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Abstract

Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms
may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models
have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S.
West Coast (California, Oregon and Washington). Model results are intended to aid in future research or mapping efforts and
to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat
(EFH)) and identify suitable habitat within U.S. National Marine Sanctuaries (NMS). Deep-sea coral habitat suitability was
modelled at 500 m6500 m spatial resolution using a range of physical, chemical and environmental variables known or
thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum
entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large
areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and
NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point
accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data
on distribution of hard substrate) that are known to limit their distribution. Predicted habitat results should be used in
conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with
the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model
accuracy, particularly in areas that have not been sampled.
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Introduction

Predictive habitat suitability modelling is a cost effective

approach to assist scientific research, conservation and manage-

ment of vulnerable marine ecosystems (VMEs) in the deep sea. To

date, the majority of studies using predictive models in the deep

sea have focused on deep-sea corals, mostly due to the

conservation status of this group and the relative abundance of

data compared to other VMEs (e.g. [1,2–7]). These models

identify areas with the highest probability of containing deep-sea

corals and enhance our knowledge of the factors that control the

distribution of these organisms. Whitmire and Clarke [8] reviewed

the state of deep coral ecosystems in the waters of California,

Oregon, and Washington and reported 101 species of corals from

six cnidarian orders have been identified in the region. These

included 18 species of stony corals (Class Anthozoa, Order

Scleractinia) from seven families, seven species of black corals

(Order Antipatharia) from three families, 36 species of gorgonians

(Order Gorgonacea) from 10 families, eight species of true soft

corals (Order Alcyonacea) from three families, 27 species of

pennatulaceans (Order Pennatulacea) from eleven families, and

five species of stylasterid corals (Class Hydrozoa, Order An-

thoathecatae, Family Stylasteridae). The U.S. West Coast has

been relatively well sampled for deep-sea corals in comparison to

many other regions of the world’s oceans, but the spatial

distribution of deep-sea corals in unsurveyed areas within the

EEZ remains largely unknown.

Predictive habitat models work by extrapolating potential

species’ distributions from presence data and a range of

environmental variables. These two components are critical, as

incomplete or erroneous data can reduce confidence in the

approach and can potentially lead to predictions of limited

conservation or management value [9]. When considering the

utility of a model, one further consideration is the selection of an

appropriate spatial scale. For example, poor spatial resolution of

environmental data continues to hinder the spatial accuracy of

deep-sea habitat modelling at global scales [3,5,7]. To address this,

several studies have focused on improving smaller-scale, local

models (i.e. 10 to 100 km2) by integrating terrain variables derived

from multibeam bathymetry (e.g. [10,11,12]). Whilst smaller-scale

modelling produces valuable data on species distributions in

localised areas, it often requires intensive sampling effort and is of

limited use in the identification of unknown habitat for cruise

planning, management and conservation initiatives. Regional-

scale models are needed to predict habitat suitability for corals in

areas that have not been surveyed and have to be accurate enough

to guide a research vessel towards a clearly defined area where

sampling can be targeted [7]. Recent approaches have investigated

the overlap between areas of protection and models of the

distribution of vulnerable marine species [13,14].
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This manuscript presents a predictive habitat suitability

modelling effort for deep-sea corals within U.S. Exclusive

Economic Zone (EEZ) waters off the coasts of California, Oregon

and Washington. The objectives of this manuscript are to; 1)

develop predictive habitat suitability models at the highest possible

spatial and taxonomic resolution for deep-sea corals, 2) use model

results, in addition to other tools and data, to help guide field

research efforts to areas with the highest probability of harboring

deep-sea corals, and 3) integrate model results with existing

bottom trawl closures (i.e. essential fish habitat (EFH) area

closures) and National Marine Sanctuary boundaries to determine

high probability habitat areas that remain at risk from human

activity.

Methods

Coral presence data
Coral distribution data were gathered from several sources

including: Monterey Bay Aquarium Research Institute (MBARI),

NOAA Fisheries, NOAA National Marine Sanctuaries, Smithso-

nian Institute’s National Museum of Natural History, and

Washington State University. These records were obtained from

a variety of gear types: remotely operated vehicles (ROVs),

manned submersibles, cameras, grabs and bottom trawls. Over

90,000 coral records were collected for the U.S. West Coast

region. However, only of a fraction of these could be retained for

use in the habitat suitability models. Coral observations were

eliminated if they matched the following criteria: 1) records were

collected as bycatch in bottom trawls as they have inherent spatial

and taxonomic accuracy issues, creating uncertainties that stem

from both the method in which they were collected and the

taxonomic knowledge of observers on fishing vessels. Bottom

trawls can be several kilometers in length and it can be difficult, if

not impossible, to determine the position of the actual coral

occurrence [15]. 2) Records were located in waters of less than

50 m depth. This depth cutoff was based on the fact that most

zooxanthellate corals are found in shallow waters and this study is

focused on deep-sea azooxanthellate corals, which tend to occur in

waters deeper than 50 m. 3) The taxonomy of coral records was

uncertain at the family level. 4) If more than one coral record of

the same taxon (order or suborder) was located within the same

500 m grid cell. The spatial resolution of the bathymetry,

environmental data, and model results was 500 m6500 m. If

more than one coral record from the same taxon occurred in the

same 500 m grid cell, it was treated as a ‘spatial duplicate’ and

removed. Spatial duplicates skew models towards the environ-

mental conditions found in those cells resulting in distorted model

predictions. Some sampling approaches, such as ROVs, drop

cameras or manned submersibles, document numerous coral

records along relatively short distances and can introduce

significant spatial bias into the analysis if all records are retained.

There were several issues which prevented models from being

performed at the species level: 1) taxonomic disagreement, 2)

varying degrees of taxonomic knowledge among observers and

collectors, and 3) many coral presences are documented without a

sample being collected to conclusively determine coral taxonomy

to species. These are concerns that have been similarly noted in

global models for octocoral habitat suitability [16]. For these

reasons coral records were binned and modelled at the Suborder

and Order levels. Suborders for which coral presence data were

obtained included Alcyoniina, Calcaxonia, Filifera, Holaxonia,

Scleraxonia, Stolonifera. Order level data included Antipatharia

and Scleractinia. A total of 2,120 coral records were retained for

analysis (Table 1 and Figure 1). Predictive models were not

performed for Suborders Filifera (n = 12) and Stolonifera (n = 30)

due to a paucity of coral records. It should be noted that nine of

the 203 scleractinian presence records used in the predictive

models were habitat-forming scleractinians (e.g. Lophelia pertusa and

Oculina profunda). All other scleractinian records were solitary, non-

branching corals. Most scleractinian records used in this analysis

were not structure forming, but habitat suitability was modelled

due to the high level of research interest for this taxon.

Bathymetry
The bathymetry of the U.S. West Coast shelf consists of a

complex series of canyons, ridges and seamounts [8]. There has

been significant effort in the acquisition of reliable bathymetry in

this region and several data products are available. The most

prominent is the Coastal Relief Model (CRM) generated by

NOAA’s National Geophysical Data Centre (NGDC). This is a

publically available dataset with a stated cell resolution of 3-arc

seconds (,90 m). The bathymetric component of the model is

constructed from soundings obtained from National Oceano-

graphic Service (NOS) hydrographic soundings, the NGDC

multibeam database, and recently digitized soundings from NOS

[17]. Soundings are gridded into a continuous grid for much of the

shelf using the Generic Mapping Tools program Surface.

However, the final CRM output is highly smoothed, omits

smaller-scale features, and is of limited extent due to the high

density of soundings in the shallower waters of the shelf (Figure 2a).

A custom bathymetry with a resolution of 500 m6500 m

was produced from NOS hydrographic soundings, the NGDC

Figure 1. Location of all coral records (black markers) and
regions 1–4 used for Maxent model cross-validation for each
coral taxon.
doi:10.1371/journal.pone.0093918.g001
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multibeam database, and Trackline data [17–19]. Raw soundings

were extracted into XYZ for the target area of interest (Figure 2b)

using MB System [20]. As with the CRM dataset, the raw

sounding data was not corrected to the same vertical and

horizontal datum, but this has little effect on the accuracy of the

final grid output [21]. Null values and erroneous soundings were

removed using either a PERL script or were removed manually.

