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Abstract

Understanding the fire prediction capabilities of fuel models is vital to forest fire management. Various fuel models have
been developed in the Great Xing’an Mountains in Northeast China. However, the performances of these fuel models have
not been tested for historical occurrences of wildfires. Consequently, the applicability of these models requires further
investigation. Thus, this paper aims to develop standard fuel models. Seven vegetation types were combined into three fuel
models according to potential fire behaviors which were clustered using Euclidean distance algorithms. Fuel model
parameter sensitivity was analyzed by the Morris screening method. Results showed that the fuel model parameters 1-hour
time-lag loading, dead heat content, live heat content, 1-hour time-lag SAV(Surface Area-to-Volume), live shrub SAV, and
fuel bed depth have high sensitivity. Two main sensitive fuel parameters: 1-hour time-lag loading and fuel bed depth, were
determined as adjustment parameters because of their high spatio-temporal variability. The FARSITE model was then used
to test the fire prediction capabilities of the combined fuel models (uncalibrated fuel models). FARSITE was shown to yield
an unrealistic prediction of the historical fire. However, the calibrated fuel models significantly improved the capabilities of
the fuel models to predict the actual fire with an accuracy of 89%. Validation results also showed that the model can
estimate the actual fires with an accuracy exceeding 56% by using the calibrated fuel models. Therefore, these fuel models
can be efficiently used to calculate fire behaviors, which can be helpful in forest fire management.
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Introduction

Weather, terrain, and fuel are major factors influencing wildfire

occurrence and behaviors [1–3], among which fuel is arguably the

only factor human can mediate. The shape, size, loading, moisture

content, and spatial configuration of forest fuels affect the ignition,

intensity, spread, and effects of wildfire [4,5]. Therefore, accurate

information about the characteristics of fuels across a landscape is

essential in fire management decision-making [6].

Fuel is complex spatially and temporally, changing with

vegetation type, succession stage, and environments [7–9]. Due

to the infinite combinations of vegetation type, sucession stage,

and environment present in a landscape, it is impossible to

characterize all possible combinations that affect fuel. Thus,

generalizing fuels into finite number of fuel models has become a

widely used approach to characterizing and mapping forest fuels

across a landscape [10,11]. A fuel model is defined as ‘‘an

identifiable association of forest fuel components of distinctive

species, form, size, arrangement, and continuity that will exhibit

characteristic fire behavior under defined burning conditions’’

[12].

Fuel parameters (e.g., fuel load and fuelbed depth) have high

complexity and variability in structure and distribution across a

forest landscape [7–9]. Using a limited number of fuel models to

cover such wide variations may be problematic in predicting fire

behavior [13,14]. Because fire behaviors vary with the fuel model

parameters, analyses of fuel model parameter sensitivity can best

understand the fuel variabilities or uncertainties, which subse-

quently can efficiently reduce parameter calibration workload

[15–17] and improve fire behavior predictions accuracy.

The boreal forests of the Great Xing’an Mountains provide

more timber and wood products than any other forested area in

China, which store1.0–1.5 Pg C and contribution to approxi-

mately 24–31% of the total carbon storage in China [18]. The

forests also encompass rather unique ecological and environmental

settings in the region [19]. Historically, fires were primarily ignited

by lightning in this area [20]. The historical fire regime was

characterized by frequent and low intensity surface fires, with a

fire return interval ranged from 30 years to 120 years [20].

However, current fires regimes in the region are characterized by

infrequent and high intensity fires, with a fire return interval of

more than 500 years, which has threatened the functions of the

forest [21]. For example, on 6 May 1987, a catastrophic fire

occurred in the northern slopes of Great Xing’an Mountains,

burning a total area of 1.36106 ha, with disastrous impacts to

forest composition and structure, and landscape pattern [22]. High

fuel accumulation rate due to effective fire suppression since the

1950s is one of main reasons for fire intensity increasing in this

situation. Thus, it is of great significance to study the fuel

conditions in this region so as to carry out some effective
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management measures to reduce the potential losses caused by

fires.

