39 agonists Flavanones Simultaneous Stepwise

ECG Denatonium Threshold IC50 Threshold IC50

(mM) (mM) (mM) (mM) (mM) (mM)

200 0 6-methoxyflavanone n.b. n.b. 250 4796199

200 0 6,3-dimethoxyflavanone 63 282697 125 407655

200 0 49-fluoro-6-methoxyflavanone 8 3267 63 10269

0 1.7 6-methoxyflavanone n.b. n.b. 500 n.d.

0 1.7 6,3-dimethoxyflavanone 8 8966 63 24068

0 1.7 49-fluoro-6-methoxyflavanone 8 22612 32 5563

n.b., no blocking.
n.d., not determined.
doi:10.1371/journal.pone.0094451.t002

Bitter Blockers for hTAS2R39
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6,3-dimethoxyflavanone (3) (Figure 4C), where a maximal signal

reduction of 55% was reached at 500 mM. Due to increasing non-

specific signals of (3), the full efficacy upon simultaneous addition

could not be established. As shown in Figure 4D, a maximal

reduction of ,85% at 1000 mM was reached by (3) after stepwise

addition. In contrast to (6) and (3), the compound 6-methoxy-

flavanone (11) showed negligible inhibitory activity against ECG

on hTAS2R39 when applied simultaneously (Figure 4E), whereas

it showed inhibitory activity when applied stepwise (ca. 50%

reduction of activation at 500 mM) (Figure 4F). When investi-

gating the inhibitory behavior of the compounds identified, it thus

became clear that the way of antagonist addition influenced the

efficacy of the antagonist.

Next, it was investigated whether the activation of hTAS2R39

by another agonist could also be reduced by the inhibitors

identified. Denatonium benzoate (Figure 1C) was selected as well

known agonist of hTAS2R39, which is different from ECG, in

terms of structure and activation concentrations. Dose-response

curves of denatonium benzoate were measured, and an EC50 of

711 mM, and an EC80 of 1.7 mM were established (data not

shown). Figure 5 shows the inhibitory behavior of 49-fluoro-6-

methoxyflavanone (6) towards 1.7 mM denatonium benzoate on

hTAS2R39. The same trends as for ECG combined with

antagonists were observed. The receptor activation of denatonium

benzoate was reduced upon simultaneous addition of (6) up to a

concentration of 63 mM (not further reduced due to increasing

non-specific signals), leading to maximal signal reduction of 58%.

Stepwise application of (6) led to 100% receptor blocking, as

already seen with ECG. The IC50 was calculated to be 55 mM.

The results of all antagonists applied with denatonium benzoate

are summarized in Table 2. Due to the fact that structurally

different agonists were inhibited in a similar manner, we conclude

that the reduced receptor response was not achieved by interaction

between agonist and inhibitor, but by actual receptor antagonism.

Specificity of hTAS2R39 inhibitors
It was investigated whether the antagonists identified specifically

inhibit hTAS2R39, or also hTAS2R14, as many flavonoids

behave similarly towards these two receptors [16]. As agonist for

hTAS2R14, ECG was used. Figure 6 shows that no blocking of

hTAS2R14 occurred upon simultaneous application of 49-fluoro-

6-methoxyflavanone (6) and ECG (here at 640 mM, EC80 on

hTAS2R14). The increase of signal at increasing concentrations of

(6) is of non-specific nature, which can also be seen in the increase

of response of non-induced cells, in which the bitter receptor is not

expressed. Upon stepwise application, an inhibitory effect was

observed. The three methoxyflavanones were also tested with

genistein, another agonist of hTAS2R14, at 70 mM (EC80). The

results were similar to the results obtained with ECG. An overview

of inhibition thresholds and IC50 values on hTAS2R14 is given in

Table 3. It is remarkable that none of the three methoxy-

flavanones blocked hTAS2R14, when applied simultaneously with

one of the agonists.

