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Abstract

Right brain damaged patients show impairments in sequential decision making tasks for which healthy people do not show
any difficulty. We hypothesized that this difficulty could be due to the failure of right brain damage patients to develop
well-matched models of the world. Our motivation is the idea that to navigate uncertainty, humans use models of the world
to direct the decisions they make when interacting with their environment. The better the model is, the better their
decisions are. To explore the model building and updating process in humans and the basis for impairment after brain
injury, we used a computational model of non-stationary sequence learning. RELPH (Reinforcement and Entropy Learned
Pruned Hypothesis space) was able to qualitatively and quantitatively reproduce the results of left and right brain damaged
patient groups and healthy controls playing a sequential version of Rock, Paper, Scissors. Our results suggests that, in
general, humans employ a sub-optimal reinforcement based learning method rather than an objectively better statistical
learning approach, and that differences between right brain damaged and healthy control groups can be explained by
different exploration policies, rather than qualitatively different learning mechanisms.
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Introduction

Humans are surprisingly efficient in making sequential decisions

[1], [2]. This efficiency is remarkable because it occurs in the face

of uncertainty (in fact, in the face of uncertainty about uncertainty;

[3], [4]), relies on imperfect knowledge, must utilize ambiguous

cues, and takes place in an environment of variable risk and non-

deterministic outcomes [5], [6], [7], [8].

One plausible suggestion for how we cope with such uncertainty

is that we are guided by mental models. Through our observa-

tions, and utilizing processes such as learning and heuristics [9],

[10], [11], [12], we develop mental models of the processes

generating a given sequence of events. These models encapsulate

the rules that govern the environment, and form the basis for

predicting what will happen next. When the environment changes,

as it usually does, our models and their predictions will no longer

match incoming information and thus we must update them [13],

[14], [15].

Understanding model building and updating is also beneficial

for brain-damage studies since these processes appear to be

hemispherically lateralized and may provide a unitary account for

understanding many of the non-spatial deficits that follow right

brain injury [13],[16].

We are interested in understanding how humans build mental

models through combining various learning processes, heuristics

and prior beliefs. Patterns of impairment after brain injury may

help to elucidate these connections. To investigate more about

building and updating processes, we study sequential decision

making tasks because of what they may reveal about these

processes. In our prior studies of model updating in patients with

brain damage we used the game Rock, Paper, Scissors (RPS; [13]).

Participants played RPS as a sequential decision making task and

participant performance could improve by learning an opponent’s

strategy. Since the computer opponent’s strategy shifted, partic-

ipant performance would improve if shifts in policies were detected

and participant models updated. In this paper, we explore the

nature of mental model building and updating for sequential

decisions by emulating it with a computational model and

replicating control and brain-damaged participant performances.

By exploring which model components are necessary to reproduce

participants’ performances, and whether particular changes are

consistent across different clinical groups, we can improve our

account of the model building process.

Our plan for the paper is as follows: we first summarize the

clinical data that formed the basis for our modelling. These data

were previously reported and are briefly recounted here for

convenience. We next develop two possible approaches that the

participants might have taken to build proper mental models of the

task: statistical learning and reinforcement learning approaches.

First, we review the particular sequence learning model we used

(Entropy Learned Pruned Hypothesis space; ELPH; [17]) and the

assumptions behind it. Our expectation, based on an intuition that

something like statistical learning lay at the core of the model

building phenomenon, was that a model of non-stationary

sequence learning would prove sufficient for this purpose.

Following this we describe how we were unable to fully capture
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the range of performance of our participant groups with the

original ELPH model, primarily because of a tendency for ELPH

to outperform most healthy human subjects regardless of

numerical changes to the parameters. We next present results

with a variation of ELPH that replaces its preoccupation with

predicting future observations to instead focus on predicting choice

rewards; this was done by using a simple reinforcement mechanism.

While demonstrably sub-optimal, this combined model better

captured the range of performance seen in both patient groups

and healthy controls (which were also sub-optimal). We conclude

with some conjectures about what forces may have led human

cognitive systems to resort to sub-optimal decision making

processes.

Materials and Methods

1. RPS Experiment
The data from our previous study [13] form the comparison set

for the computational simulations performed here. Three groups

of participants (right brain damaged: RBD, left brain damaged:

LBD and healthy controls: HC) played 600 trials of RPS against a

computer opponent. Participants were not informed that the

computer initially followed a strategy of uniform choice for the first

200 trials, followed by a lightly biased choice (200 trials with rock

chosen half the time) to finally playing a heavily biased choice (200

trials with paper chosen 80% of the time). Only the last 200 trials

(the heavy bias of paper) were used for this study given that no

evidence of learning the computer’s strategy could be found in any

of the groups for the first two conditions (more details are provided

in the Text S1; also for full results and procedures see [13]).