Numerous studies have been conducted on forest fuels and fire

behaviors [23–27], with some having developed forest fuel models

[23,25,28]. For example, Shan (2003) developed fuel models for

the Great Xing’an Mountains region. These fuel models included

Larix gmelini fuel model, Betula platyphylla fuel model, Pinus pumila

fuel model, and Betula platyphylla fuel model, etc; Wu et al (2011)

also developed four fuel models for the Huzhong Forest Bureau in

the Great Xing’an Mountains region, including dense and heavily

branched Pinus pumila shrublands fuel model, Betula platyphylla and

Populus davidiana fuel model, coniferous forests fuel model with

Ledum palustre and Vaccinium uliginosum shrub, and coniferous forests

fuel model with Rhododendron dauricum shrub. However, fire

behaviors (e.g., rate of spread and fire flame) of these fuel models

only have been simulated using BEAHVE and have not been

tested against actual fire behaviors. Whether these fuel models can

reflect the spatial variations of fuel parameters well across the

landscape is unknown. Therefore, it is of great importance to

calibrate these fuel models in the future.

The overall objective of this study was to develop standard fuel

models in the Great Xing’an mountains. Specifically, we intended

to (1) determine the sensitivity of forest fuel model parameters

using the Morris screening method; (2) calibrate parameters of fuel

models; and (3) evaluate the efficiency of fuel models in fire

behavior prediction with the FARSITE model.

Materials and Methods

Study area description
The study area is located on the northern and eastern slope of

the Great Xing’an Mountains (121u129,127u009 E,

50u109,53u339 N) in northeastern China, and cover approxi-

mately 8.466106 ha (Fig. 1). This region has a long and severe

continental monsoon climate. Average annual temperature is 2

6,1uC. The coldest month is January with an average temper-

ature of 238,228uC, and the hottest month is July, with an

average temperature of 15,20uC. Average annual precipitation is

240,442 mm, 60% or more of which occurs between June and

August.

The vegetation is representative of cool temperate coniferous

forests in this region, forming the southern extension of the eastern

Siberian boreal forests [19]. The overstory species include larch

(Larix gmelini), pine (Pinus sylvestris var. mongolica), birch (Betula

platyphylla), spruce (Picea koraiensis), willow (Chosenia arbutifolia), two

species of aspen (Populus davidiana and Populus suaveolens), and a

shrub species (Pinus pumila).

Historically, fires in this region were primarily ignited by

lightning [20]. The fire regimes were characterized by frequent

and low intensity surface fires, with a fire return interval ranged

from 30 years to 120 years [20]. However, human activities (e.g.,

fire suppression and timber harvesting) have significantly changed

natural fire regimes in this region [21,29,30]. For example, fire

suppression in this region has been carried out for over a half

century, which has lengthened the fire cycle with the fire return

interval of longer than 500 years [22]. Currently, fires regimes are

characterized by infrequent and more intensity fires and ignited by

both human and lightning [30,31].

Overall study approaches
To derive the fuel models, we first derived vegetation types such

as meadow, shrub, swamp, deciduous broadleaf forest, deciduous

coniferous forest, evergreen coniferous forest, and mixed conifer-

ous and broadleaf forest from 1:100 0000 vegetation map of our

study area; these vegetation types were combined into a few

number of fuel models based on the similarity of their potential fire

behaviors simulated with BehavePlus 5.0 model [32]. We then

conducted sensitivity analysis for parameters (e.g., fuel loading and

fuelbed depth) of the three fuel models using the Morris screening

method [33]. We used the default fuel model parameters to predict

a series fires occurred in this region using FARSITE with the same

fire weather conditions when the fire occurred. The reason to use

FARSITE was because it predicted fire spread resulting in a fire

patch that were comparable to actual fires. If discrepancies existed

between the predicted and a set of actual fires, we iteratively

adjusted fuel model parameters that had high sensitivity until

acceptable matches were reached. Finally we applied the

calibrated fuel models to another set of actual fires to gague how

well these fuel models can predict actual fires (validation) (Fig. 2).

Figure 1. Study area with the five fire patches that were used to calibrate and validate fuel models developed in this study.
doi:10.1371/journal.pone.0094043.g001

Developing Standard Fuel Models

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e94043



Classification of forest fuel models
The BehavePlus 5.0 model was used to simulate fire behaviors

of the seven vegetation types. Model inputs include fuel

parameters (e.g., fuel loading and fuel bed depth), fuel moisture

scenarios (Table 1), weather (midflame wind speed), and terrain

conditions [34,35]. In this study, fuel parameters were derived

from Shan (2003).The wind conditions were simulated by setting

0–10 m/s for midflame wind speed (Shan 2003). All fire behavior

simulations referred to zero slopes. The simulated potential fire

behaviors included the rate of spread (m/s), heat per unit area (kJ/

m2), fireline intensity (KW/m), and flame length (m).

