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Abstract

Models of character evolution often assume a single mode of evolutionary change, such as continuous, or discrete. Here I
provide an example in which a character exhibits both types of change. Hummingbirds in the genus Selasphorus produce
sound with fluttering tail-feathers during courtship. The ancestral character state within Selasphorus is production of sound
with an inner tail-feather, R2, in which the sound usually evolves gradually. Calliope and Allen’s Hummingbirds have evolved
autapomorphic acoustic mechanisms that involve feather-feather interactions. I develop a source-filter model of these
interactions. The ‘source’ comprises feather(s) that are both necessary and sufficient for sound production, and are
aerodynamically coupled to neighboring feathers, which act as filters. Filters are unnecessary or insufficient for sound
production, but may evolve to become sources. Allen’s Hummingbird has evolved to produce sound with two sources, one
with feather R3, another frequency-modulated sound with R4, and their interaction frequencies. Allen’s R2 retains the
ancestral character state, a ,1 kHz ‘‘ghost’’ fundamental frequency masked by R3, which is revealed when R3 is
experimentally removed. In the ancestor to Allen’s Hummingbird, the dominant frequency has ‘hopped’ to the second
harmonic without passing through intermediate frequencies. This demonstrates that although the fundamental frequency
of a communication sound may usually evolve gradually, occasional jumps from one character state to another can occur in
a discrete fashion. Accordingly, mapping acoustic characters on a phylogeny may produce misleading results if the physical
mechanism of production is not known.
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Introduction

Tonal sound is produced by acoustic systems via the excitation

of a resonance frequency of a structure, such as a guitar string,

vocal fold, the wing of a cricket or vane of a feather [1–4]. It is easy

to imagine how, over evolutionary time, a communication sound

might gradually change through small, gradual changes in the

resonant structure. For instance, a small increase in stiffness

slightly increases frequency, similar to the effect of tightening a

guitar string, and the acoustic frequency evolves gradually.

However, in addition to this gradualism hypothesis, there is

another possibility, in which sounds evolve in a ‘punctuated’

fashion. All resonant structures contain multiple resonance

frequencies (harmonics), and changes in excitation of the structure

can cause the dominance of one of these other frequencies rather

than the original. For example, that same guitar string has pinch

harmonics, which become dominant if the plucked guitar string is

pinched on a node. Over evolutionary time, the dominant

frequency of a sound could hop from one harmonic to another,

without passing through intermediate frequencies, a sort of

‘punctuated’ evolution [5] of an otherwise continuous character.

Kingston and Rossiter [6] called this ‘harmonic-hopping’ and

argued that this explained differences in echolocation frequency in

morphs of a horseshoe bat. Robillard et al. [5] demonstrated a

similar hop in the evolution of cricket stridulation, and showed

that the ancestral structural resonance frequency remained present

in the cricket wing, after the hop to a much higher acoustic

frequency. They termed this latent frequency a ‘ghost’ frequency,

as in ‘the ghost of phenotypes past’. Here, I provide another

example of both harmonic hopping and a ghost frequency, in the

course of exploring how two unique, autapomorphic mechanisms

of sound production arose in the tails of Selasphorus hummingbirds.

Determination of the mechanistic details of how a phenotypic

character is produced allows a nuanced description of how it

evolves, and in this case, allows rejection of simple models of

character evolution.

Many birds produce non-vocal sounds, termed ‘sonations’ when

intentionally produced during a display [7–10]. Perhaps the single

largest radiation of sonating birds are the ,38 species in the ‘bee’

hummingbird clade: males produce sounds with their tail-feathers

during high-speed courtship dive displays [11–13]. Each species

has unique tail morphology which it uses to produce unique
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sounds, suggesting this sexual character has rapidly diversified

under sexual selection.