2. Computational Model
We hypothesized that for our RPS task, humans develop their

mental model about the task through generating various

hypotheses about what should be played next based on what has

been observed so far. Then, the participants constantly update and

evaluate these generated hypotheses according to new incoming

information. More predictive hypotheses are kept in working

memory and are used to predict which action is to be taken next.

Less predictive hypotheses are pruned.

Two different mechanisms seemed the most plausible ap-

proaches to be taken by our participants in their efforts to beat the

computer opponent: (1) they could utilize a statistical learning

approach and focus on learning what choice the computer would

play next- they would then use this prediction to select their

choice-; (2) they could bypass learning to predict their opponent

and employ a reinforcement learning approach to learn directly

which choice they should make given past choices.

To examine whether either of these approaches were plausibly

used by our human participants, we developed two computational

models, one based on each approach and compared them for their

ability to reproduce the pattern of plays and wins for each

participant individually and for the patient group (RBD, LBD, or

Control) to which they belonged. The main ideas of hypothesis

generation, hypothesis updating, hypothesis evaluation and

hypothesis pruning were common to both models; the principal

difference between them was whether the hypotheses were about

what the opponent would play, or whether the hypothesis was

about whether their own choice was likely to win.

1.1. Statistical Learning Approach: ELPH. A sequence

learning approach called ‘‘ELPH’’ is used to predict the behaviour

of the participants by employing a statistical learning approach

[17]. ELPH proposes a two-compartment approach to sequence

learning. The Short Term Memory (STM) component contains

the n most recent temporally ordered observations and the

Hypothesis Space (HS) contains individual hypotheses. These

hypotheses predict what is likely to be observed given what has

already been seen. To learn the best hypothesis, ELPH has three

main functions; hypothesis learning, prediction and pruning. Each

function is described separately bellow.

Hypothesis Learning Function. The ELPH hypothesis

generation function consists of two sub-functions; Hypothesis

Generation and Hypothesis Updating.

Hypothesis Generation. Individual hypotheses in ELPH are

ordered subsets of prior observations taken from STM. As an

example, imagine that ELPH is exposed to the pattern below:

rock, rock, paper, rock, rock, paper, rock, rock, paper,…

Let’s say the length of STM (n) is equal to 2, which means at the

end of each trial the last two observations are saved in STM.

Imagine also that the last two observations (at time t-2 and t-1

respectively) were ‘paper’ and ‘rock’. Then the current content of

STM would be the tuple (‘paper’, ‘rock’). The goal is to learn to

predict the next observation based on the current content of STM.

To do so, ELPH generates hypotheses about the possible

relationships between the computer’s last plays (which have been

saved in STM) and its next play.

The logic behind the hypothesis generation function is that

every subset of STM might be a predictor of the next observation.

In our example, the strategy might be that playing rock at each

trial (t-1) is always followed by playing another rock at the next

trial (t) (Hyp1). It is also possible that rock is played (at time t) only

after playing a paper and a rock respectively (Hyp2). The last

possible option is that playing paper at t-2 is an indicator of

playing rock at t regardless of whatever item appeared at t-1

(Hyp3).

Hypothesis Updating. The learning process is to learn over

time which of these generated hypotheses predicts the next

observation best and determine the most likely prediction. To

learn the predictive hypotheses, a ‘‘prediction-set’’ is associated

with each hypothesis consisting of all the events that have

immediately followed that hypothesis and a count of the number

of times each event has happened. For a particular hypothesis,

Hyp, a prediction-set is as follows:

e1,c1½ �, e2,c2½ �, . . . , em,cm½ �f g

here e1, e2 … em is the list of possible outcomes (rock, paper, or

scissors in the present case) and c1, c2… cm represents the counts of

how many times each has been observed. To update a prediction-

set, after observing new data, the corresponding count (ci) of that

event of the matching hypothesis (ei) is incremented by one. If this

prediction has not been previously observed, this event is added to

the prediction-set (c = 1). In our example, after 21 trials, the three

generated hypotheses will be updated to:

Hyp1 : rock,t-1ð Þf g~w rock,7½ �, paper,6½ �g

Hyp2 : paper,t-2ð Þ, rock,t-1ð Þf g~w rock,7½ �g

Hyp3 : paper,t-2ð Þf g~w rock,7½ �g

This means the sequence of paper and rock has been observed 7

times so far. While Hyp2 and Hyp3 always leads to rock, Hyp1 has

been followed by rock 7 times and by paper 6 times. The idea

behind the learning process in this method is that if a subset of

observations has been followed consistently by an event, it is most

likely to be followed by the same event in the future. Thus, the

Computational Model of Sequential Decision Making

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e94308



learning process is simply an updating of these prediction-sets

based on incoming data.