Figure 5. Inhibition of response of 1.7 mM denatonium benzoate (---) on hTAS2R39 (induced ( ), non-induced (N #)) by 49-fluoro-6-
methoxyflavanone (6) after simultaneous addition (n = 4) (A) and stepwise addition (n = 4) (B). Data are presented as mean 6SEM of n
separate experiments conducted in duplicate.
doi:10.1371/journal.pone.0094451.g005

Figure 6. Inhibition of response of 640 mM ECG (---) on hTAS2R14 (induced (N), non-induced (#)) by 49-fluoro-6-methoxyflavanone
(6) after simultaneous addition (n = 2) (A) and stepwise addition (n = 3) (B). Data are presented as mean ±SEM of n separate
experiments conducted in duplicate.
doi:10.1371/journal.pone.0094451.g006

Bitter Blockers for hTAS2R39
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In order to further investigate the specificity of the antagonists

identified towards taste receptors, isoproterenol responses were

measured. Inhibition of isoproterenol response would indicate

non-specific inhibition of b2-adrenergic receptors, endogenous to

HEK293 cells. The results (Figure 7) show that the isoproterenol

responses were not reduced and therewith the inhibition is

concluded to be specific for taste receptors. Furthermore, the

specificity of the antagonists was further investigated by measuring

their activity on another bitter taste receptor, hTAS2R16. No

blocking of salicin responses on hTAS2R16 was observed, neither

during simultaneous, nor stepwise addition (File S3).

Pharmacological characterization of 49-fluoro-6-
methoxyflavanone

Due to full elimination of agonistic responses by 49-fluoro-6-

methoxyflavanone (6) on hTAS2R39, this molecule seemed to be

the most effective antagonist identified in this study. The

mechanism of antagonism was further clarified by measuring

dose-response curves of ECG (Figure 8A) and denatonium

benzoate (Figure 8B) in the presence of various concentrations of

(6). Two effects were observed upon increasing antagonist

concentrations: the dose-response curves shifted to the right, and

the signal amplitudes decreased. The dose-response curves for the

inhibition of ECG and denatonium benzoate showed the same

pattern. EC50 values at all antagonist concentrations were

calculated and are given in Table 4.

To distinguish between reversible and irreversible inhibition,

washout experiments were performed. In Figure 8C it can clearly

be seen that the inhibition was reversible.

Discussion

In this paper we describe, to our knowledge for the first time,

the identification of antagonists for hTAS2R39. For hTAS2R39,

49-fluoro-6-methoxyflavanone (6), 6,39-dimethoxyflavanone (3),

and 6-methoxyflavanone (11) were identified as antagonists (in

decreasing order of potency), amongst which (6) fully eliminated

the agonistic response. This was observed both for the bitter tea

flavonoid ECG and for the synthetic bitter compound denatonium

benzoate. The activation of hTAS2R14, another bitter receptor

recognizing ECG [16], was also inhibited by the three flavanones,

though to a lesser extent. A mechanistic explanation for different

effects observed after simultaneous and stepwise application,

remains to be established.

In view of the fact that the application of (11) and (3) did not

lead to full inhibition of the ECG signal on hTAS2R39, the

question arises whether these two compounds are antagonists or

partial agonists. They were tested for hTAS2R39 agonism as well,

but none of them activated the receptor (File S4). Hence, they

probably act as real antagonists.

Structural requirements for hTAS2R39 antagonists
Several flavanones similar to the antagonists identified did not

show inhibitory activity towards bitter receptor hTAS2R39. It

turned out that only flavanones with a methoxy group on the 6-

position of the A-ring, and various B-ring configurations were able

to act as antagonists of hTAS2R39, as flavanone (5) (substitution of

flavanone crucial for inhibition), 6-hydroxyflavanone (8) (methoxy-

substitution crucial for inhibition), 49-methoxyflavanone (13) (A-

ring methoxylation crucial for inhibition), and 7-methoxyflava-

none (12) (6-position crucial for inhibition) did not show inhibitory

activity. Additionally, the compound 6-methoxyflavone was

Table 3. Thresholds and IC50 values of 6-methoxyflavanones for inhibition of hTAS2R14 responses towards 640 mM ECG and
70 mM genistein.

hTAS2R14 agonists Flavanones Simultaneous Stepwise

ECG Genistein Threshold IC50 Threshold IC50

(mM) (mM) (mM) (mM) (mM) (mM)

640 0 6-methoxyflavanone n.b. n.b. 250 4476123

640 0 6,3-dimethoxyflavanone n.b. n.b. 125 ,250

640 0 49-fluoro-6-methoxyflavanone n.b. n.b. ,8 79625

0 70 6-methoxyflavanone n.b. n.b. 500 7416143

0 70 6,3-dimethoxyflavanone n.b. n.b. n.d. n.d.