Hierarchical cluster analysis with relative Euclidean distances

and Ward’s method was used to identify forest fuel models by

clustering the simulated potential fire behaviors of the seven

vegetation types. If the potential fire behaviors were similar, the

vegetation types were combined into one fuel model. After the

clustering analysis, the parameters for a fuel model were assigned

by the average values of vegetation types that were classified into

the same cluster (Fig. 2). The cluster analysis process was

performed with the SPSS 18.0 statistical software package [36,37].

Historical fires. We selected five historical fire patches to

conduct fuel model parameters sensitivity analysis, calibration, and

validation (Table 2). The five historical fire patches were selected

based on the following three considerations: (1) covering the three

fuel models; (2) including different fire sizes; (3) representing the

prevailing fire burning topographic conditions (e.g., aspects and

elevations). In the fire simulations, we placed fire ignitions on the

historical fire coordinates (Table 2).

FARSITE model. FARSITE was developed by USDA Forest

Service [38] and was widely used to simulate fire behaviors [39–

42]. FARSITE requires five raster-based themes (elevation, slope,

aspect, fuel models, and canopy cover) and three crown fuel

themes (stand height, crown base height, and crown bulk density),

as well as meteorological files (wind, temperature, relative

humidity and cloud cover) (Finney, 1998). More information on

the FARSITE model can be obtained from Finney (1998).

The topography data (elevation, aspect, and slope) were derived

from a 30 m Digital Elevation Models (DEM) from the U.S.

Geological Survey (http://glovis.usgs.gov). Fuel model map was

created (30 m spatial resolution) from the stand map in 2000s of

the study area. The canopy fuel characteristics of canopy cover

and tree height were derived from the stand map. The crown base

height was derived from the field sample plots each with

20 m620 m. The canopy bulk density was estimated based on

crown biomass and volume equations from Chen et al. (2003) and

Yu et al. (2010). The daily meteorological data were derived from

the China Meteorological Data sharing Service System (http://

cdc.cma.gov.cn) and weather online website (http://www.

t7online.com). Initial fuel moisture content of fuels were derived

from Wang et al. (2009).

Model parameters for the simulations were set to a time step of

30 min, perimeter of 30 m, and distance resolution of 20 m.

Figure 2. The overall study approaches.
doi:10.1371/journal.pone.0094043.g002

Table 1. Fuel moisture content (%) scenarios [34] used for simulating fire behaviors of the seven vegetation types with BehavePlus
model.

Fuel parameters Very low Low Medium High

1-hour time lag fuels 3 6 9 12

10-hour time lag fuels 4 7 10 13

100-hour time lag fuels 5 8 11 14

Live herbaceous fuels 30 60 90 120

Live shrub fuels 60 90 120 150

doi:10.1371/journal.pone.0094043.t001
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During the simulations, the 24 hours conditioning period was used

to adjust fuel moisture before the start of fire simulations. Fuel

moistures were adjusted based on topography, weather and

shading during the simulation [38]. We did not consider the effects

of fire suppression. Water and roads were considered as nonfuel.

The duration of each simulation for calibration and validation was

derived from fire records of Heilongjiang province (Table 2).

Sensitivity analysis. We used the fire patch 1 to conduct the

fuel model parameter sensitivity analysis (Fig. 1, Table 2). Six fire

behaviors including burned area, spread perimeter, rate of spread,

heat per unit area, fireline intensity, and flame length.were

simulated with the FARSITE model. Based on the FARSITE

simulations, the sensitivity of ten fuel model parameters were

analyzed with the Morris screening method (Table 3)

The Morris screening method proposes a random One factor At

a Time (OAT) design, in which only one input parameterxiis

adjusted between two successive runs of the model [33,43]. The

change induced onto the model outcomey(x)~y(x1,x2,x3:::xn)
can then be unambiguously attributed to such a modification by

means of an elementary effecteidefined by [33]:

ei~
yiz1{yi

Dxi

ð1Þ

Where yiz1 is the new outcome, yithe previous one, Dxi is the

variation in the parameter x.