Prediction Function: To make a prediction from these

hypotheses and their sets of observations, we need to select the

best hypotheses whose predictions are most consistent and reliable

or, more accurately, less random. In our example, in contrast with

Hyp2 and Hyp3, Hyp1 has less predictive value; because it is

followed half of the time by paper and half of the time by rock. To

mathematically evaluate how trustworthy the predictions of a

hypothesis are, a modification of the entropy of each hypothesis is

calculated at each trial [18]. For a particular hypothesis, Hyp, with

a prediction-set of {[e1, c1], [e2, c2]… [em, cm]}, the modified

entropy is calculated below:

P(ei)~
ci

Pm

j~1

cj

?H
0
(Hyp)~{

Xm

i~1

ci

(
Pm

j~1

cj)z1

log2

ci

(
Pm

j~1

cj)z1

ð1Þ

Among all related hypotheses, the most predictive one is the one

with the lowest amount of entropy. The probability of selecting a

hypothesis to predict the next observation is proportional to its

entropy. The lower the entropy of a hypothesis, the more probable

for that hypothesis to be selected. After selecting the proper

hypothesis, each event in the prediction-set of this hypothesis (ek,

k = 1,…, m) has a probability proportionate with the count of that

event (denoted by cj for each ej) to be chosen as the prediction of

the computer’s next play (mathematical formulation is provided in

Text S2).

Pruning Function: Prediction in ELPH requires recording all

the items that have been observed so far. There are two principal

problems with simply accumulating all past observations. First, the

number of hypotheses grows too large, too quickly, as STM

capacity increases. If n equalled 5, there would be 25-1 related

hypotheses stored in HS. The second problem is that the history of

observations lengthens. To compensate for this growth in the

hypothesis space, the inconsistent hypotheses with conflicting

predictions are removed from HS. The entropy measure is used

again to calculate the amount of randomness associated with

individual hypotheses. Hypotheses with an entropy value more

than a given threshold (denoted as Hthr) are deleted at the end of

each trial.

In summary, at the beginning of each trial, the hypothesis

learning function creates all the possible subsets of the current

content of STM as potentially new hypotheses. Generated

hypotheses may either exist in HS or may be novel. To make a

prediction about the next observation, the prediction function

examines HS to search which hypothesis already exist in HS.

Those that already are in HS are used to make a prediction. After

the prediction, new data is observed and the hypothesis learning

function updates all the related hypotheses according to this new

data. The generated hypotheses which were not in the HS before

are then augmented. The prediction-set for those hypotheses

would consist of this new event (observation) followed by the event

count set to 1. At the end, the pruning function calculates the

entropy of all the existing hypotheses in HS and deletes those with

entropy value exceeding a given threshold (for more information

see Text S2).

1.1. Reinforcement learning Approach: RELPH. While

ELPH predicts the computer’s next play, RELPH is a reinforce-

ment learning based approach which learns the most rewarding

item. The main difference between ELPH and RELPH lies in the

prediction function. Just as is the case for ELPH, RELPH consists

of three main functions: hypothesis learning, prediction and

pruning. Where ELPH employs the most predictive hypotheses to

predict the next most likely observation, RELPH uses the most

rewarding hypotheses to select the best item to be played in subsequent

trial. The pruning function, however, stays the same; non-

predictive hypotheses are deleted from HS to facilitate adaptation.

These three functions of RELPH are described below.

Hypothesis Learning Function. As in ELPH, the RELPH

hypothesis generation function has two main sub-functions:

Hypothesis Generation and Hypothesis Updating.

Hypothesis Generation. The main difference between the

hypothesis generation function in RELPH and ELPH is that

instead of opponent’s observations being stored, it is RELPH’s

choices that are stored in the prediction-set. Indeed in ELPH,

hypotheses are generated to answer the question of which item is

most likely to be observed next. In RELPH, the question is

different. Hypotheses represent which choice is most likely to lead

to winning the next trial. Thus in RELPH a prediction-set is defined

as all the items that the RELPH player has tried followed by the

total amount of reward RELPH received for playing each of those

items. Each win was set to a reward value of +1 for a win, a tie to 0

and a loss to 21. As a result, for a particular hypothesis, Hyp, a

prediction-set is defined as follows:

e1,r1½ �, e2,r2½ �, . . . , em,rm½ �f g

in which e1, e2 … em is the list of plays (rock, paper, or scissors in

the present case) and r1, r2… rm represents the total amount of

reward gained for playing each item. The learning task is to learn

the most rewarding hypothesis. To do so, prediction-sets of

hypotheses should be updated based on incoming data.