As sound production is not the primary function of most bird

feathers, the relationship between feathers with seemingly

modified shape and the sounds they putatively produce is seldom

clear from morphology alone. Experimental evidence can clarify

the relationship(s). Experimental manipulation of live birds allows

tests of which feather is necessary for production of a particular

sound, while experiments that attempt to reproduce the sound,

such as eliciting sounds from feathers in a wind tunnel, establish

physical sufficiency and test the mechanism of sound production

[11,12,14–16]. Most experiments on how aeroelastic flutter of

feathers generates sound have, for simplicity, focused on how

single feathers generate sound [14,15,17,18].

Most birds that sonate by fluttering feathers have multiple

adjacent feathers with seemingly modified structure [19–21]. Wind

tunnel experiments demonstrate that aerodynamic interactions

between neighboring feathers can alter the sounds they produce,

because fluttering feathers in close proximity can act as

aerodynamically coupled oscillators [11,22]. I posit these feather-

feather interactions are widespread. This implies that a feather

with seemingly modified shape may play a role in sound

production through interactions with neighboring feathers, even

if experiments show that feather itself is unnecessary or insufficient

for sound production per se. Therefore, to incorporate possible

feather-feather interactions with the logic of experiments that test

necessity and sufficiency of individual feathers, I next organize the

types of feather-feather interactions demonstrated thus far under a

source-filter framework, cast explicitly in terms of necessity and

sufficiency. I then demonstrate that this source-filter model makes

predictions that can explain how novel mechanisms of sound

production have evolved within the hummingbird genus Selas-

phorus.

A source-filter model of feather-feather interactions
I define the sound source as the minimum set of feathers that is

both necessary and sufficient to produce quantifiable components of

the sound of interest. The simplest source is a single feather (or

feather part) that is a lynchpin for sound production (Table 1).

Alternately, two or more neighboring feathers together comprise

the sound source. If each is individually sufficient but unnecessary,

they are co-sources. Or, if individual feathers are neither necessary

nor sufficient to produce the sound, whereas they are in aggregate,

then they are an aggregate source. Examples of studies that have

demonstrated each of these types of sources (lynchpin, co-sources,

aggregate sources) are provided in Table 1.

I define filters as the adjacent feather(s) to which the source

feather(s) are aerodynamically coupled. I posit that essentially all

flight feathers are coupled to their immediate neighbors through

near-field interactions [11]. Due to this coupling, these neighbors

vibrate in forced response to the source, and therefore act as a

filter to sound and vibration of the source. While experiments

indicate these neighbors are unnecessary and insufficient to

produce the sound, and therefore by definition they are not a

source, they may nonetheless affect aspects of the sound that are

difficult to quantify. For example, a filter may modulate amplitude

by vibrating in sympathetic response to a neighboring source

feather, amplifying loudness. This mechanism was demonstrated

for the Anna’s Hummingbird R4, which is neither sufficient nor

necessary to produce quantifiable aspects of this species’ dive-

sound [12], and so is not a source, but in a wind tunnel, amplifies

the sound generated by R5 by ,12 dB [11]. This source-filter

model predicts types of filtering not previously demonstrated, such

as spectral filtering, in which a filter feather attenuates or amplifies

a portion of the frequency spectrum of the source.

In addition to source-filter interactions, this model also makes

predictions about coupled-source interactions. For example, if two

coupled sources vibrate at different frequencies, sideband (‘het-

erodyne’) interaction frequencies will result. Data showing this

occurs in Allen’s Hummingbird were briefly sketched in Clark

et al. [11]. During their courtship dive males produce a shrill

whining sound that includes frequencies f1 and f2 (Figure 1).

Frequency f1 has a ,1.9 kHz fundamental frequency with a stack

of 5 or more integer harmonics that shows little frequency

modulation through the dive. A fainter second frequency (f2) is

usually apparent. Early in the dive f2 is indistinguishable from the

5th harmonic of f1 at , 9 kHz, but in some dives, diverges from

this harmonic, descending to ,7 kHz as the male slows through

the bottom of the dive [23]. Hypothesized interaction frequencies

of f26f1 are present in good recordings (Figure 1A). If oscillators

vibrating at frequencies f1 and f2 are coupled, heterodyne

interaction frequencies of f26f1 appear, as previously observed

in bird syringes [24,25]. Here, I present the full set of experiments

supporting this conclusion.