In the revised Morris screening method, the influence of the

change of the factor is indicated through the formula:

S~
Xn{1

i~0

(Yiz1{Yi)=Y0

(Piz1{Pi)=100
=(n{1) ð2Þ

Where S is sensitive identification index; Yi is model outcome

for timei; Yiz1 is the model outcome for time (iz1); Y0 is the

initial value of the model output before calibration; Pi is the

change percentages of parameter before and after calibration for

time i; Piz1 the change percentages of parameter before and after

calibration for time (iz1); n is the number of predictions. The

simulation duration was 24 h. In this process these parameters

were assumed to have a uniform distribution and to be

independent of each other. Some very sensitive parameters were

selected for calibration and validation to find the most reasonable

values.

Sensitive Identification Indexes (SII) of fuel model parameters

were ranked into four classes (Table 4) [44].

Calibration and validation of fuel model parameters
Historical fire patch 1 was also used to calibrate the parameters

of the combined three fuel models (Table 3, uncalibrated fuel

model). If the fuel models can predict the historical fire well, the

fuel models were deemed valid; otherwise, we varied high

sensitivity fuel model parameters within the possible range of

variability to determine the fuel models that best predicted fire

behaviors (Fig. 1). The criterion for the best prediction was the

simulated fire size matched 90% the historical fire size. Four

patches (Table 2) (Fig. 1, Fire patches 2 to 5) were used to validate

the calibrated fuel models.

In the fuel model calibration and validation processes, the Fire

Prediction Accuracy (FPA) was defined as:

FPA (%) = (Simulated fire size > Historical fire size)/Historical

fire size.
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The FPA indicates whether the simulated fire close to the

historical fire size.

Results

Forest fuel models description
We derived seven vegetation types from the 1:1,000,000

vegetation map, which were combined into three fuel models

according to their potential fire behaviors (Fig. 3) (Note: 1:

Meadow; 2: Shrub; 3: Swamp; 4: Evergreen coniferous forest; 5:

Deciduous broadleaf forest; 6: Deciduous coniferous forest; 7:

Mixed coniferous and broad-leaf forest). Fuel model 1 (FM-1) is a

non-forest fuel model (including shrub, meadow, and swamp)

(Fig. 4a), which covers about 26.3% of the study area. Grasses are

well developed in these three vegetation types with the average

high of 60,90 cm. The fuel model 1 burns surface fires with

higher spread rate. Fuel model 2 (FM-2) is dominated by broadleaf

forests (including deciduous broadleaf forests, and mixed conifer-

ous and broadleaf forests), which covers about 29.7% of the study

area (Fig. 4b). This fuel model had the lowest fire spread rate. Fuel

model 3 (FM-3) includes deciduous coniferous forests and

evergreen coniferous forests (Fig. 4c), which covers about 39.4%

of the study area. This fuel model possesses higher fuel loading

(dead fuel loading) (Table 3) and had the highest fire spread rate.

Table 3. Parameters of the uncalibrated and calibrated fuel models.

Fuel model parameters Uncalibrated (combined) fuel models Calibrated fuel models

FM-1 FM-2 FM-3 FM-1 FM-2 FM-3

1-hour fuel loading(Mg/ha)/SAV(cm21) 2.87/83.7 4.16/97.3 5.46/98.6 3.59/83.7 13.56/97.3 16.11/98.6

10-hour fuel loading(Mg/ha)/SAV(cm21) 3.57/3.58 6.87/3.58 6.35/3.58 3.57/3.58 6.87/3.58 6.35/3.58

100-hour fuel loading(Mg/ha)/SAV(cm21) — 1.24/0.98 2.04/0.98 — 1.24/0.98 2.04/0.98

Live shrub(Mg/ha)/SAV(cm21) 2.30/21.90 0.66/23.8 1.70/32.02 2.30/21.90 0.66/23.8 1.70/32.02

Fuel bed depth(cm) 36.45 18.39 29.46 43.15 52.17 83.57

Moisture of extinction (%) 52.20 40.19 36.62 52.20 40.19 36.62

Dead/live heat content (kJ/kg) 18942/20477 19847/20242 20820/21199 18942/20477 19847/20242 20820/21199

Note: Fuel model is a static fuel model and live meadow is included into the dead meadow in this study. SAV: Surface Area-to-Volume
doi:10.1371/journal.pone.0094043.t003

Table 4. Criterion used for ranking fuel model parameter
sensitivity.