0 70 49-fluoro-6-methoxyflavanone n.b. n.b. 32 ,500

n.b., no blocking.
n.d., not determined.
doi:10.1371/journal.pone.0094451.t003

Figure 7. Isoproterenol responses upon application with
buffer, 49-fluoro-6-methoxyflavanone (6), 6,39-dimethoxyflava-
none (3), and 6-methoxyflavanone (11). Data are presented as
mean 6SEM of a representative experiment conducted in quadrupli-
cate. n.s., not significant.
doi:10.1371/journal.pone.0094451.g007
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unable to inhibit hTAS2R39 activation (data not shown), which

indicated that absence of a double bond in the C-ring is essential

for inhibition.

Amongst the antagonists identified for hTAS2R39, the differ-

ence in substitution of the B-ring determined the blocking potency.

Compound (11), which is unsubstituted on the B-ring, showed

poor blocking behavior compared to (6) and (3). It might be

speculated that size, electronegativity and/or electron withdrawing

effect of the B-ring substituent influences the potency of

antagonists.

Pharmacological characterization of 49-fluoro-6-
methoxyflavanone

Due to full elimination of agonistic responses (at their EC80

concentrations) by 49-fluoro-6-methoxyflavanone (6) on

hTAS2R39, this molecule was investigated further with respect

to a possible antagonistic mechanism. Two effects were observed

when increasing 49-fluoro-6-methoxyflavanone concentrations: the

dose-response curves shifted to the right, and the signal amplitudes

decreased. These phenomena suggest that it can be classified as

insurmountable antagonist [22]. This curve pattern can be an

indication for three different mechanisms: (i) irreversible antago-

nism, (ii) reversible non-competitive orthosteric antagonism, in

which an equilibrium is not reached, and (iii) reversible

insurmountable allosteric antagonism [22]. Washout experiments

(Figure 8C) clearly showed that the ECG responses after

washing-out the antagonist were similar to the ECG responses

prior to application of the antagonist. It can thus be concluded that

the interaction was reversible. In order to distinguish between (ii)

and (iii), two aspects can be studied: (a) whether the antagonist is

probe dependent, meaning that its antagonistic characteristics

Figure 8. Dose-response curves for epicatechin gallate (ECG) (N) (n = 2) (A) and denatonium benzoate (N) (n = 2) (B) on hTAS2R39,
and their modification by increasing 49-fluoro-6-methoxyflavanone (6) concentrations (# 50 mM, D 100 mM, % 200 mM). Antagonist
and agonist were added in the stepwise way. Data are presented as mean 6SEM of n separate experiments conducted in duplicate. Wash-out
experiments (n = 2) (C). Cells were stimulated with 200 mM ECG in the absence (open bars) and in the presence (filled bars) of 100 mM 49-fluoro-6-
methoxyflavanone (6), or 500 mM 6,39-dimethoxyflavanone (3), or 500 mM 6-methoxyflavanone (11), washed with Tyrode’s buffer, and again
stimulated with 200 mM ECG (hatched bars; control: grey bar). Antagonist and agonist were added in the stepwise way. Data are presented as mean
6SEM of n separate experiments conducted in quadruplicate. Significance of signal reduction is indicated by *** (p#0.001), ** (p#0.01), and n.s. (not
significant, p.0.05).
doi:10.1371/journal.pone.0094451.g008

Table 4. EC50 values of ECG and denatonium benzoate in the presence of various concentrations of 49-fluoro-6-methoxyflavanone
(6) on hTAS2R39.