The final grid was created using the spline interpolation program

MB Grid. In total, 35% of the area of interest was covered by

sounding data with additional data used to infill areas with sparse

soundings from Smith and Sandwell’s global seafloor topography

version 14.1 [22]. The final resolution of the custom grid was

500 m6500 m; smaller cell sizes showed little improvement in the

quality of the bathymetry as it is limited by the spatial coverage

and density of soundings. The custom grid was highly correlated

with CRM data (Pearson’s correlation = 0.999, p,0.001 based on

500 random points within the extent of CRM), spanned the entire

study region, and retained more topographic complexity than

CRM. However, considering this is the first development of a

custom bathymetry, care should be taken when interpreting data

in areas that contain sparsely distributed or no soundings as these

areas rely on satellite derived altimetry for the bathymetry

(Figure 2b).

Environmental, physical and chemical data
Environmental layers were collated and constructed from

sources that included ship-based CTD casts, satellites and global

climatologies such as World Ocean Atlas (Table 2). The majority

of source data was available as gridded datasets partitioned into

standardized depth-bins ranging from 0 to 5500 m. Other data

were available only as single layers from the surface (e.g. surface

primary productivity) (Table 2). For depth-binned datasets, it was

assumed that the conditions found at a specific gridded depth were

representative of conditions on the seafloor. This allowed for the

creation of continuous representations of seafloor conditions by

extrapolating each depth-bin to the corresponding area of seafloor

at that depth. This approach was initially developed for the

creation of global environmental, physical, and chemical datasets

[7].

Converting depth-binned datasets into representations of

seafloor conditions involved several computer intensive processes

that were conducted within a series of Python scripts. Firstly, each

depth-bin of the gridded data is extracted into a single layer and

interpolated at a higher spatial resolution (usually 0.1u) using

inverse distance weighting. The interpolation was required to

reduce gaps that appear between adjacent depth bins due to a lack

of overlap when extrapolated to the bathymetry. Each of these

layers was then resampled to match the extent and resolution of

the bathymetry with no further interpolation. Secondly, these

layers were resampled to match the extent and cell resolution of

the bathymetry. Thirdly, each resampled depth-bin was clipped by

the area of seafloor that was available at that particular depth.

Each bin did not overlap and all were merged to produce a

continuous representation of the variable on the seafloor.

This approach essentially develops a model of potential

conditions for each variable. It uses the best available data, but

makes several assumptions: 1) environmental conditions from the

gridded CTD data are representative of the conditions at the

seafloor. The majority of CTD casts do not normally reach the

seafloor as they are usually stopped between 5 and 10 m from the

bottom to reduce the chance of damage to the CTD system

Table 1. Coral records retained for habitat suitability modelling by taxon.

Taxa Records retained

Order

Antipatharia 128

Scleractinia 203

Suborder

Alcyoniina 791

Calcaxonia 413

Holaxonia 308

Scleraxonia 277

Total 2120

Families of coral records listed included Order Antipatharia: Antipathidae, Cladopathidae, and Schizopathidae; Order Scleractinia: Fungiacyathidae, Micrabaciidae,
Oculinidae, Caryophyllidae, Flabellidae, and Dendrophyllida; Suborder Alcyoniina: Alcyoniidae; Suborder Calcaxonia: Chrysogorgiidae, Isididae, and Primnoidae;
Suborder Holaxonia: Acanthaogorgiidae, Gorgoniidae, and Plexauridae; Suborder Scleraxonia: Anthothelidae, Coralliidae, Paragorgiidae, and Plexauridae).
doi:10.1371/journal.pone.0093918.t001

Figure 2. Custom bathymetry. a) Extent of the Coastal Relief Model
data from NOAA (faint red) and the target model domain (dashed line).
Faint black line indicates the 200 m contour, bold black line the 2000 m
contour. b) Extent of soundings used to construct the custom
500 m6500 m bathymetry used in this study (red). Faint black line
indicates the 200 m contour, bold black line the 2000 m contour and
the dashed line indicates the analysis extent.
doi:10.1371/journal.pone.0093918.g002
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through impact, and 2) seafloor conditions are relatively stable.

Annual mean values were used to maximize the amount of

environmental data incorporated. While much of the deep sea is

relatively stable below 200 m, there is still significant temporal

variability in shelf and coastal areas and caution should be taken

when interpreting predictions in shallow-water areas. However,

the longevity of many deep-sea coral species far exceeds the

measuring period of most oceanographic variables. Surface

datasets were not up-scaled by the above process, as they were

only available as a single depth-bin. Surface variables were

interpolated to a higher spatial resolution using the data-

interpolating variational analysis approach (DIVA; [23]) that is

written into Ocean Data View version 4. For this study, we

selected particulate organic carbon flux to the seafloor from Lutz

et al. [24] as the productivity variable. Slope was calculated within

ArcGIS Spatial Analyst using a moving window to extrapolate

both fine scale slopes (1 km, 5 km) and broad-scale slopes (10 km,

20 km) using Horn’s algorithm [25].

The accuracy of the up-scaled environmental variables was

tested using quality controlled water bottle data obtained from the

2009 version of the World Ocean Database (WOD) [26]. Only

points collected post-2001 were used in the statistical comparison

and null values were removed as these were not used in the

development of the temperature or salinity grids. WOD data were

filtered to ensure 1) values contained a bottom depth meta-data

flag, and 2) data values were within 5% of the total depth from the

custom bathymetry for a cast location. Four variables contained

adequate data for statistical comparison with environmental

layers: temperature, salinity, phosphate and dissolved oxygen

(Figure 3). The four up-scaled environmental variables that were

assessed with WOD water bottle data were highly correlated at

each sampling location (Pearson’s correlation, R2, temperature

= 0.98 (n = 108), salinity = 0.93 (n = 105), dissolved oxygen = 0.91

(n = 100) and phosphate = 0.88 (n = 101), all values significant at

p,0.001). The phosphate comparison showed an artifact at bottle

concentrations above 3.5 mg l-1 (Figure 3). This occurred in

regions that have low topographic relief, resulting in environmen-

tal variables not being upscaled by the bathymetry and the original

resolution of the environmental variable being visible (in this case

1u). Several other CTD datasets from the U.S. West Coast were

assessed for suitability, but many did not penetrate into the deep

sea and did not include bottom depth as meta-data making it

impossible to determine whether a cast went near the seafloor.

Variable selection
Variables were selected based on a literature search of

environmental, physical, and chemical factors known or thought

to influence deep-sea coral growth and survival. Temperature,

salinity, aragonite saturation state, and topographic complexity

have been shown to be strong predictors of bioherm forming

scleractinian coral distribution in recent deep-sea modelling efforts

[3,5,7,27]. Calcite saturation state was chosen over aragonite

saturation state for use in this study as the majority of coral taxa

that were modelled use calcite to build their calcium carbonate

spicules and structures [16]. Scleractinians have aragonitic

skeletons, but the vast majority of scleractinian corals used in this

analysis were solitary, non-reef forming species. Living specimens

of these solitary species have been collected in highly undersat-

urated waters with respect to aragonite, which led to the deduction

that aragonite saturation state would not be a strong predictor for

determining their potential distribution at a regional scale [28].

Slope was calculated at a variety of spatial resolutions ranging

from 1 km–20 km and is a useful proxy for current acceleration

and mixing, which are known to influence coral distribution and

abundance [29–31].

Covariation between environmental datasets is a complication

that must be addressed in many predictive modelling efforts.