Class Index Sensitivity

I |SII|$1.00 Very high

II 0.20#|SII|,1.00 High

III 0.05#|SII|,0.20 Medium

IV 0.00#|SII|,0.05 Negligible

Note: SII: Sensitive Identification Index.
doi:10.1371/journal.pone.0094043.t004

Figure 3. Fire behaviors clustering diagram of the seven
vegetation types using SPSS 18.0. The clustered fire behaviours
included rate of spread, heat per unit area, fireline intensity, and flame
length.
doi:10.1371/journal.pone.0094043.g003

Figure 4. Example photos of fuel types.
doi:10.1371/journal.pone.0094043.g004
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Fuel model parameter sensitivity
Fuel model parameters of 1-hour time-lag loading, dead heat

content, live heat content, 1-hour time-lag SAV(Surface Area-to-

Volume), live shrub SAV, and fuel bed depth had high sensitivity

(Fig. 5) (Note: 1: 1–hour time–lag loading; 2: 10–hour time–lag

loading; 3: 100–hour time–lag loading; 4: Moisture of extinction of

dead fuel; 5: Live shrub loading; 6: Live heat content; 7: Dead heat

content; 8: Fuel bed depth; 9:1–hour time–lag SAV(Surface Area-

to-Volume); and 10: Live shrub SAV. The absolute value of

sensitive identification index from -1 to 2 represent the degree of

sensitivity.). Of these fuel model parameters, 1-hour time-lag

loading and fuel bed depth have high spatio-temporal variability.

Therefore, 1-hour time-lag loading and fuel bed depth were

selected as the adjustment parameters for calibration. The range of

1-hour time-lag loading and fuel bed depth varied from 0 to

20 Mg/ha and fuel bed depth varied from 0 to 2 m [23].

Calibration and validation of fuel model parameters
The calibrated fuel model (Table 3) can be determined as the set

of standard fuel models of the Great Xing’an Mountains.The

prediction accuracy of fire patch 1 using the uncalibrated fuel

models was only 17% (Fig. 6) (Note: Simulated fire patch 1 was

derived using the uncalibrated fuel models. Simulated fire patch 2

was derived using the calibarted fuel models.). This indicates that

the uncalibrated fuel models in FARSITE simulation produced an

unrealistic prediction of fire. In contrast, FARSITE model

estimated the actual fire size (fire patch 1) with an accuracy of

89% using the calibrated fuel models (Fig. 6).

The validation accuracy of fire size (fire patches 2–5) ranged

from 56% to 76% (Fig. 7) with average of 64%. The highest

accuracy was observed in fire patch 4 (76%), followed by fire patch

3 (63%) and fire patch 5 (61%), and finally lowest was fire patch 2

(56%).

Comparing with fuel models in other regions
We compared the fuel model parameters and their fire

behaviors with those in the United States and the Mediterranean

regions. Standard shrub fuel models developed in the United

States include FM4 (chaparral), SH2 (moderate load, dry climate

shrub), SH3(moderate load, humid climate shrub), SH5 (high load,

dry climate shrub), SH6 (low load, humid climate shrub), SH7

(high load, dry climate shrub), and SH8 (high load, humid climate

shrub) [34,35]. The CM28, a custom shrub fuel model was

developed for maquis vegetation in the Mediterranean area [13].

TL2 (Low load broadleaf litter), TL6 (high load broadleaf litter),

Figure 5. Scatter diagram of the fuel model parameter sensitivity.
doi:10.1371/journal.pone.0094043.g005

Figure 6. Calibration results of fire size between uncalibrated
and calibrated fuel models.
doi:10.1371/journal.pone.0094043.g006
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and TL9 (very high load broadleaf litter) are standard broadleaf

fuel models, whereas TL1(low load, compact conifer litter), TL3

(moderate load confier litter), and TL5 (high load conifer litter) are

standard coniferous fuel models developed in the United States

[34]. Weather and fuel moisture contents used for fire behavior

predictions using Behave Plus model were given (Table 5).