I then show that, within the hummingbird genus Selasphorus,

both Allen’s Hummingbird and Calliope Hummingbird have

evolved complex, autapomorphic sound production mechanisms.

The source-filter model provides a hypothesis of how the novel,

autapomorphic sounds of the Calliope Hummingbird and Allen’s

Table 1. Examples of types of sound sources of feather-generated sounds.

Species Source, type Filter Evidence Citation

Anna’s Hummingbird (Calypte anna) R5 ‘lynchpin’ R4 R5 alone is necessary, sufficient
for sound

[11,12]

Costa’s Hummingbird (C. costae) R5 ‘lynchpin’ R4? R5 is necessary, sufficient for sound [13]

Black-chinned Hummingbird (Archilochus
alexandri)

R5 ‘lynchpin’ R4? R5 alone is necessary, sufficient for sound [16]

Calliope Hummingbird (Selasphorus calliope) R1, R2, R3, R4?, aggregate source R5? Individual feathers neither necessary,
sufficient, whereas R1-R3 are when
tested in aggregate

[22]

Red-billed Streamertail (Trochilus polytmus) P8, P9 co-sources P7?, P10? P8, P9 are individually sufficient
but not necessary

[38]

Common Snipe (Gallinago gallinago) Outer tail-feather, lynchpin None? Outer tail feather is necessary,
sufficient for winnowing sound

[17,39]

doi:10.1371/journal.pone.0093829.t001

Harmonic Hopping in Hummingbird Tail-Feathers

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e93829



Hummingbird have evolved. In particular, in the source-filter

paradigm proposed here, source and filter are not independent

(unlike the source-filter model of vocalizations [26]. Therefore, any

evolved change in a source feather will change its interactions with

neighboring filters. As a result, any selection on acoustic properties

of sounds produced by the source will also result on selection on

the filters to evolve in response, since the entire system is

presumably tuned. As the source feather induces flutter or

vibrations in its neighbors, it may be easy for a neighbor to evolve

from a filter to a component of the source, i.e. to attain necessity or

sufficiency.

Methods

Experiments on Allen’s Hummingbird
Field-work on Allen’s Hummingbirds was conducted under

collecting permits from the East Bay Regional Park District,

California State Parks, Cal Fish & Game (permit #SC-006598),

US Fish and Wildlife Service (permit MB087454-0), Patuxent Bird

Banding Lab (permit #23516), and approval from the UC

Berkeley Animal Care and Use Committee at UC Berkeley to R.

Dudley (#R282-0310). This research was conducted in the spirit

of the ethical use of wild birds in research [27], and caused

minimal suffering (plucking feathers causes only momentary pain,

and they regrew in approximately 5 weeks).

To determine the necessity of individual tail-feathers on the

production of sounds f1 and f2, I performed manipulations on wild

male Allen’s Hummingbirds, in a population of S. s. sasin breeding

at the ‘Albany Bulb’ portion of the Eastshore State Park, Albany,

CA in 2005-2009 (GPS: 37.890, 2122.317), and one male S. s.

sedentarius at the Santa Cruz Island Reserve (GPS: 33.997,2

119.725) in 2006. The technique was similar to the experiments in

Clark and Feo [12]: focal males were sound-recorded with a

shotgun microphone (Sennheiser ME67) and a 16-bit digital

recorder (Marantz PMD 670, sample rate: 48 kHz) as they

performed natural displays. These individuals were then captured,

banded, had one or more pairs of rectrices plucked (all

manipulations were bilaterally symmetrical), given a unique

marking (with white-out) on the top of the head to enable field

re-identification, and released. A fraction of the manipulated males

were then later relocated on their territories, and their display

sounds were recorded a second time, before the manipulated tail-

feathers regrew.