Hypothesis Updating. Hypothesis updating includes two

steps: prediction-set updating and value updating. Prediction-set

updating refers to updating each hypothesis’s prediction-set

according to the result of the last play. The rule stays the same;

if the hypothesis generated based on the current content of STM

already exists in HS, its prediction-set will be updated. If not, this

hypothesis will be added to the HS. For the existing hypotheses, if

the last play already existed in the prediction-set, the correspond-

ing total reward is updated based on the last value of reward. If

not, this new play and the associated reward value are added to

the prediction-set. In our example, (for n = 2 and STM content of

the tuple (‘paper’, ‘rock’)), if RELPH played ‘scissors’ at the next

trial, it would lose to the computer when the computer plays rock.

In this case, the generated hypotheses would be:

Hyp1 : rock,t-1ð Þf g~w scissors,{1½ �f g

Hyp2 : paper,t-2ð Þ, rock,t-1ð Þf g~w scissors,{1½ �f g
Hyp3 : paper,t-2ð Þf g~w scissors,{1½ �f g

if the next time that the RELPH player observed a sequence of

paper and rock, it played paper then the three above hypotheses

would update to:

Hyp2 : rock,t-1ð Þf g~w scissors,{1½ �, paper,1½ �f g
Hyp1 : paper,t-2ð Þ, rock,t-1ð Þf g~w scissors,{1½ �, paper,1½ �f g

Hyp3 : paper,t-2ð Þf g~w scissors,{1½ �, paper,1½ �f g

Based on these prediction-sets, it is clear that between scissors and

paper, paper is the more rewarding option to play next time.

Computational Model of Sequential Decision Making
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Value updating refers to updating the value of each hypothesis

based on the last reward value. To find the most rewarding

hypothesis, a value function is defined over the hypothesis space.

The value of each hypothesis is the expected reward that the

learner receives by playing that hypothesis To learn the value of

each hypothesis, the initial values are set randomly and are

updated at the end of each trial after taking an action and

according to the delta-learning rule [19]:

Vtz1(Hyp)~(1{a)Vt(Hyp)zart ð2Þ

V in this formula refers to the value of hypothesis Hyp, rt to the

instantaneous reward at time t and a refers to the learning rate, the

parameter adjusting the weight of previous estimation of the

hypothesis value and the instantaneous reward. The closer this

parameter is to one, the more significant the role of instantaneous

reward is in determining the hypothesis value and vice versa; the

smaller the value of a, the greater the role of prior reward.

Prediction Function. The most eligible hypothesis for

prediction in RELPH is the most rewarding one. Yet to balance

exploration and exploitation we used the soft-max decision rule

[20], [21], [22], [23] as it has been commonly used for this

purpose [24], [25].

Pruning Function. The idea behind the pruning function in

RELPH is similar to ELPH. Instead of event entropy, outcome

entropy is computed (for mathematical formulation of action-

selection rule and pruning function see Text S2).

2. Parameter Estimation and Model Comparison
Models ‘‘played’’ against the same sequences of rock, paper, and

scissors choices as the computer opponent made during our

behavioural study [13]. Although only the result for the last 200

trials (where the computer opponent’s choices were heavily biased

toward paper) is presented in the results part of this paper, it is

important to mention that both ELPH and RELPH were exposed

to the exact same sequence of play that our participants saw from

the very beginning to end (trial 1–600). For each human

participant we created a matched ELPH/RELPH model. To find

the best-matched version of each model, we needed to find the

parameter set that most closely approximated each individual

participant. ELPH has two parameters; the length of STM,

denoted by n, and the entropy threshold for the pruning function,

denoted by Hthr. In addition to these parameters, RELPH has an

extra parameter; learning rate (a). Best parameter sets were

computed using maximum likelihood (ML) estimation [26], [27].

There are several methods suggested to find the optimal

parameters in ML estimations. Due to the peculiar characteristic

of this model not having a specific input-output mapping,

traditional optimization methods were not applicable. To over-

come this challenge, we searched through a lattice of possible

values for the parameters that resulted in ELPH playing the

sequence of choices that a participant had played. Best parameter

sets were those that resulted in ELPH (RELPH) most closely

replicating the sequence of choices made by a particular

participant.

To evaluate model performance we calculated win rates. To

assess differences and changes between the performance of each

model and our participants, we employed repeated measures

analyses with the within subjects factors of time (trials divided into

twenty blocks of 10) and a between subjects factor of player

(Human vs. Computer model). These analyses were done

separately for ELPH and RELPH. In addition, to compare the

fitness of our models, we calculate both Bayes factor [28] and

Akaike’s information criteria (AIC; [29]).

Results

1. Healthy Controls and ELPH
The repeated measures analysis demonstrated a significant main

effect for time (F (19, 418) = 3.36, p,.001, g2 = .13), with a

marginally significant difference between players (F (1, 22) = 3.86,

p = .062, g2 = .15) for ELPH compared to HCs. Although there

was no difference between players for the very first 10 trials, ELPH

significantly outperforms HCs between trials 11–40. From trial 41

onward there was no significant difference between HCs and

ELPH (all p’s..05; Figure 1.B). This means that while ELPH

matches HCs for win rate at the end of the block, it reaches this

performance sooner (i.e. it learns faster than our participants).