Environmental datasets used in this analysis were assessed for

covariation in correlation matrices (See Figures S1–S10). Although

Maxent is reasonably robust with respect to covariation, an a priori

variable selection process was used to reduce covariation by

removing variables that were highly correlated and likely to

adversely affect final predictions. Covariation was assessed using

correlation matrices in R. Strong correlations between variables

(. 0.7) were addressed by omitting one of the environmental

variables (except for calcite saturation state, temperature, and

depth; see Results and Discussion). The importance of each

variable in the model was assessed using a jack-knifing procedure

that compared the contribution of each variable (when absent

from the model) with a second model that included the variable.

The final habitat suitability maps were produced by applying the

calculated models to all cells in the study region, using a logistic

link function to yield a habitat suitability index (HSI) between zero

and one [32].

Table 2. Environmental, physical, and chemical layers developed for this study.

Variable Native resolution Source

Terrain variables

Depthb 0.0083u Custom bathymetry

Slope1, b 0.0083u Custom bathymetry

Chemical variables

Apparent oxygen utilisationb, dissolved oxygenb, percent oxygen saturationb. 1u Garcia et al. [51]

Aragoniteb and calciteb saturation states 1u, 3.6ux0.8–1.8u Orr et al. [52]2, Steinacher et al. [53]3

Nitrateb, phosphateb, silicateb 1u Garcia et al. [54]

Salinityb, temperatureb 0.25u Boyer et al. [55]

Biological variables

Particulate organic carbona 0.08u Lutz et al. [24]

1Derived using ArcGIS spatial analyst and in several layers created using moving windows of 500 m, 1 km, 2.5 km, 5 km, 20 km. 2Extracted from OCMIP2 model data for
1995. 3Extracted from SRES B1 scenario model; mean 2000–2009. aIndicates a surface variable. bindicates a seafloor variable.
doi:10.1371/journal.pone.0093918.t002
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Modelling Methods
Maxent version 3.2.1 (http://www.cs.princeton.edu/,schapire/

maxent) was used to model predicted deep-sea coral distributions

for the U.S. West Coast. Maxent (maximum entropy modelling)

consistently outperforms other presence-only modelling packages

including Ecological Niche Factor Analysis (ENFA) [5,33].

Presence-only modelling is one of the only methods available for

modelling species distributions in the deep sea because documented

absence data is sparse and when available can be unreliable.

Maxent’s underlying assumption is the best way to determine an

unknown probability distribution is to maximise entropy based on

constraints derived from environmental variables [32]. Default

model parameters were used as they have performed well in other

studies (a convergent threshold of 1025, maximum iteration value

of 500 and a regularisation multiplier of 1 [34]).

Model accuracy between the test data and the predicted

suitability models was assessed using a threshold-independent

procedure that used a receiver operating characteristic curve with

area under curve (AUC) for the test localities and a threshold-

dependent procedure that assessed misclassification rate. With

presence-only data, Phillips et al. [32] define the AUC statistic as

the probability that a presence site is ranked above a random

background site. In this situation, AUC scores of 0.5 indicate that

the discrimination of the model is no better than random, with the

maximum achievable AUC value being 1, which implies perfect

discrimination of validation data. To develop the models in this

study, coral presence data was spatially partitioned into four

regions to calculate validation metrics and assess whether or not

spatial sampling bias of coral records was influencing model

performance (regions depicted in Figure 1). Four Maxent models

were performed for each coral taxon (order/suborder) so models

could be spatially cross-validated. For example, model 1 for any

given taxon used coral records from regions 2, 3, and 4 as training

records and region 1 coral records as test data to assess model

performance using AUC. Model 2 used coral records from regions

1, 3, and 4 as training records and region 2 coral records as test

records. The same procedure was performed for models 3 and 4.

The cross-validation of models across the four regions was

necessary due to the high number of coral presence records

provided by MBARI for Monterrey Canyon and Davidson

seamount and has the benefit of testing models with spatially

independent data (see regions 3 and 4 in Figure 1). In this study,

spatially cross-validated models with AUC scores .0.7 were

retained for further analysis and used in the production of

Figure 3. Validation of the environmental layer creation process by comparing the variable value on y axis (Variable), against WOD
2009 CTD data (Bottle, on 6axis). a) Temperature, b) salinity, c) dissolved oxygen and d) phosphate.
doi:10.1371/journal.pone.0093918.g003
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thresholded predictions, models scoring lower than this were

omitted.

There is ongoing debate regarding the interpretation of

Maxent’s logistic prediction values (0–1) for habitat suitability

[35,36], but it represents the best metric at present. Several studies

have defined a binary threshold, which states that a species is likely

to be found in an area with a habitat suitability value above a

given threshold, but not likely to be found below it [37–39]. To

create usable predictions from the cross-validations we used a 0.5

logistic presence value threshold for each taxa and all taxa to

provide a cut-off point for suitability in this study (below which was

considered unsuitable and above suitable), we also used a 0.75

logistic presence value threshold to further constrain the model

output for EFH management applications. These values are higher

than used in previous studies (i.e. the 10th percentile training

presence used in [7]) because the main application of this

modelling effort is to use predictions to help target areas for

future field research and provide an assessment of EFH area

closures. Summary maps were generated for each order and

suborder by creating thresholded predicted outputs for each of the

four regions (using 0.5 or 0.75 as the cutoff presence/absence

value). If predicted logistic suitability was greater than 0.5 or 0.75

for any given cell, that cell was assigned a value of 1. If predicted

habitat suitability was less than the cutoff value, the cell was

assigned a value of 0. The binary models were summed for each

coral taxon resulting in final consensus grids that had cell values

ranging 0–4 depending on the number of retained spatially-

partitioned models (maximum = 4).

Fishing intensity data
To estimate the amount of fishing activity within the U.S. West

Coast, a map of fishing intensity was acquired that showed the

relative intensity of commercial bottom trawling from 12 June

2006 to 31 December 2010 [40]. The map was developed from a

commercial logbook program administered by coastal states and

records for bottom-contact fishing gear (e.g., ‘‘small’’ footrope,

‘‘large’’ footrope, flatfish, selective flatfish, and roller trawl)

collated by the Pacific Fisheries Information Network (PacFIN).

This is not a fully comprehensive dataset, as some states do not

submit full data, state-managed fisheries such as pink shrimp,

ridgeback prawn and sea urchin are not included in PacFIN and

cells with data from less than three fishing vessels were omitted

from available maps to protect privacy. The final layer represents

the total bottom trawl lines that fall within a 3 km radius

neighbourhood centered on cells within a 5006500 m grid similar

to the custom bathymetry (represented as km of trawl per km2).

These data were contrasted against a thresholded prediction for all

taxa, with the threshold raised to 0.75 to locate areas that are

highly suitable habitat for cold-water corals.

Substrate data
Substrate data was obtained for a limited subset of the model

domain that mostly covered the shallower shelf of the US West

Coast [41]. This layer was built from a variety of archived data

including limited multibeam echosounder bathymetry and back-

scatter and was provided as a 25 m625 m grid [42]. The substrate

types described included, probable soft sediment, probable rock

(including predicted rock based on expert knowledge) and a

mixture of soft sediment and rock. This layer was also

accompanied with a confidence layer that shows that for the

majority of the data, the probable substrate type was of low

confidence with only shallower water being granted medium and

high confidence levels. This data layer and any output from it must

be considered with substantial caution especially given that a wide

variety of mapping approaches were used in its creation and these

sources were interpreted into the three coarse categories. Due to

the low confidence in the substrate data, an exploratory analysis

was undertaken to determine how the habitat suitability models for

each species fared in light of the available substrate in the region.