Correctly identifying post-manipulation birds was a challenge:

Males did not dive to mounts or caged birds, they were often

difficult to visually follow on their territory, they often displayed on

neighboring territories, and marked (i.e. manipulated) birds

sometimes switched territories. Mistaken attribution of a pre-

manipulation dive to the wrong individual will only rarely produce

misleading results because most individuals in a population are

competent. By contrast, attributing post-manipulation dives to the

correct bird was essential. If a given feather is a lynchpin, crucial to

production of a given sound, its experimental removal is predicted

to completely eliminate the bird’s ability to produce the sound.

Therefore, a single observation of a post-manipulation bird

producing a sound is sufficient to falsify the hypothesis that the

manipulated feather produced it, assuming the bird was correctly

identified. Therefore I did not use recordings in which my field

notes suggested reason to suspect misidentification.

At the beginning it was not clear whether the tail produced any

part of the sound, so a preliminary male had four rectrices (R2-R5)

plucked to determine whether the tail was responsible for any part

of the dive-sound. Based on the positive result, I then performed

15 experimental manipulations on 11 Allen’s hummingbirds. I first

removed pairs of rectrices from two males in order to better isolate

which part of the tail generated specific sounds. One male had

both R2 and R3 removed; and another, R4 and R5 removed.

Based on the result, the next 13 manipulations were each of one

rectrix, to test precisely which rectrices were necessary to produce

individual parts of the dive-sound. Four males were re-used due to

a limited number of suitable males; in each case the first

manipulation had no detectable effect on the dive-sound, and

the male re-grew tail feathers before the second manipulation.

Three of the four individual males that underwent multiple

Figure 1. Effects of removing tail-feathers on dive sound spectrograms of Allen’s Hummingbird. A: intact. B-E: after experimental
removal of R2 – R5. Labeled on the left are frequencies f1, and 2nd (2f1), 3rd (3f1), 4th (4f1), and 5th (5f1) harmonics of f1 (harmonics present in B and C
are not labeled). On the right is labeled f2, heterodyne interaction frequencies (f26f1). Recorded at 48 kHz, presented with a 1024-sample FFT
window. See text and Table 3 for more information.
doi:10.1371/journal.pone.0093829.g001
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experimental treatments first had R5 plucked, then weeks later, R4

plucked; the remaining male had R2 plucked followed later by R3.

Other Selasphorus and outgroups
Sound recordings of natural displays of Rufous Hummingbirds

(S. rufus) were obtained in Oregon in April 2009 (GPS: 45.73, 2

123.9). Display data for other outgroups were obtained from

studies listed in Table 2. No data on the display of the Glow-

throated Hummingbird (S. ardens) are available, but it appears to

fall within the Scintillant-Volcano clade (McGuire pers comm) and

its tail morphology is similar to its sister taxa [28] implying similar

character states.

Analyses
A molecular phylogeny of the bee hummingbirds was obtained

from McGuire et al. [29] and supplemented with additional taxa

(McGuire pers comm). Sound recordings were analyzed in Raven

1.3 (www.birds.cornell.edu/raven). Sound recordings associated

with this study have been deposited in the Museum of Vertebrate

Zoology (Accession #14752).

Results

Allen’s Hummingbird
Dive sound component f1 was produced nearly 100% of the

time in unmanipulated birds, while sound f2 was distinguishable in

36 of 46 pre-manipulated dives (Table 3). In some recordings f2

was not distinguishable from the 5th harmonic of f1, and f2 was

faint and tended to be absent in low-quality sound recordings. In

good sound recordings, additional faint, frequency-modulated

sounds were detected at frequencies f16f2 (Figure 1A). As these

sounds were even fainter than f2, they were present in fewer

recordings of pre-manipulated birds (24 out of 46 of dives;

Table 3).