2. Healthy Controls and RELPH
The same analysis for RELPH and HC only showed a

significant main effect for time (F (19,418) = 6.92, p,.001,

g2 = .24). Both RELPH and human players increased their win

rates over the 200 trials with no significant difference between

them (F (1, 22) = .50, p..45, g2 = .02), and no difference in the

rate of learning (no significant interaction between time x player (F

(19, 418) = .78, p..70, g2 = .03). Even within the first 20 trials

there was no difference between the performance of RELPH and

HCs (all p’s..05) (Figure 1.C)

Comparing the result of RELPH and ELPH suggests that

RELPH is more successful at capturing the behaviour of the

healthy participants. To statistically compare the fitness of these

two models, AIC is calculated for each model (see Table 1). The

result shows that RELPH describes the data better than ELPH. To

demonstrate how significant this different is Bayes factor is

computed (see Table 1). Clearly RELPH better replicated the

result of HCs compared to ELPH, suggesting that the type of

learning is the critical factor to model human performance in the

RPS task. Whereas ELPH learns the probability of observing each

option and selects the most probable option, RELPH learns the

association between each option and the estimated amount of

reward for playing that option; consequently RELPH plays the

most rewarding action.

3. LBDs and RELPH
Inspection of Figure 2.A demonstrates that LBD participants

not only solved the RPS task as well as HC, in many cases they

exceeded the performance of HCs as they played long runs of the

best choice (data not shown here; see Figure 5 in [13]). This

strategy is one of probability maximization. This observation

suggests that the best way to get RELPH to approximate LBD

performance is to ‘‘turn-off’’ the soft-max choice rule. Indeed this

‘greedy’ version of RELPH, with all other parameters unchanged

(compared to HCs) was able to replicate the result of LBD

patients. LBD patients and the greedy-RELPH algorithm

increased their win rates over the course of the 200 trials (F (19,

342) = 9.05, p,.001, g2 = .33) with no significant difference

between RELPH and LBDs player (F (1, 18) = .35, p..55,

g2 = .02) or learning rate (no interaction between time x player: F

(19, 342) = 1.07, p..35, g2 = .06). There was no significant

difference in the proportion of win rates between LBD and

greedy-RELPH at any time point (all p’s..05) (Figure 2.A).

To make sure the difference between LBDs and HCs are only

due to the soft-max compartment, not the type of learning, the

AIC value and Bayes factor for both ELPH and RELPH are

outlined in Table 1. Bayes factor is greater than 10 representing

Computational Model of Sequential Decision Making
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the fact that the difference between these two models is highly

significant [28].

4. RBDs and RELPH
RELPH was also successful at replicating the result of RBDs.

RBDs and RELPH both significantly increased win rates over time

(F (19, 494) = 3.87, p,.001, g2 = .13) with no significant main

effect for player (F (1, 26) = .21, p..60, g2 = .01) or significant

interaction between player x time (F (19, 494) = .76, p..75,

g2 = .03). At no point over the 20 intervals of the last 200 trials was

there a significant difference between win rates of RBD patients

and RELPH (Figure 2.B). The AIC value for adjusted ELPH and

RELPH as well as Bayes factor are presented at Table 1. RELPH

is again significantly better at capturing the performance of RBDs

comparing to ELPH.

Clearly, the HC and RBD groups performed differently with

the latter failing to fully exploit the biased play of the computer

opponent. Nevertheless, RELPH was able to replicate the

performance of both groups. To better understand RELPH’s

ability to model both HC and RBD participants, we looked at the

parameter values that resulted from the matching procedure

employed (Table 2 and Table 3).

The average of the best-matched parameters for each group is

displayed in Table 2. Although neither Hthr nor a revealed a

significant difference between groups, RBD patients tended to

have a lower Hthr compared to HCs. We did not find any

difference in optimal value of n (length of STM) used by HCs and

RBD patients (Likelihood ratio = .114, df = 2, p..90) (Table 3).

Although group performance of the RBD patients in [13] was

poor, there were exceptions (see Figures 4 and 5 in [13]).

Therefore, we compared the RELPH parameters fit to RBD

patients who did manage to exploit the strong bias to some degree

(defined as above chance performance on the last 100 trials; n = 6)

to the majority of RBD patients that did not (n = 8). RELPH fits

for RBD patients who played above chance compared with those

who did not tended to have a higher Hthr (Mean = 2.20, SD = .38

vs. Mean Hthr = 1.35, SD = 1.01; t(12) = 1.01, p = .057) and a

lower a (Mean = .12, SD = .14 vs. Mean a= .42, SD = .20;

t(12) = 3.09, p,.01). No significant difference was found for n

values.