Results

Species’ niche
From the available environmental data, an a priori variable

selection process that took into account closely related and highly

correlated variables, identified seven variables that were likely to

influence the probability of species presence (temperature, salinity,

particulate organic carbon, depth, dissolved oxygen, calcite

saturation state, slope 1 km) (Tables 3, 4 and S1–S10 in File

S1). The jack-knife of variable contribution showed slope 1 km,

temperature, and salinity were the strongest predictors for

Suborder Alcyoniina, Order Antipatharia, Suborder Calcaxonia,

and Suborder Scleraxonia. Temperature and salinity were

consistently strong predictors in models for Suborder Holaxonia,

whereas, salinity and depth were the strongest predictors for Order

Scleractinia. For all taxa combined the strongest predictors were

salinity, temperature and depth. Three highly correlated variables

(depth, calcite saturation state, and temperature) were retained

due to ecophysiological importance and the strength of their

contributions. This must be interpreted with caution as these

layers covary and may contain similar information, which can

artificially inflate variable contribution scores. However, the test

AUC scores for models generated with a single variable reinforced

that these variables were top predictor variables regardless of

covariation (Tables 3 and 4). Suborder Holaxonia was the only

group to have calcite saturation state as one of the top three

predictor variables (two of the four models) indicating some species

within this Suborder could be sensitive to changes in carbonate

chemistry.

It was possible to gain insight into the species niches and the

factors that are most important in driving their distribution by

intersecting the distribution of coral records with the environmen-

tal, physical, and chemical layers (Figure 4). For VCALC, all coral

records were found in waters supersaturated with respect to calcite

(VCALC .1) with the majority (82%) being found in waters with

VCALC between 1 and 2. Most coral records were found in waters

with a temperature range of 1.5–8uC and salinity in the range of

33.5–34.7. Coral records were found in depths ranging from 50–

4,129 m, but the majority (88%) were found between 50 and

2500 m. Slope 1 km values were widely distributed across taxa,

but was an important predictor variable (see jack-knife of variable

importance in Tables 3 and 4) for all taxa combined, Alcyoniina,

Antipatharia, Calcaxonia, and Scleraxonia. Slope 1 km was not in

the top three predictor variables for Holaxonia and Scleractinia.

Dissolved oxygen values ranged from 0.3–5.9 ml l-1 with 89% of

records having values in the 0.3–3.1 ml l-1 range. Particulate

organic carbon values were widely distributed across taxa with

Antipatharia having notably lower POC values (80% of Anti-

patharian records were found in waters with POC,7 g Corg m-

2 yr-1).

Model evaluation
The coral habitat models performed well across all the metrics

used to validate the modeled outputs. All, bar two AUC scores,

were .0.7 and were significantly different from that of a random

prediction of AUC = 0.5 (Wilcoxon rank-sum test, p,0.01). High

AUC scores were supported by high test gains and low omission

rates across many of the modeled taxa indicating most presences
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were accounted for in the predictions (Tables 3 and 4). Models

generated for the spatial partitions of Antipatharia (Model 1) and

Scleractinia (Model 4) were excluded from the summed grids for

each taxon as the AUC scores for these partitions were ,0.7, so

suitability was ranked between 0–3, rather than 0–4 as for all other

taxa (Figures 5 and 6).

Figure 4. Bean plots of coral presences intersected with the environmental, physical and chemical variables used in the models (the
small lines in the center of each bean shows individual coral presence points). The bean itself is a density trace that is mirrored to show as
a full bean [56].
doi:10.1371/journal.pone.0093918.g004
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Habitat suitability maps for National Marine Sanctuaries
Habitat suitability maps for each taxon and all taxa combined

are presented in Figures 5 and 6 and are available to download as

GeoTIFF files (File S2). The locations of the Olympic Coast,

Cordell Bank, Gulf of the Farallones, Monterey Bay and Channel

Islands National Marine Sanctuaries overlain with predicted

suitability for selected taxa are shown in Figure 7, additional

and higher resolution digital figures are available as electronic

supplementary materials (Figures S1–S7).

Olympic Coast National Marine Sanctuary (OCNMS): Areas

within the OCNMS that have the highest probability of containing

coral habitat include the eastern regions of Juan de Fuca Canyon,

Quillayute Canyon, and Quinalt Canyon. Habitat suitability

probabilities were highest in these areas for Alcyoniina (Figure 7b

and S1a), Calcaxonia (Figure S1c), Holaxonia (Figure S1d),

Scleractinia (Figure S1e), and Scleraxonia (Figure S1f). Predicted

habitat suitability and the areal extent of suitable habitat were low

in these areas for Antipatharia (Figure S1b). Large areas of suitable

deep-sea coral habitat were predicted in areas adjacent to the

western boundary of the OCNMS. This area of high habitat

suitability extends approximately 30 km westward of the sanc-

tuary’s western boundary (Figure S1).

Cordell Bank (CBNMS), Gulf of the Farallones (GFNMS), and

Monterey Bay National Marine Sanctuaries (MBNMS): The

boundaries of these sanctuaries encompass the vast majority of

suitable coral habitat in the region from the coastline westward to

Figure 5. Predicted habitat suitability. Suborder Alcyoniina (a), Order Antipatharia (b), Suborder Calcaxonia (c), Suborder Holaxonia (d), Order
Scleractinia (e), Suborder Scleraxonia (f). Legend shows the summed values for 0.5 cut off for each model validated by the spatial cross validation
approach, the legend is on a scale of 0–4 for most variables, however, some only had 3 valid cells incorporated and the summed value is a maximum
of 3.
doi:10.1371/journal.pone.0093918.g005

Figure 6. Predicted habitat suitability for all taxa. a) 0.5 threshold
as per the previous figures, b) 0.75 threshold. The higher threshold
greatly constrains the output, producing predictions that are more
focused on areas of the highest suitability.
doi:10.1371/journal.pone.0093918.g006
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approximately 90 km offshore (from Monterey Bay). Habitat

suitability probabilities and areal extent of predicted habitat were

highest in these sanctuaries for Alcyoniina (Figure S2a), Calcax-

onia (Figure 7c and S2c), Holaxonia (Figure S2d), and Scleractinia

(Figure S2e). In contrast, suitability probabilities and areal extent

were low in these areas for Antipatharia (Figure S2b) and

Scleraxonia (Figure S2f). High probability areas were modeled

to the west of MBNMS’s northwest boundary. This area of highly

suitable habitat extends approximately 50 km to the west of

MBNMS’s NW boundary (Figure S2).

Channel Islands National Marine Sanctuary (CINMS): Habitat

suitability probabilities and areal extent of predicted habitat were

generally low across taxa within the CINMS boundary when

compared to surrounding waters. Predicted habitat probabilities

and areal extent of suitable habitat were low for Alcyoniina (Figure

S3a), Antipatharia (Figure S3b), Calcaxonia (Figure S3c), Holax-

onia (Figure 7d and Figure S3d), and Scleraxonia (Figure S3f).

Modeled habitat probabilities and areal extent of predicted habitat

were high in waters surrounding all islands within the sanctuary

for Scleractinia (Figure S3e). It is worth noting that probabilities

and areal extent were high in the waters surrounding the islands of

San Nicolas, Santa Catalina and San Clemente for Alcyoniina,

Calcaxonia, Holaxonia, Scleractinia and to a lesser extent

Scleraxonia. Probabilities and areal extent were very low in all

island waters, both within and outside the sanctuary boundaries,

for Antipatharia (Figure S3).

To evaluate the effectiveness of each NMS in encompassing

predicted coral habitat, the total area of suitable habitat within

each was calculated (Table 5). Overall, a large proportion of total

area within each sanctuary encompassed habitat that was classed

as suitable (a habitat suitability value greater than zero) for

multiple taxa. In some NMS’, certain taxa dominated. For

example, suitable habitat for Holaxonia was predicted to occur

within 45% of the area of OCNMS, whereas in the Gulf of

Farallones, Antipatharia was predicted to occur in 60% of the

area. To avoid over-prediction skewing the effectiveness, the

highly constrained model for all taxa (cut-off above 0.75 logistic

suitability) showed that the most effective NMS may be the Gulf of

Farallones, which contained 16% suitable habitat, followed by

Monterey Bay that contained 14%, Olympic Coast at 12% and

the Channel Islands at 9%. The least effective may be Cordell

Bank that encompassed 6% suitable habitat.