Effects of experimental manipulation on dive-sounds of Allen’s

Hummingbird are presented in full in Table 3. The experimental

manipulations of wild male Allen’s Hummingbirds show that R5

was not necessary for any sound component, as removing R5 did

not eliminate production of frequencies f1, f2, or f26f1 (Figure 1B).

Removing R4 eliminated production of f2 and f16f2 (Figure 1C)

in all but one recording, and I posit the bird in this one recording

was misidentified (see methods) and so can be disregarded.

Removing only R3 completely eliminated production of sound f1

and f16f2, and a new, faint sound (the ghost frequency) with a

fundamental of ,1 kHz appeared in a few recordings (Figure 1D).

R2 was not necessary for any of the sounds, as removing only R2

did not eliminate production of either f1, f2, or f16f2 (Figure 1B),

although subjectively, it did seem that dive sound loudness was

reduced. To summarize, experimental manipulations of wild birds

showed that R3 is necessary to produce sound f1 and R4 to

produce sound f2, and both are necessary to produce the

hypothesized f16f2 interaction frequencies.

Wind tunnel experiments revealed that Allen’s R4 and R5 both

can produce sounds via a trailing vane mode of flutter (Fig. 2) that

are sufficient to produce sound f2. At an airspeed of 22.8 m s21,

R4 produced sound at 7.360.4 kHz (n = 8 feathers), and

frequency was lower at lower airspeeds, just as sound f2 decreases

over the course of the dive. Allen’s R3 fluttered via a tip mode at

1.9 kHz60.14 (n = 8 feather, 22.8 m s21) with little variation with

orientation/airspeed, sufficient for sound f1, while R2 fluttered via

a tip mode at , 1.0 kHz, also with little variation with airspeed

(Fig. 2).

The collective result of these wind tunnel experiments show that

Allen’s R5 and R4 are each sufficient to produce f2 of the dive-

sound, while R3 is sufficient to produce sound f1. R2 is sufficient

to produce the ,1 khz sound produced by birds missing R3

(Figure 1D). Finally, R4 and R3 in close proximity are sufficient to

produce the f26f1 heterodyne interaction frequencies [11]. The

combined lab and field experiments indicate that R4 and R3 alone

are the sources of sounds f2 and f1, respectively, as they are both

necessary and sufficient to produce them, including the f26f1

heterodyne frequencies. Regarding R5 and R2, the wind tunnel

experiments suggest they are sufficient to produce f1 and f2 of the

dive sound (R2 at its even harmonics only), but the field

experiments suggest they are not necessary, and therefore they

are filters.

Characters ancestral to Selasphorus
Multiple outgroups of the Selasphorus-Atthis clade dive and

produce sound with outer tail-feathers, suggest that diving and

producing sound with the tail is ancestral to the bee hummingbird

clade (Fig. 3). Within Selasphorus-Atthis, three clades (Rufous,

Broad-tailed, and the Scintillant-Volcano clade) all have the same

character states: R2 is the sound source, flutters with a

fundamental frequency ,1.0 kHz, and is emarginated (arrows in

Fig. 3A); Table 1. The tip mode of flutter of R2 incorporates both

transverse (bending) and torsional (twisting) components of

motion, which is depicted in Figure 4A as a figure-eight trajectory

of the feather’s tip. Its neighbors, R1 and R3, are hypothetical

filters. Given that three outgroups have these characters, the most

parsimonious reconstruction is these characters have evolved in

tandem on the branch leading to Selasphorus.

There are other plausible phylogenetic topologies apart from

the one presented in figure 3, such as Allen’s sister to Rufous

Table 2. Character states for Selasphorus hummingbirds.