Discussion

Our interest in computational models derives from our interest

in brain damaged patients. We recently advanced the idea that

impairments in building mental models and updating these models

may provide an explanation for the heterogeneous impairments

that follow RBD [30], [16]. To support these claims we examined

the performance of both brain damaged patients and controls

playing RPS against a computer that could employ a variety of

strategies and switched among them [31], [13].

One intuitive idea for how it is that humans learn to master

sequential tasks is that they learn to predict what will happen next

in a sequence. The final goal for humans in a sequential decision

making task is to learn what action is optimal to take at each step.

To learn those actions they learn to make a prediction about what

will happen next, based on the history of observations and then

according to this prediction the best action is taken. In other

words, humans treat those tasks as statistical learning tasks in

which they are supposed to detect the regularities that exist in the

sequence and use those data to predict the next observation (for

reviews on statistical learning see [32], [33]). This characterization

of the process gives priority to predicting observations. This

emphasis seems sensible because one optimal way to figure out

what action must be taken next is, of course, to figure out what will

happen next. In addition, the statistical learning impairment

reported in this patient population is another reason to believe that

this type of learning might be involved in the sequential decision

making impairment seen in brain damaged patients [34]. These

reasons encouraged us to use a sequence learning method, the

ELPH model [17], for our computational studies.

What the computational modelling study revealed though, was

that learning to predict what will happen next did not provide a

good match to what our human participants were doing, whether

or not they had brain damage. Based on our results, there is a

main problem with statistical learning; ELPH learns faster than

humans for all three groups of participants. In all cases the ELPH

Figure 1. The average win rate of HCs versus ELPH and RELPH. Each plot shows the average win rate over the last 200 trials in the RPS
experiment of Danckert et al. [13] for HCs versus (A) ELPH, (B) non-greedy ELPH and (C) RELPH. The blue line represents the average win rate of HCs.
The red line shows the average win rate for the (A) ELPH, (B) non-greedy ELPH and (C) RELPH. Error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0094308.g001

Table 1. AIC value and Bayes factor computed for each
model (ELPH and RELPH) per each group separately.

AIC(ELPH) AIC(RELPH) 2ln(k)

HCs 314.428 177.185 35.862.10

RBDs 391.204 285.287 159.318.10

LBDs 326.959 188.297 232.203.10

Bayes factor is calculated as 2ln(k) in which k~
P(D RELPHj )

P(D ELPHj )
. D in this formula

is the observed data which in our case is the participants’ sequence of plays.
doi:10.1371/journal.pone.0094308.t001
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model, even when hobbled by extra memory constraints and a

choice selection rule (which were not part of the original model’s

specifications; [17]), outperformed all our participant groups by

learning to exploit the 80% bias more quickly than human

learners. Performance parity only occurred when we changed the

ELPH model to associate choices with reward, and to focus on

learning how rewarding particular hypotheses were.

In the RELPH model instead of learning the regularities to

predict the next observation and then deciding on the action, the

best action was learned directly based on the previous experience

the model had for taking that action. Based on this model, the best

action to take now is the action that was most rewarding when the

model faced the same situation in the past. This hybrid version,

which we call RELPH, captured the performance of both HCs

and RBDs patients. It was also capable of capturing the

performance of LBD participants when we introduce a coexistent

‘lesion’ of the soft-max choice component. The interim conclusion

is that it is more likely that learning to associate actions with

rewards in a context specific fashion mediates performance more

strongly than simply learning to guess the next token in a

sequence, despite that fact that it seems intuitively better to do so

(and despite the superior performance of the ELPH model

version).

Why is it the case that we would use this sub-optimal strategy? It

may reflect the general complexity of the task. In real life

situations, to solve a learning problem it is often necessary to solve

several sub-problems in parallel. One of the most computationally

demanding of the sub-problems is learning how to generate good

hypotheses. To make good hypotheses, all the features of the

environment that could impact our decisions must be known,

identified, and tracked. In most real-world scenarios this relevant

feature-space is large, unknown, and commonly computationally

intractable [35]. This source of complexity however is totally

ignored in the ELPH model since the model is ‘‘told’’ what the

relevant features are, and is built to attend to them. Given the

inherent limitations of human information processing, employing

sub-optimal but tractable solutions may be rational [2]. As an

example of a sub-optimal solution, humans may employ experi-

ence-based approaches that focus on what they did and what

resulted. This is consistent with decades of research in behaviorist

psychology [19] and more modern work applying reinforcement

learning algorithms to human performance [24],[36].