Spatial distribution of predicted habitat suitability and
bottom trawl closures: Essential Fish Habitat (EFH) and
Cowcod Conservation Area West (CCA-West)

Coral habitat suitability maps for selected taxa and all taxa

combined are depicted in Figure 8 (all taxa are shown in Figure

S4) with overlays of essential fish habitat area closures and

Cowcod Conservation Areas sourced from the Pacific Fishery

Management Council. These area closures depict areas with

fishing gear restrictions off Washington, Oregon, and California.

Gear restrictions were established under NMFS’ Final Rule to

implement Amendment 19 to the Pacific Coast Groundfish

Fishery Management Plan (71 FR 27408; May 11, 2006). Fishing

with bottom trawl gear within these areas was prohibited to

minimise adverse effects from fishing. All bottom contact gear was

prohibited in waters surrounding Thompson Seamount, President

Jackson Seamount, and several sites in the Channel Islands and

Cordell Bank National Marine Sanctuaries. All bottom contact

gear and any gear deployed deeper than 500 fathoms (914 m) was

prohibited in the waters surrounding Davidson Seamount. There

are two Cowcod Conservation Areas (East and West), but only

CCA-East is designated as EFH. CCA-West is large in size and has

high levels of habitat suitability for many of the coral taxa

modelled. The EFH and the CCA-West areas are not the only

bottom trawl closures present on the U.S. West Coast. There are

also Rockfish Conservation Areas (RCAs) that extend along the

entire length of the U.S. West Coast, but their boundaries can

change throughout the year and are based on approximate depth

contours between ,100–150 fathoms (183–274 m). Both of these

factors make quantitative assessment of RCA closures with

predicted habitat suitability highly uncertain. In addition, Cali-

fornia and Washington prohibit bottom trawling within their state

territorial seas (out to 3 nautical miles). These trawl closures were

not included in this analysis as the majority of suitable coral

habitat is found in deeper areas outside state territorial waters.

Northern Region (42uN to 48uN, Washington and
Oregon)

Significant areas of high probability coral habitat for Alcyoniina

were predicted off the coast of Washington state (Figure 5a and

Figure S4). The areas with high probabilities that remain open to

bottom contact gear include the entire western boundary of the

OCNMS. These include regions adjacent to existing EFH area

closures Biogenic 1 and Biogenic 2. Highly suitable habitat also

was identified between existing EFH area closures Grays Canyon

and Nehalem Bank/Shale Pile, along the western boundary of

Hecata Bank, along the western boundary of Bandon High Spot,

and areas between Bandon High Spot and Rouge Canyon EFH.

The majority of Antipatharian predicted habitat was located in

Figure 7. Locations of National Marine Sanctuaries overlain
with predicted suitability. a) Overview with all taxa constrained to a
0.75 threshold, b) Olympic Coast and prediction for Alcyoniina, c)
Cordell Bank, Gulf of the Farallones and Monterey Bay with prediction
for Calcaxonia, d) Channel Islands and prediction for Holaxonia.
doi:10.1371/journal.pone.0093918.g007

Predicting U.S. West Coast Deep-Sea Coral Habitats

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e93918



Table 5. Total area (nm2) of modeled habitat suitability within existing National Marine Sanctuary boundaries.

Habitat suitability

0 1 2 3 4 Suitable (.0)

Olympic Coast (2,854 nm2)

Alcyoniina 2,478 53 61 129 134 376 (13%)

Antipatharia 2,587 210 43 14 - 266 (9%)

Calcaxonia 2,351 119 103 230 51 503 (18%)

Holaxonia 1,571 487 252 388 155 1,282 (45%)

Scleractinia 2,262 277 188 127 - 592 (21%)

Scleraxonia 2,307 64 82 346 54 546 (19%)

All Taxa –0.5 1,820 184 216 327 306 1,033 (36%)

All Taxa –0.75 2,515 126 63 56 94 338 (12%)

Monterey Bay (5,465 nm2)

Alcyoniina 3,408 343 234 547 934 2,057 (38%)

Antipatharia 4,488 335 407 235 - 977 (18%)

Calcaxonia 3,959 235 227 628 417 1,507 (28%)

Holaxonia 3,951 377 264 459 415 1,514 (28%)

Scleractinia 3,731 362 805 567 - 1,735 (32%)

Scleraxonia 4,662 203 163 278 159 803 (15%)

All Taxa –0.5 2,637 479 418 704 1,227 2,828 (52%)

All Taxa –0.75 4,716 131 137 204 278 749 (14%)

Gulf of Farallones (1,149 nm2)

Alcyoniina 898 11 10 30 200 251 (22%)

Antipatharia 460 308 266 115 - 689 (60%)

Calcaxonia 917 12 17 84 118 232 (20%)

Holaxonia 788 109 35 67 149 360 (31%)

Scleractinia 663 150 210 125 - 486 (42%)

Scleraxonia 970 17 37 94 31 179 (16%)

All Taxa –0.5 598 130 97 85 239 551 (48%)

All Taxa –0.75 964 33 26 44 81 184 (16%)

Cordell Bank (469 nm2)

Alcyoniina 346 13 15 32 64 123 (26%)

Antipatharia 400 32 33 4 - 69 (15%)

Calcaxonia 350 4 9 59 48 119 (25%)

Holaxonia 295 50 41 38 46 174 (37%)

Scleractinia 202 108 117 43 - 267 (57%)

Scleraxonia 431 15 15 8 0 38 (8%)

All Taxa –0.5 241 33 33 45 118 228 (49%)

All Taxa –0.75 441 9 5 6 8 28 (6%)

Channel Islands (1,299 nm2)

Alcyoniina 959 61 45 123 110 339 (26%)

Antipatharia 1,278 16 4 0 - 21 (2%)

Calcaxonia 1,083 41 49 110 16 215 (17%)

Holaxonia 809 136 99 217 37 489 (38%)

Scleractinia 261 138 412 487 - 1,037 (80%)

Scleraxonia 1,143 12 123 20 0 155 (12%)

All Taxa –0.5 507 177 174 203 238 792 (61%)

All Taxa –0.75 1,184 51 31 21 11 114 (9%)

Entire modelled area (284,863 nm2)

Alcyoniina 257,486 7,315 4,577 5,994 9,491 23,7378 (9.6%)

Antipatharia 269,471 7,477 4,191 3,725 - 15,393 (5.4%)
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existing EFH area closures in this region; the exception to this are

the predicted areas located between Grays Canyon and Nehalem

Bank/Shale Pile, and within the OCNMS (Figure S4b). The most

significant predicted habitat areas for Calcaxonia, which are not

currently contained in EFH area closures, include waters north

and south of Biogenic 1 and 2 and areas between Grays Canyon

and Nehalem Bank/Shale Pile (Figure S4c). The predicted habitat

pattern for Holaxonia was similar to that of Alcyoniina with two

additional areas being highly suitable. These areas are located

directly east of Nehalem Bank/Shale Pile and Heceta Bank (Figure

S4d). Predictions for Scleractinia were limited in this region to a

narrow depth band almost all of which is in areas open to bottom

trawl gear (Figure S4e). High probability areas for Scleractinia

were identified within the OCNMS and in a narrow depth band

between Biogenic 2, Grays Canyon, and Nehalem Bank/Shale

Pile. Areas west of Heceta Bank and Bandon High Spot were also

identified, in addition to the area east of Rogue Canyon. The

majority of predicted habitat for Scleraxonia that remains in open

trawling areas is located within the OCNMS and between Grays

Canyon and Nehalem Bank/Shale Pile (Figure S4f).