Clade Tail-feather source mechanism reference

Calliope R1, R2, R3, R4, R5? Feathers flutter and hit each other,
producing buzzing sound

[22]

Allen’s R3, R4 R3 flutters via tip mode; R4 flutters
via trailing vane mode

This study

Rufous R2 R2 flutters via tip mode This study

Broad-tailed R2 R2 flutters via tip mode [40]

Scintillant - Volcano R2 R2 flutters via tip mode [41]

Atthis sp N/A Does not dive [42], Clark unpublished

Outgroups R5 and/or R4 R5 and/or R4 [12,16], Clark unpublished

doi:10.1371/journal.pone.0093829.t002
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[28,30] or Atthis inside Selasphorus [31]. The most parsimonious

ancestral character state is not different under these alternatives.

From these ancestral character states, Calliope and Allen’s have

each evolved their unique mechanisms of sound production. Each

appears to have involved separate processes that produce large

mechanistic differences, based on small, continuous changes in

feather shape.

Evolution of the Calliope Hummingbird’s sonation
Calliope Hummingbirds have two autapomorphic components

of their sound production mechanism: the feathers exhibit a

predominantly torsional mode of flutter [11,14], and all of the tail-

feathers together constitute the sound source, because the

mechanism appears to be that multiple neighboring tail-feathers

strike each other during each flutter cycle [22]. Given the data

presented above, and the source-filter model of feather-feather

interactions, the origin of each autapomorphic component has a

simple explanation. The ‘tip’ modes of flutter of Calliope tail-

feathers and the other Selasphorus lie on a continuum, with a purely

bending mode at one extreme, and a purely torsional mode at the

other (Figure 4). I hypothesize that small changes in feather shape

in the ancestor of Calliope shifted the mode of flutter along this

continuum towards torsion, resulting in the transition from the

‘tip’ modes of basal Selasphorus to the ‘torsional’ mode of S. calliope

(Figure 4A).

The transition from the ancestral character state of R2 as sole

source to the entire tail as a source is straightforward: as R2

evolved to a torsional mode of vibration, it began colliding with its

neighbors R1 and R3, incorporating them into the source

(Figure 4A). This process then may have repeated with R4

(Figure 4A); R4 and R5 do appear to be components of the source

[22], though details of the mechanism are not entirely clear, so the

presence of feather-feather collisions is inconclusive in the case of

R4 and unlikely for R5 (as inferred from the data in Table 1 of ref
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Figure 2. Fundamental frequency of Allen’s and Rufus tail
feathers as a function of airspeed. Gray bar indicates speed range
of 17 – 26 m s21, which corresponds to estimated dive speed for Allen’s
through during the dive [23]. These data show that both Allen’s
Hummingbird R5 and R4 are sufficient to produce sound f2, Allen’s R3 is
sufficient to produce sound f1, and Allen’s R2 is sufficient to produce
the ‘ghost frequency’ (Figure 1). Each feather, except S. sasin R5, was
held at a constant orientation. Mode of flutter and sound frequency of
some feathers varied as a function of orientation [14], which is why the
two S. sasin R4 (gray diamonds) produced different frequencies, and is
why the S. sasin R5 (gray squares) are not collinear (because feather
orientation varied). Data reproduced from [11].
doi:10.1371/journal.pone.0093829.g002
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22). The sound that is now produced by Calliope, the sputter, is the

result of physical collisions rather than flutter per se.

Evolution of the Allen’s Hummingbird’s sonation
The evolution of the dual-source (R3 and R4) mechanism of the

Allen’s Hummingbird involves two changes: a switch from an R2

source to an R3 source, and the origination of an R4 source

(Figs. 3, 4). The ancestral character state was an R2 source that

vibrated at ,1 kHz, with R3 hypothetically a filter of R2

(Figure 4). The switch to an R3 source involved changes in two

character states: R3 switched from filter to source, and the

frequency of vibration changed from R29s fundamental frequency

of ,1 kHz to an R3 fundamental of ,2 kHz (Figure 4B).