These results also have implications for our understanding of

the basis for differing performances across patient groups. The

results of LBD patients and HCs indicate that they both learn a

strategy that results in win rates better than chance. While HCs

typically show a behaviour known as probability matching (i.e.,

they play the optimal option in proportion with its probability of

being selected; for a review see [37]), the majority of LBD patients

played as maximizers (i.e., choosing the best option almost all the

time; see Figure 5 in [13]; for a discussion on possible reasons for

choosing a maximizing strategy in LBD patients see page 2756 in

[13]). Our computational results suggests that the reason behind

this discrepancy is due to different exploitation strategies. In order

to learn the best option in experienced-based approaches such as

RELPH, all the options must be explored. In our model,

exploration is required to make sure that the real value of each

hypothesis is learned. Otherwise, we might stick with a poorly

rewarded hypothesis simply because we did not explore other

options. Of course, trying hypotheses other than the currently

‘‘best’’ one runs the risk of obtaining a lower reward rate. In the

strategy used by the computer opponent in the RPS game there

was no particular benefit to exploration, only costs. In this narrow

realm, always exploiting leads to better performance for the

‘‘greedy’’ versions of the computational models, but this benefit

would not be true in general.

Figure 2. The average win rate for patient groups versus RELPH. Each plot represents the average win rate for (A) greedy-RELPH and (B)
RELPH, (red lines) against the average win rate of (A) LBD, (B) RBD patients (blue lines) over the last 200 trials in the RPS experiment of Danckert et al.
[13]. Error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0094308.g002

Table 2. The mean (and standard deviation) of each
parameter for RBDs vs. HCs.

HC RBD T p-value

Hthr 2.28 (0.82) 1.72 (0.89) 1.67 0.11

a 0.27 (0.22) 0.29 (0.23) 20.28 ..75

doi:10.1371/journal.pone.0094308.t002

Table 3. Frequency of n (length of STM) for HCs and RBDs.

n HC RBD

1 2 3

2 7 8

3 3 3

doi:10.1371/journal.pone.0094308.t003
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Parameter fits for the patient groups also suggested another

basis for group differences. Comparing RELPH results for those

RBD patients who failed to exploit an opponent’s bias with those

who showed some exploitation, indicated lower Hthr values and

higher a values for the participants with poorer performance. a is

the parameter which tunes the relative importance of instanta-

neous reward. The lower the parameter, the less emphasis that is

placed on immediate reward. Hthr on the other hand, represents

the level of noise or randomness that is expected. The higher the

Hthr the more tolerance to error in the hypotheses prediction. In

combination, this suggests that RBD patients explored less

efficiently; compared to HCs, they were looking for more certainty

in their hypotheses. Meanwhile they placed greater weight on

immediate rewards and as such, losing could affect their beliefs

about the value of hypotheses more readily. Putting these together,

our model suggests that RBD patients would give up on a given

hypothesis sooner than what they should. Since they want more

predictive hypotheses, and they are highly sensitive to losses, they

would switch more often from one hypothesis to another without

fully exploiting the available information. This poor exploration

strategy led to impaired learning of the computer’s strategy.

In summary, we compared two versions of a computational

model: one based on statistical learning (ELPH) and another based

on reinforcement learning (RELPH). Our result suggests that

regardless of the presence of brain-damage, participants learn the

action-reward association rather than learning the regularities in

the sequence, even though this would have led to better

performance. Our model also suggests that what distinguishes

LBDs, RBDs and HCs from each other is not different types of

learning, but different exploration-exploitation policies. LBDs

don’t explore as much as HCs, and RBDs explore less efficiently or

even too much.

Supporting Information

Text S1 The Experiment Procedure.

(DOCX)

Text S2 Mathematical Formulas.

(DOCX)

Author Contributions

Conceived and designed the experiments: NMS ES JD BA. Performed the

experiments: NMS ES JD BA. Analyzed the data: NMS ES JD BA.

Contributed reagents/materials/analysis tools: NMS ES JD BA. Wrote the

paper: NMS ES JD BA.

References

1. Griffiths TL, Tenenbaum JB (2006) Optimal predictions in everyday cognition.

Psychol Sci 17: 767–773.
2. Green C, Benson C, Kersten D, Schrater P (2010) Alterations in choice behavior

by manipulations of world model. Proc Natl Acad Sci U S A 107: 16401–16406.
3. Yu A, Dayan P (2003) Expected and unexpected uncertainty: ACh and NE in

the neocortex. Adv Neural Inf Process Syst: 173–180.
4. Payzan-LeNestour E, Bossaerts P (2011) Risk, unexpected uncertainty, and

estimation uncertainty: Bayesian learning in unstable settings. PLoS Comput

Biol 7(1): e1001048. doi:10.1371/journal.pcbi.1001048.
5. Trimmer PC, Houston AI, Marshall JAR, Mendl MT, Paul ES, et al. (2011)

Decision-making under uncertainty: Biases and bayesians. Anim Cogn 14: 465–
476.