Our standard fuel model 1 (FM-1, Table 3) exhibited similar

dead fuel load to SH3, live fuel load to SH6, and fuel bed depth to

SH2. However, the SAV (Surface Area-to-Volume) of 1-hour

time-lag fuel and live shrub as well as the live/dead heat contents

were different from the shrub fuel models developed in other

regions. The standard fuel model 2 (FM-2, Table 3) and standard

fuel model 3 (FM-3, Table 3) have fuel model parameters that are

different from those of these standard broadleaf and coniferous

fuel models.

Fire prediction capabilities of standard fuel model 1 (FM-1,

Table 3) vary from those of the shrub fuel models in other regions

(Table 6). However, the standard fuel model 1 in this study was

found to be most similar to FM4. For standard fuel model 2 (FM-

2, Table 3), fire behaviors are higher compared with those of other

standard broadleaf fuel models except for the heat per unit (lower

compared with that of TL9) (Table. 6). For standard fuel model 3

(FM-3, Table 3), fire behavior are higher than those of other

standard coniferous fuel models (Table 6).

Discussion

Forest fuels have high spatial complexity and variability in

structure and distribution across a landscape [7–9]. Therefore,

fuels are difficult to inventory, classify and describe [4], especially

in a highly heterogeneous forest landscape. Generally, sampling

location, sampling range, sample quantity, and professionalism of

surveyors can significantly affect fuel model parameter represen-

tativeness [45–48]. In order to reduce uncertainty of fuel model

parameters caused by limitations of measures, one needs to pay

more attention to the highly variable parameters that have high

uncertainty in fire simulation.

The fuel model parameter sensitivity analysis is particularly

useful in identifying the uncertainty sources of fire behavior

prediction [49]. Our results of sensitivity analysis showed that 1-

hour time-lag loading, 1-hour time-lag SAV (Surface Area-to-

Volume), fuel bed depth, dead/live heat content, and live shrub

SAV are sensitive for fire behaviors prediction. Special attentions

in field sampling should be paid to reduce uncertainties of these

parameters. Some studies have also showed that 1-hour time-lag

loading and fuel bed depth were the two main parameters

affecting fire behaviors [50,51]. For example, Sparks et al. (2002)

found that fireline intensity increased significantly as 1-hour time

lag fuels increased in restored shortleaf pine–grassland communi-

ties.

The parameters of the fuel models in this study were static.

However, fuel model parameters change with natural and human

disturbances [52,53]. For example, fire suppression have signifi-

cantly increased the fuel load of many forest ecosystems [22,54].

Moreover, several studies suggested fuel parameters change with

climate conditions and vegetation succession [55]. The variation of

fuel model parameters may cause some uncertainty in fire

predition. In this study, FARSITE model yielded an unrealistic

prediction of the historical fire using the uncalibrated fuel models

(Fig. 6). This was because the fire (fire patch 1) used for parameter

calibration occurred in 2000, while fuel model parameters were

measured in 1990s [23]. Fuel model parameters (e.g., fuel load and

fuelbed depth) may significantly change after about 10 years [56],

Figure 7. Validation results of calibrated fuel models in simulating historical fires.
doi:10.1371/journal.pone.0094043.g007

Table 5. Weather and fuel moisture contents used for
simulating fire behaviors of the calibrated fuel models (The
parameters represented the prevailing fire weather conditions
of the historical fires).

Fuel moisture and weather Values

1-hour moisture content (%) 12

10-hour moisture content (%) 13

100-hour moisture content (%) 14

Live herbaceous fuel moisture content (%) 170

Live shrub fuel moisture content (%) 170

Wind speed (km/h) 15

doi:10.1371/journal.pone.0094043.t005
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which may lead to low fire prediction accuracy [13,14]. The

validation of the prediction accuracies also declined over time,

which can be attributed to the increasing of fuel load and change

of fuel structure, particularly in 1 hour time-lag loading and fuel

bed depth (Table 3, and 6). Weather and topography are also two

source of uncertainty in predicting fire behavior [13,57]. For

example, FARSITE model does not account for topographic

variations that affect wind exposures to surface fires. Also, lee-side

topographic sheltering can undoubtedly cause errors for spread

rate calculations[58].Therefore, to reduce the uncertainty of fuel

model parameters, fuel models are need to be calibrated and

validated with more fires.