The gradualism hypothesis proposes a simple, intuitive, wrong

explanation for how this occurred. Under the gradualism

hypothesis, the change occurred because the fundamental

frequency of the combined vibration gradually increased from ,

1 kHz to ,2 kHz, as the source feather gradually changed from

R2 to R3. Therefore, the gradualism hypothesis specifically

predicts that R2’s fundamental frequency is now ,2 kHz, having

gradually increased along with the gradual changes in feather

shape that have taken place. This is unsupported. The wind tunnel

data show that R2 has maintained the ancestral character state of

a fundamental frequency of vibration of ,1 kHz (gray circles in

Figure 2), and manipulated Allen’s missing R3 produce a new

,1 kHz sound, presumably with an R2 that is free to flutter when

R3 is absent (Figure 1D). These results indicate that the ancestral

character state of an R2 with a ,1 kHz mode of flutter is still

present, latent, as a ghost frequency in male Allen’s Hummingbird.

Frequency of flutter of R2 cannot have gradually changed from

the ancestral character state, because it has not changed at all

(Figure 2). These data instead indicate that a new ,2 kHz mode of

vibration of R3 has evolved that now masks R2’s intrinsic 1 kHz

mode of vibration in Allen’s Hummingbird.

The proposed source-filter model suggests a simple explanation

of how this happened: R3 was initially a spectral filter of R2

(Figure 4C). Specifically, in Allen’s Hummingbird, R3 presently

vibrates at nearly 2 kHz plus integer multiples (4, 6, 8…), which

are the even harmonics of an R2 that vibrates at 1 kHz plus

integer multiples (2, 3, 4…). I propose this harmonic match is not

coincidental, but rather, occurs because R3 was initially a filter of

R2. As feather shapes changed, it evolved to become a spectral

filter of R2, responding more strongly to and amplifying the even

harmonics of R2 (Figure 4C). Feather shapes evolved further,

causing the source to shift from R2 to R3. As this shift occurred,

the even harmonics amplified by R3 persisted while the 1 kHz

fundamental and other odd harmonics diminished and disap-

peared (Figure 4C). At this point the former 2nd harmonic of R2

had become the new fundamental frequency of R3. Under this

hypothesis, the underlying changes in feather morphology were

gradual, as was the shift in sound source from R2 to R3, but the

fundamental frequency of vibration hopped from 1 kHz to 2 kHz

Figure 3. Evolution of tail morphology and dive sounds in Selasphorus. A. Phylogenetic reconstruction of emargination of R2 and which
feather(s) are the source, s, of the dive sound. Neighboring feathers, f, are hypothesized to be filters. Branch colors indicate which tail-feathers are
sound sources; dashed line indicates taxa that do not dive or produce any sound. R2 has an emarginated in shape (arrow) in the taxa in which it is a
source. Fundamental frequency (in kHz) indicated for terminal taxa. Feather drawings are to-scale; photos are not. B: Spectrograms of the dive sound
of male Selasphorus Hummingbirds (Hann, 1024-sample FFT window). Fundamental frequency of flutter indicated by ff and arrow. Vertical arrows
indicate pulses of sound produced by individual tail-spreads. Vocalizations (v) or wing trills (wt) are also produced during the dive. Photos courtesy
Anand Varma; Phylogeny from [29] and McGuire pers comm.
doi:10.1371/journal.pone.0093829.g003

Figure 4. Changes in sound production mechanism from hypothesized Selasphorus ancestor to Calliope Hummingbird and Allen’s
Hummingbird. Right half of the tail is shown. Sound sources labeled s, filters f, and rectrices 2 and 3 are R2 and R3 respectively. The changes are
represented in two steps, whereas the underlying trait evolution was likely continuous. C: proposed switch from a ,1 kHz dominant frequency
produced by R2 in the ancestor, to a ,2 kHz dominant frequency produced by R3 in Allen’s Hummingbird. Initially R2 is the source (top), then R3 acts
as a spectral filter, amplifying the even harmonics (middle), then R3 becomes the source and the odd harmonics (black arrows) are lost (bottom). The
result is the dominant frequency (d) ‘hops’ from 1 kHz to 2 kHz. See text and Figure 3 for more information.
doi:10.1371/journal.pone.0093829.g004
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without passing through intermediate frequencies, leaving R2 with

the ancestral character state of a ,1 kHz mode of vibration, now

masked by the presence of R3.