Concentration of 49-fluoro-6-methoxyflavanone

0 mM 50 mM 100 mM 200 mM

ECG 128682 mM 156663 mM 501648 mM 781693 mM

Denatonium benzoate 6596334 mM 1.0960.21 mM 3.3660.84 mM 6.9464.98 mM

doi:10.1371/journal.pone.0094451.t004
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(reflected in curve shapes) are different towards structurally

different agonists, and (b) whether the effect of the antagonist is

saturable, meaning that no antagonist concentration can lead to

full agonist signal elimination. Probe dependence (a) and

saturability (b) indicate mechanism (iii) [22]. When the inhibition

behavior of 49-fluoro-6-methoxyflavanone was studied with two

structurally different agonists, it was observed that the synthetic

hTAS2R39 agonist denatonium benzoate was also inhibited by 49-

fluoro-6-methoxyflavanone (Figure 8B), and exhibited a curve

pattern almost alike that by ECG (Figure 8A) upon different

blocker concentrations. These analogous results for the two

structurally different agonists might on the one hand indicate

orthosteric antagonism, but on the other hand they do not

completely exclude allosteric antagonism. If the antagonist would

have been unable to inhibit a structurally different agonist, it

would strongly suggest allosteric antagonism. However, determi-

nation of allosterism by observing probe dependence is a one-way

relationship [22], meaning that the absence of probe dependence

is no definite proof for orthosterism. The same holds for

saturability, which was not examined.

For hTAS2R46, hTAS2R31, hTAS2R43 [23], hTAS2R16

[24], and hTAS2R38 [25], docking simulations into homology

models, validated by site-directed mutagenesis, have predicted the

presence of a single binding pocket in the respective bitter

receptors. Furthermore, the mechanism of antagonism of

GIV3727 on hTAS2R31 was described as orthosteric, insur-

mountable antagonism [5], supported by docking the antagonist

into the same binding pocket as the agonist. In contrast, one study

suggests allosteric antagonism as mechanism for inhibition of

hTAS2R16 and hTAS2R38 by probenecid [6]. No information

has been reported yet on the binding pocket of hTAS2R39. As the

majority of studies suggests the presence of a single binding pocket

in different bitter receptors, and the relatively small extracellular

domain of bitter receptors offers little space for another binding

site (in contrast to sweet receptors, where a second binding site is

present in the large N-terminal extracellular domain [26]), an

orthosteric mechanism seems more likely for explaining our

observations. However, at the antagonist concentrations tested, no

full signal elimination was reached, and thus the possibility of an

allosteric mechanism cannot be ruled out.

Application of bitter receptor blockers
For application of blockers in food products, several require-

ments should be met. (i) The blocker should be functional at a low

dose. Therefore, an antagonist that has to be applied in equimolar

or higher quantity to the agonist, is not efficient. (ii) In order to

block the bitter taste of dietary compounds, for practical reasons, it

is necessary that a bitter receptor blocker is also functional when

applied simultaneously with the bitter compound. Therefore,

compounds like (3) and (6) seem to be more suitable than (11). (iii)

In order to achieve a sensorial effect, blocking of all bitter

receptors activated by one compound is desirable. A blocker, that

can only inhibit hTAS2R39, but not hTAS2R14, might be too

specific to effectively reduce bitterness of ECG. On the other

hand, it is not known yet whether these two receptors have an

equally important role in the mouth. (iv) The blocker should

preferably be of natural origin, and should be available in

sufficient quantity. We could not find any natural source of the

three inhibitors described in this study, and assume that they are

only available synthetically. (v) Only compounds that are known as

safe for consumption are of interest for food applications. Due to

unknown safety of 49-fluoro-6-methoxyflavanone, we abstained

from sensory tests, which might confirm the function as bitter taste

blocker in-vivo. As not all criteria are met by the blockers

discovered in the present study, they might not be applicable to

food products. Nevertheless, a 6-methoxy substituent on the A-

ring of a flavanone has been identified as important for inhibition

of hTAS2R39, which might form the basis for other, more

suitable, blockers.
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