6. Fellows LK (2004) The cognitive neuroscience of human decision making: A

review and conceptual framework. Behav Cogn Neurosci Rev 3: 159–172.
7. Bland AR, Schaefer A (2012) Different varieties of uncertainty in human

decision-making. Front Neurosci 6: 85.
8. Bach DR, Dolan RJ (2012) Knowing how much you don’t know: A neural

organization of uncertainty estimates. Nat Rev Neurosci 13: 572–586.
9. Turk-Browne NB, Isola PJ, Scholl BJ, Treat TA (2008) Multidimensional visual

statistical learning. J Exp Psychol Learn Mem Cogn 34(2): 399–407.

10. Aslin RN, Newport EL (2012) Statistical learning from acquiring specific items
to forming general rules. Curr Dir Psychol Sci 21(3): 170–176.

11. Bowers JS, Davis CJ (2012) Bayesian just-so stories in psychology and
neuroscience. Psychol Bull 138(3), 389.

12. Gigerenzer G, Todd PM, ABC Research Group (1999) Simple heuristics that

make us smart. New York: Oxford University Press.
13. Danckert J, Stöttinger E, Quehl N, Anderson B (2012) Right hemisphere brain

damage impairs strategy updating. Cereb Cortex 22: 2745–2760.
14. Hohwy J (2012) Attention and conscious perception in the hypothesis testing

brain. Front Psychol 3: 96.
15. Hertwig R, Gigerenzer G (1999) The conjunction fallacy revisited: How

intelligent inferences look like reasoning errors. J Behav Decis Mak 12: 275–306.

16. Shaqiri A, Anderson B, Danckert J (2013) Statistical learning as a tool for
rehabilitation in spatial neglect. Front Hum Neurosci 7: 224.

17. Jensen S, Boley D, Gini M, Schrater P (2005) Rapid on-line temporal sequence
prediction by an adaptive agent. In: Proceedings of the 4th International Joint

Conference on Autonomous Agents and Multiagent Systems (pp. 67–73), 25–29

July, 2005; Utrecht, Netherlands.
18. Cover TM, Thomas JA, Kieffer J (1994) Elements of information theory. SIAM

Rev Soc Ind Appl Math 36(3): 509–510.
19. Rescorla RA, Wagner AR (1972) A theory of pavlovian conditioning: Variations

in the effectiveness of reinforcement and nonreinforcement. In A.H. . Black &
W.F. . Prokasy (Eds.), Classical conditioning II: Current theory and research.

New York: Appleton-Century-Crofts. pp. 64–99.

20. Thrun SB (1992a) Efficient exploration in reinforcement learning. Technical

report CMU-CS-92-102, Carnegie Mellon University, Pittsburgh, PA 15213.

21. March JG (1991) Exploration and exploitation in organizational learning.

Organization Science 2(1): 71–87.

22. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: A

survey. Journal of Artificial Intelligence 4: 237–285.

23. Sutton RS, Barto AG (1998) Reinforcement learning: An introduction.

Cambridge: MIT Press.

24. Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical

substrates for exploratory decisions in humans. Nature 441(7095): 876–879.

25. Cohen JD, McClure SM, Angela JY (2007) Should I stay or should I go? how the

human brain manages the trade-off between exploitation and exploration. Philos

Trans R Soc Lond B Biol Sc 362(1481): 933–942.

26. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from

incomplete data via the EM algorithm. J R Stat Soc Series B Stat Methodol

39: 1–38.

27. Myung IJ (2003) Tutorial on maximum likelihood estimation. J Math Psychol

47(1): 90–100.

28. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430): 773–795.

29. Akaike H (1974) A new look at the statistical model identification. IEEE Trans

Automat Contr 19(6): 716–723.

30. Danckert J, Stöttinger E, Anderson B (2012) Neglect as a disorder of

representational updating. Psychology of Neglect, New York: Nova Science

Publishers. pp. 1–28.

31. Stöttinger E, Filipowicz A, Danckert J, Anderson B (2014) The Effects of

Success, Confidence, and Strategies on the Updating of Mental Models:

Evidence from Playing ‘Rock, Paper, Scissors’. Cogn Sci. doi: 10.1111/

cogs.12115.

32. Turk-Browne NB (2012) Statistical Learning and Its Consequences. In The

Influence of Attention, Learning, and Motivation on Visual Search. New York:

Springer. pp. 117–146.

33. Dodd MD, Flowers JH (Eds.) (2012) The influence of attention, learning, and

motivation on visual search (Vol. 59). Springer.

34. Shaqiri A, Anderson B (2013) Priming and statistical learning in right brain

damaged patients. Neuropsychologia 51(13): 2526–2533.

35. Hutter M. (2009) Feature reinforcement learning: Part I. unstructured MDPs.

Journal of Artificial General Intelligence 1(1): 3–24.
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