Central Region (36uN to 42uN, Northern California)
The majority of high probability areas predicted for Alcyoniina

occurred in areas currently open to bottom trawl gear (Figure

S5a). These include areas between Rogue Canyon and Eel River

Canyon and between Blunts reef and Pt. Arena South Biogenic

Area. High probability areas for Antipatharia are almost

completely contained within existing EFH area closures in this

region (Figure S5b). Calcaxonia predicted habitat that remains in

open trawl areas appears to follow the 700 fathoms (1,280 m)

contour line between Rogue Canyon and Blunts Reef and also

between Pt. Arena North and Cordell Bank Biogenic Area (Figure

S5c). The majority of predicted Holaxonia and Scleractinian

habitat are located in areas currently open to bottom trawl gear

(Figure S5d and S5e). Scleraxonia habitat was predicted mostly in

existing EFH area closures, but high probability areas were

identified in areas open to bottom trawling in a narrow depth band

between Rogue Canyon and Blunts Reef and again from Delgada

Canyon to Pt. Arena South Biogenic area (Figure S5f).

Southern Region (30uN to 38uN, Central and Southern
California)

Predicted habitat for Alcyoniina was limited predominately to

the continental shelf in this region. The majority of predicted

Alcyoniina habitat in the northern extents of the mapped area is

located within the boundaries for CBNMS, GFNMS and

MBNMS (Figure S6a). Predicted habitat for Alcyoniina was

identified in areas remaining open to bottom trawl gear in the

southern extent of the mapped areas including the waters

surrounding existing EFH area closures: Harris Point, Potato

Bank, Hidden Reef/Kidney Bank, Catalina Island, and Cowcod

Conservation Area East. High probability areas for Alcyoniina

were also predicted along the northern boundary of the CINMS

(north of San Miguel, Santa Rosa and Santa Cruz Islands).

Predicted Alcyoniina habitat in the southern extent of the mapped

area along the shelf break is mostly contained in existing EFH area

closures. Most of the high probability areas for predicted

Antipatharian habitat were located in current EFH area closures;

the exception was the area approximately 65–200 km south of

Davidson Seamount (Figure S6b). The majority of predicted

Calcaxonia habitat in the region is located within current EFH

area closures, but high probability areas remain open to bottom

trawl gear in the southern extent of the mapped region in waters

adjacent to Potato Bank, Catalina Island, and Cowcod Conser-

vation Area East EFH area closures (Figure S6c). The majority of

Holaxonia predicted habitat was identified in areas open to

bottom trawl gear, most of which occurs within the boundaries of

the CBNMS, GFNMS, and MBNMS (Figure S6d). High

probability areas were also predicted in trawl areas surrounding

Cowcod Conservation Area East. The majority of predicted

Scleractinian habitat in the region was identified in areas currently

open to bottom trawl gear (Figure S6e). Most of this habitat is

limited to a depth range of ,50–400 m (along the coast and

islands) and a ,3,500 km2 deep-water area south of Davidson

Seamount. Scleractinian coral presence records documented in

this deep-water region were Fungiacyathus marenzelleri. Most

Scleraxonia habitat was identified in areas currently designated

as EFH area closures (Figure S6f). High probability habitat results

in areas open to bottom trawl gear include the waters surrounding

to Farallon Islands/Fanny Shoal, Monterey Bay/Canyon, and

Catalina Island.

Bottom-trawl intensity
The bottom-trawl intensity data obtained from Whitmire [40]

only covered the northern region between 33uN and 45uN and

became fragmented below 37uN (Figure 9). The layer covers the

shelf, and is largely constrained to depths shallower than 1,000 m.

Much of this area is open for trawling, with EFH closures generally

being deeper, however, as the intensity data does not cover the

whole shelf, it is difficult to draw parallels between protection and

trawling activity. There are areas where trawling activity overlaps

with predicted suitable habitat (Figures 9 and 10), some areas are

enclosed within closed areas but the majority falls outside areas of

protection. Using the 0.75 logistic threshold-all-taxa model

provided a spatially constrained prediction that focuses on areas

with the highest predicted suitability. In the Northern region, and

Table 5. Cont.

Habitat suitability

0 1 2 3 4 Suitable (.0)

Calcaxonia 261,266 6,839 4,081 7,506 5,172 23,598 (8.3%)

Holaxonia 264,281 7,688 4,330 5,462 3,102 20,583 (7.2%)

Scleractinia 270,015 4,651 4,874 5,324 - 14,849 (5.2%)

Scleraxonia 269,606 5,991 2,933 4,470 1,863 15,257 (5.4%)

All Taxa –0.5 248,226 9,352 6,767 8,586 11,932 36,637 (12.9%)

All Taxa –0.75 278,384 2,705 1,391 1,177 1,206 6,480 (2.3%)

doi:10.1371/journal.pone.0093918.t005
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the Olympic Coast National Marine Sanctuary, there are several

areas with high trawling intensity and high suitability, the majority

of which falls outside of any designated area (Figure 9b). Within

the Central region there are again areas of high suitability that fall

outside of EFH areas such as adjacent to Heceta Bank, Brandon

High Spot and Rogue Canyon (Figure 9c and see Figure 8 for

locations of EFH areas). In the Southern region, Mendocino Ridge

captures an area of high suitability with no trawling intensity data

but further south adjacent to Delgada Canyon and Tolo Bank

there are large areas of suitability with moderate trawling intensity

(Figure 9d). Intersecting the trawling intensity grid with the habitat

suitability classes for the whole region shows that there are areas of

high suitability that are trawled at moderate levels compared to

lower suitability classes, but the level of trawling for habitat

suitability classes 1 and 4 are similar in contrast to 2 and 3,

indicating that it is possible that trawlers are focusing both on

areas that are not likely to contain corals (i.e. suitability values of 1)

and are also targeting areas that do contain corals (i.e. suitability

values of 4).

Substrate data
The substrate data showed that for the area available, 91% of

the shelf was described as probable soft sediment, 1% was

probable mixed hard and soft sediment and 8% was classified as

hard substrate (Figure 10a). To determine how much suitable

habitat fell within areas of each probable substrate type, the

modeled suitability layers for each taxa were spatially intersected

with each substrate class and the proportion of area enumerated.

By contrasting this, it was possible to provide an estimation of the

level of over-prediction within the habitat suitability models

(Figure 10 and Figure S7). In general, the majority of predicted

habitat was found to fall within areas of probable soft sediment for

all taxa (Table 6). However, for areas that were predicted as higher

suitability (.2 on the habitat suitability scale), the proportion of

predicted suitable habitat that fell within hard substrate area

Figure 8. Spatial distribution of predicted habitat suitability
and bottom trawl closures for areas designated Essential Fish
Habitat (stippled) and CCA-West closures (hatched areas). a)
Overview with 0.75 threshold suitability for all taxa, b) northern region
(Washington and Oregon) and prediction for Scleractinia, c) central
region (northern California) and prediction for Scleraxonia, d) southern
region (central and southern California) and prediction for Antipatharia.
Location abbreviations: O2: Olympic 2, B1: Biogenic 1, B2: Biogenic 2,
B3: Biogenic 3, GC: Grays Canyon, N: Nehalem Bank/Shale Pile, AC:
Astoria Canyon, TS: Thompson Seamount, S: Siletz Deepwater, DB: Daisy
Bank/Nelson Island, NR: Newport Rockpile/Stonewall Bank, HB: Heceta
Bank, CD: Deepwater off Coos Bay, BH: Brandon High Spot, RC: Rogue
Canyon, JS: President Jackson Seamount, ER: Eel River Canyon, BL:
Blunts Reef, MR: Mendocino Ridge, DC: Delgada Canyon, TB: Tolo Bank,
AN: Pt. Arena North, AS: Pt. Arena South, CB: Cordell Bank Biogenic
Area, FI: Farallon Islands/Fanny Shaol, HM: Half Moon Bay, MB: Monterey
Bay/Canyon, PS: Point Sur Deep, BS: Big Sur Coast/Port San Luis, DS:
Davidson Seamount, ES: East San Lucia Bank, PC: Point Conception, RR:
Richardson Rock, JR: Judith Rock, HP: Harris Point, CP: Carrington Point,
SP: South Point, SK: Skunk Point, S: Scorpion, PA: Painted Cave, AI:
Anacopa Island, F: Footprint, HR: Hidden Reef/Kidney Bank, CI: Catalina
Island, CC: Cowcod Conservation East Area, SB: Santa Barbara, CH:
Cherry Bank, PO: Potato Bank, GI: Gull Island.
doi:10.1371/journal.pone.0093918.g008

Figure 9. Fishing effort data overlain with predicted habitat
from the 0.75 threshold all taxa model. a) Overview with fishing
intensity grid, frames indicate location of panels b, c and d. b) Northern
region, c) Central region and d) Southern region. Bold black areas in
panel b, c, d indicate the locations of National Marine Sanctuaries, the
hatched areas indicate locations of CCA-West closures and the stippled
areas indicate Essential Fish Habitat closures. The upper legend (0–4)
shows habitat suitability, higher is more suitable. The lower scale shows
fishing intensity (km per km2).
doi:10.1371/journal.pone.0093918.g009
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generally increased, indicating a link between the variables used in

the model, the taxa niche and where hard substrate was found.