Our calibration and validation results indicated that the

calibrated fuel models could predict historical fires well (Fig. 7).

The calibrated fuel models can quantify surface fuel characteristics

in this region, which is consistent with Hu (2005). The over-

predictions were also observed in the fire prediction (Fig. 7), which

can be explained by several reasons. For example, fire suppression

was not considered in this study. The assumptions and limitations

of the FARSITE model also significantly affect fire prediction

accuracy [38]. Some previous studies suggested that the FARSITE

simulations generally overpredict fire spead rate for all fuel models

implemented with the Rothermel spread equation [59] and

ascribed the cause to the relation of wind speed to elliptical

dimensions [38].

We tested the efficiencies of fuel models in predicting fire size

and other fire behaviors such as fire intensity and rate of spread

were not considered in this study. Some studies have also used fire

perimeters and fire size to calibrate fuel model [39,60]. Fire

perimeters and fire size are easy to obtain from field work or

remote sensing, which can greatly reduce workload of obtaining

such fire behaviors as fireline intensity and rate of spread.

However, it should be noted that only using fire size to calibrate

fuel models may still have uncertainty, because fire size is not a

linear results of the rate of spread [61,62]. Ideally, more fire

behavior parameters for fuel model calibration and validation

could further improve the reliability of fuel models identified in

our study. However, such real time fire behavior data were

lacking. Thus, one way to deal with this uncertainty is to use more

fires to validate the fuel models [63,64].

The fuel models developed in this study (Table 3) are different

from those of other regions [34,35]. This can mainly be explained

by long-term fire suppression in this region. Fire suppression has

been carried out for over a half century in China [22]. The

Chinese government has invested greatly in both funding and

manpower, including the army, forestry policemen, and local

residents for fire control [65], which had signicantly increased the

fuel load and subsequently caused different fire behaviors from

that of fuel models in other regions (Table 6). Some studies have

showed that fire behaviors were significantly affected by fuel model

parameters [14,66]. Our sensitivity analysis results also showed

that fuel model parameters of 1-hour time-lag loading, dead heat

content, live heat content, 1-hour time-lag SAV (Surface Area-to-

Volume), live shrub SAV, and fuel bed depth had high sensitivity.

However, in fire behavior modelling heat content is assigned a

value around 18000–19000 kJ/kg and it is essentially assumed

constant [34,35]. Because heat content of fuels varies within a

restricted range that is about plus or minus 10–20% of a nominal

value. Generally, there is also same SAV (Surface Area-to-

Volume) for a type of fuel model [34,35]. For example, SH6 fuel

model (low load, humid climate shrub), SH7 fuel model (high load,

dry climate shrub), and SH8 fuel model (high load, humid climate

shrub) developed in the United States have the same heat content

and SAV (Surface Area-to-Volume). Therefore, of fuel model
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parameters, 1-hour time-lag loading and fuel bed depth, are the

main sources of discrepancies between our fuel models and that of

other regions. In addition, using different model-based outputs

(e.g., FARSITE and BEHAVE) to calibrate fuel model may

another reason for the differences between our fuel models and

that of other regions. In this study, we used historical fires to

calibrate fuel models and used FARSITE model to predict fire

behaviors. Because BEHAVE is a non-spatial model, while

FARSITE is a spatially explicit model that can predict fire

behaviors across a landscape [13,57,67].

Conclusions

We were able to derive three fuel models for northeastern China

through calibrating the sensitive fuel model parameters and testing

the calibrated fuel model parameters against historical fires. The

sensitivity analysis results showed that fuel model parameters of 1-

hour time-lag loading, dead heat content, live heat content, 1-hour

time-lag SAV(Surface Area-to-Volume), live shrub SAV, and fuel

bed depth often had high sensitivity. Of the sensitive fuel model

parameters in fire behavior prediction,1-hour time–lag loading

and fuel bed depth, were determined as adjustment parameters

due to their have high spatio-temporal variability. The results

showed that calibrated fuel models have significantly improved the

capabilities of the fuel models to predict the actual fire with an

accuracy of 89%. The prediction accuracy of the validation studies

exceeded 56%. Therefore, developing standard fuel models

through sensitivity analyses is practical because it improves the

representativeness of parameters in our study area. The fuel

models developed in this study can be useful for forest

management and fire prediction.
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