Discussion

This study is the first attempt to model the potential distribution

of deep-sea coral habitat for the U.S. West Coast EEZ. The

approaches presented here are a significant improvement over

previous regional efforts such as those in the North East Atlantic

[3] and Canadian Shelf [1,2]. In recent studies there have been

significant advancements in parallel with the data presented in this

study, especially with respects to identifying usable datasets for

regional-scale habitat suitability modelling in the deep-ocean [12–

14]. However, there still remain several limitations that must be

considered when interpreting broad-scale model results.

Unincorporated model variables and model accuracy
There are several variables that are important for coral

settlement, growth and survival that were not included in the

model because they do not exist at sufficient resolutions, a problem

shared with all habitat suitability efforts [43]. These variables

include benthic hard substrata, high-resolution current direction/

velocity, and the distribution of mobile or benthic sediments.

Many corals require hard substrata for colonisation and like depth;

substrate tends to be highly variable over small spatial scales.

Model results presented here will overpredict the amount of

suitable habitat in some areas because fine-scale and moderate

scale bathymetric features (109s of metres to 300 metres), substrate,

and current data are not available. It is likely that model results

indicate suitable coral habitat in areas that are known soft bottom

regions with high sediment loadings where corals are likely or

known to be absent, as indicated by 91% of the shelf being classed

as probable soft sediment [41]. By contrasting the amount of

available hard substrate and the predicted suitability for many

taxa, the level of over-prediction can be estimated (Table 6). For

example, of the area of habitat predicted as unsuitable (habitat

suitability of 0) for Alcyoniina, 6.8% fell in areas classed as

probable hard substrate. This increased as habitat suitability

increased to the highest value (4), where 14.2% of area fell in areas

classed as probable hard and mixed substrate. This shows that the

model for this species may overpredict in approximately 85.8% of

the area, assuming that the hard substrate layer is accurate and

that the distribution of this taxa is entirely dependent upon hard

substrate that can be mapped at a 25 m625 m resolution.

Data on the distribution of sediments is unfortunately scarce for

much of the world’s seafloor, a fact that urgently needs to be

addressed by mapping programs around the world. In this study,

the IOOS Surficial Geologic Habitat maps for the Washington

and Oregon continental shelves (Version 2.2) were initially

explored to determine whether or not this information could be

used in the habitat suitability models to refine taxon niches but

these data were not suitable due to incomplete coverage of the

study area. The National Marine Fisheries Service produced a

composite substrate dataset as part of their 5-year Essential Fish

Habitat Review for the West Coast [42]. This dataset aggregated

many sources into a standardised classification (hard, mixed and

soft substrate) layer at 25 m625 m resolution, but covered only

the shallower parts of the shelf limiting its utility in this modelling

effort. In addition, the layer was also provided with a confidence

layer that stated low confidence for most of the area, with only

shallower water having medium or high confidence in the

probable substrate type. This layer was used to constrain the

output of the habitat suitability models for each taxa to produce a

focused dataset that highlights areas where the habitat is suitable

for coral and areas of probable hard substrate overlap (Figure 10

and Figure S7).

Model results for all taxa combined undoubtedly overpredict as

the suborders and orders modeled separately occupy different

niches, depth ranges, and caution should be exercised when using

all taxa combined model results. However, we introduced a

constrained model by increasing the threshold to the 0.75 logistic

suitability for all taxa, producing a model that was far more

focused on areas of very high suitability. Assessment of model

accuracy will be dependent on field operations to validate model

predictions. In addition to several unincorporated datasets, the

extent, quality, and availability of environmental, chemical and

physical data are continually improving and should be incorpo-

rated in an iterative process with field surveys to refine predictions

and reduce the number of false positives and negatives in habitat

suitability models.

Presence records
The limited number of coral presence records used to model

habitat distribution for some coral taxa highlights the need for

more targeted sampling to document coral locations. For example,

very few presence localities for Suborders Filifera and Stolonifera

were obtained and preliminary models suffered from significant

overprediction and artificially high AUC scores. Low presence

numbers could be due to coral rarity among these taxa and/or

undersampling. The lack of coral records for these suborders

resulted in the omission of these models from the analysis. Several

recent studies have investigated the effectiveness and reliability of

habitat suitability models constructed with low numbers of

Figure 10. Habitat suitability only in areas with probable hard
substrate. a) The distribution of probable hard substrate in red, b) the
0.75 threshold all taxa model, c) the Holaxonia model and d) the
Alcyoniina model. The scale bar shows the habitat suitability (0–4, with
4 being high).
doi:10.1371/journal.pone.0093918.g010

Predicting U.S. West Coast Deep-Sea Coral Habitats

PLOS ONE | www.plosone.org 15 April 2014 | Volume 9 | Issue 4 | e93918



presences, a common problem for difficult to detect species (i.e.

deep-sea corals) and those that have had limited systematic survey

effort such as records from museum collections [44]. This does not

preclude the possibility of modelling species distributions with low

sample numbers, as Maxent is capable of producing acceptable

models with relatively limited numbers of presences [37].

However, Maxent does appear to overpredict suitable habitat

when using small presence datasets compared with other methods

[37,45]. In addition, grouping coral records at the order and

suborder level undoubtedly combines coral taxa (family, genus,

species) with different environmental niches. This is a recognised

limitation of the approach, but one that is necessary due to

taxonomic uncertainty and total number of coral records

available.

Model validation and targeting areas for field operations
Field validation of modeled habitat is needed to 1) Assess the

accuracy of model predictions. 2) Refine models by identifying

false positives and negatives. 3) Gauge the utility of these modelling

methods for identifying deep-sea coral habitat in unsurveyed areas.

The predicted habitat suitability results presented here are not

meant to identify coral occurrences with pin point accuracy and

are unlikely to achieve this based on currently available data. They

are more useful for directing research effort to areas that have the

highest probability of supporting deep-sea corals and identifying

low probability areas that could be avoided to maximise time spent

in high probability areas. Broad-scale predictive habitat results

should be used in conjunction with multibeam surveys, geologic

substrate maps and other tools to determine the most likely areas

for harboring deep-sea corals. One additional complication for

field validation efforts using these predictions is the current

technological limitation of survey vehicles and equipment (i.e.

Table 6. Proportion of predicted habitat (higher values indicate more suitable) in relation to different substrate type for each taxa.

Habitat suitability

Sediment type 0 1 2 3 4

Alcyoniina

Hard 6.8% 7.5% 10.4% 12.2% 13.9%

Mixed 1.2% 1.4% 1.0% 0.6% 0.3%

Soft 91.9% 91.1% 88.6% 87.1% 85.7%

Antipatharia

Hard 6.6% 16.7% 25.8% 33.3% -

Mixed 1.2% 1.5% 0.2% 0% -

Soft 92.2% 81.8% 74.1% 66.7% -

Calcaxonia

Hard 6.7% 7.9% 8.6% 12.3% 22.8%

Mixed 1.1% 1.6% 1.5% 0.8% 0.4%

Soft 92.1% 90.5% 89.9% 86.9% 76.8%

Holaxonia

Hard 7.5% 6.5% 9.4% 13.1% 12.3%

Mixed 0.5% 4.3% 2.4% 4.1% 1.0%

Soft 92.0% 89.2% 88.2% 82.8% 86.7%

Scleractinia

Hard 8.1% 5.9% 6.2% 9.4% -

Mixed 0.7% 5.9% 2.7% 1.8% -

Soft 91.1% 88.2% 91.1% 88.7% -

Scleraxonia

Hard 7.2% 7.2% 9.5% 16.4% 26.3%

Mixed 1.1% 1.3% 0.8% 2.3% 0.1%

Soft 91.7% 91.5% 89.7% 81.3% 73.6%

All Taxa –0.5

Hard 7.0% 6.6% 8.8% 9.4% 12.9%

Mixed 0.7% 2.2% 2.2% 2.7% 1.3%

Soft 92.4% 91.2% 89.0% 87.9% 85.8%

All Taxa –0.75

Hard 7.3% 17.1% 20.1% 22.7% 15.4%

Mixed 1.1% 2.4% 2.1% 2.1% 0.6%

Soft 91.6% 80.5% 77.9% 75.2% 84.1%

doi:10.1371/journal.pone.0093918.t006
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ROVs, submersibles, drop cameras, etc.). The distribution of

deep-sea corals within a single grid cell of these models

(500 m6500 m) could be patchy [46] and could be missed on

vehicle transects with limited range and narrow fields of view. To

address this limitation and to improve the probability of locating

undiscovered coral areas, research ships should first use multibeam

surveys (in high probability areas) to identify substrate character-

istics that can support deep-sea coral growth or identify corals (e.g.

emergent hard substrata, coral rubble) and then move towards

visual detection methodologies.

Assessment of closures and trawl intensity
Predictive models have been used to assess the suitability of

existing protected areas in several areas including the North East

Atlantic [14] and South Pacific [47]. Our findings are broadly

similar, showing that the boundaries of U.S. National Marine

Sanctuaries contained suitable habitat for corals above the average

proportions of predicted suitable habitat throughout the entire

study area (Table 5). Significant areas of highly suitable deep-sea

coral habitat were modeled both within and outside existing NMS,

EFH, and CCA-West closure boundaries. However, the majority

of suitable habitat for Suborder Holaxonia and Order Scleractinia

was predicted in areas outside of existing area closure boundaries.

We also, however, identified numerous areas where areas of

suitable habitat, from the most constrained model (75th percentile)

fell outside of current protection initiatives. This was particularly

evident in the EEZ waters off of Washington and Oregon.

Overlaying the spatially limited trawling intensity layer from

Whitmire [40] revealed that the majority of intense trawling was

outside of current closed areas (Figure 11), as expected, but many

areas did not have intensity data available. In previous studies,

data from vessel monitoring systems have shown that vessels will

enter closed areas occasionally and that vessel behaviour may be

linked to the establishment of a closed area [48]. There were

several high suitability areas that had a higher trawling intensity

than other areas (Figure 11), implying that there may be some

overlap in areas that are being fished and that contain suitable

habitat for corals. Trawling has been shown to be highly damaging

to corals, especially reef-forming scleractinans [49]. Emergent

epifauna including octocorals will be adversely affected particu-

larly in areas with repeated, high intensity trawling [50].

Conclusion
The U.S. West Coast has been relatively well researched with

respect to the distribution of deep-sea coral species when

compared to other regions of the world’s oceans. However,

significant spatial bias in sampling effort exists in the region and

future field research efforts should be directed to unsampled areas

to improve habitat predictions. Target areas for future field

operations should include high probability areas identified in this

study in regions of the U.S. West Coast EEZ that have not been

visited. Predictive habitat model results are the only data available

for areas that have not been sampled and should be used in in

conjunction with other tools, data (i.e. geologic maps, multibeam

bathymetry, etc.), and field surveys (where available) to help

managers identify potential coral areas that remain at risk from

human activity.

Supporting Information

Figure S1 Predicted suitability for the area of the
Olympic Coast National Marine Sanctuary, a) Alcyo-
niina, b) Antipatharia, c) Calcaxonia, d) Holaxonia, e)
Scleractinia, f) Scleraxonia, g) all taxa (50% threshold),
h) all taxa (75% threshold).

(TIF)

Figure S2 Predicted suitability for the area of the
Cordell Bank, Gulf of the Farallones, and Monterey
Bay National Marine Sanctuaries, a) Alcyoniina, b)
Antipatharia, c) Calcaxonia, d) Holaxonia, e) Scleracti-
nia, f) Scleraxonia, g) all taxa (50% threshold), h) all taxa
(75% threshold).

(TIF)

Figure S3 Predicted suitability for the area of the
Channel Islands National Marine Sanctuary, a) Alcyo-
niina, b) Antipatharia, c) Calcaxonia, d) Holaxonia, e)
Scleractinia, f) Scleraxonia, g) all taxa (50% threshold),
h) all taxa (75% threshold).

(TIF)

Figure S4 Predicted habitat suitability in the Northern
Region with EFH area closures (stippled areas) and
CCA-West closures (hatched areas) for a) Alcyoniina, b)
Antipatharia, c) Calcaxonia, d) Holaxonia, e) Scleracti-
nia, f) Scleraxonia, g) all taxa (50% threshold), h) all taxa
(75% threshold). For abbreviations, see Figure 8 in the

manuscript.

(TIF)

Figure S5 Predicted habitat suitability in the Central
Region with EFH area closures (stippled areas) and
CCA-West closures (hatched areas) for a) Alcyoniina, b)
Antipatharia, c) Calcaxonia, d) Holaxonia, e) Scleracti-
nia, f) Scleraxonia, g) all taxa (50% threshold), h) all taxa

Figure 11. Heat plot of trawling intensity falling within habitat
suitability classes for the 0.75 threshold all taxa model. Darker
colours indicate higher cell counts compared to lighter, the plot shows
that trawling intensity is greatest in cells classified as suitable
unsuitable, however suitability classes 1 and 4 tend to have more
trawl activity compared to classes 2 and 3.
doi:10.1371/journal.pone.0093918.g011
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(75% threshold). For abbreviations, see Figure 8 in the

manuscript.

(TIF)

Figure S6 Predicted habitat suitability in the Southern
Region with EFH area closures (stippled areas) and
CCA-West closures (hatched areas) for a) Alcyoniina, b)
Antipatharia, c) Calcaxonia, d) Holaxonia, e) Scleracti-
nia, f) Scleraxonia, g) all taxa (50% threshold), h) all taxa
(75% threshold). For abbreviations, see Figure 8 in the

manuscript.

(TIF)

Figure S7 Predicted habitat suitability for areas iden-
tified as probable hard substrate for a) Alcyoniina, b)
Antipatharia, c) Calcaxonia, d) Holaxonia, e) Scleracti-
nia, f) Scleraxonia, g) all taxa (50% threshold), h) all taxa
(75% threshold).
(TIF)

File S1 Contains Tables S1–S10. Table S1: Correlation

matrix for 10000 randomly placed points within the model

domain. Table S2: Correlation matrix for points where the taxon

Alcyoniina was found (n = 791). Table S3: Correlation matrix for

points where the taxon Antipatharia was found (n = 128). Table

S4: Correlation matrix for points where the taxon Calcaxonia was

found (n = 413). Table S5: Correlation matrix for points where the

taxon Filifera was found (n = 11). Table S6: Correlation matrix for

points where the taxon Holaxonia was found (n = 308). Table S7:

Correlation matrix for points where the taxon Scleractinia was

found (n = 203). Table S8: Correlation matrix for points where the

taxon Scleraxonia was found (n = 277). Table S9: Correlation

matrix for points where the taxon Stolonifera was found (n = 30).

Table S10: Correlation matrix for points where the taxon all

species were found (n = 1059).

(DOCX)

File S2 Model outputs for each taxa as ArcGIS GeoTIFF
files with ArcGIS Map Documents and categorical layer
files.

(ZIP)
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