A similar process explains the origination of a second sound

source in R4, which early in the dive vibrates at the 5th harmonic

of R3 (and in some dives is not distinguishable from the 5th

harmonic). I hypothesize R4 was initially also a spectral filter,

responding to the 5th harmonic of R3 (or, the 10th harmonic of

R2), then changed in shape and became a source independent of

R3. The sound produced by R4 (f2) is also now frequency-

modulated by airspeed to a greater degree than R3 (Figure 2),

meaning that it can change in pitch to a greater degree over the

course of the dive. This causes it to match the 5th harmonic of R4

at some airspeeds but not others, resulting in the heterodyne

interaction frequencies observed (Figure 1).

Discussion

Phylogenetic reconstruction and a source-filter model of feather-

feather aerodynamic interactions together show how two hum-

mingbirds, the Calliope Hummingbird and Allen’s Hummingbird,

have each evolved unique mechanisms of sound production of

their tail-feathers. In each, the autapomorphic properties of the

sounds produced are the product of small changes in feather

morphology, which have lead to larger changes in feather-feather

interactions. The Calliope Hummingbird’s sound is acoustically

distinct from the sound produced by other Selasphorus humming-

birds, because its sound is now produced by collisions between

neighboring feathers rather than the ancestral character state of

flutter itself generating the sound. The Allen’s Hummingbird, in

turn, has switched which tail-feathers are sound sources, from an

ancestor that produced a single tone with the tail-feather R2, to

now produce two sounds, f1 and f2, with feathers R3 and R4

respectively. At some airspeeds the f2 and f1 are harmonically

unrelated, and heterodyne interaction frequencies (f26f1) appear,

showing that these neighboring feathers act as coupled oscillators

(Figure 1) [11].

Acoustic characters are sometimes mapped on a phylogeny

[25,32,33], as any other phenotypic character. The results shown

here (Figures 3, 4) suggest that fundamental frequency of an

acoustic signal should be mapped with caution. In Allen’s

Hummingbird, the ancestral character state of producing sound

with R2 at ,1 kHz has remained latent in the phenotype as a

‘‘ghost frequency’’, similar to the pattern demonstrated by

Robillard et al. [5] for cricket stridulation. The dominant

frequency of sound production has hopped to a harmonic without

passing through intermediate frequencies (Figure 4C), exhibiting

‘punctuated’ rather than gradual change on one branch, similar to

results previously shown for evolution of tonal sounds produced by

bat vocalizations and cricket stridulation [5,6]. Most or all acoustic

systems characterized by tones with significant harmonics are

driven by the excitation of a resonator, whether a feather, wing, or

vocal fold [1,4,34]. Therefore, the potential for harmonic-hopping

may be widespread in the evolution of acoustic systems of animals,

creating potential for punctuated as well as gradual evolution of

this type of acoustic character [5]. This does not imply that the

underlying morphological or genetic changes were punctuated;

rather, the fundamental or dominant frequency of an acoustic

signal is an emergent property, subject to nonlinearities (such as

thresholds) in the underlying mechanism of production. Simple

models of character evolution assume a single mode of evolution-

ary change, such as continuous or discrete, while threshold models

that combine the two are just being developed [35].

Clark et al. [11] demonstrated that fluttering feathers are

oscillators, and provided two empirical examples in which

fluttering feathers interact with each other, exhibiting the

dynamics of coupled oscillators. The coupling demonstrated was

aerodynamic (not structural), as the feathers did not touch during

the experiments, but is not yet precisely understood [11]. Here I

have extended these empirical results with a verbal source-filter

model that treats feathers as either sources, if they are both

necessary and sufficient to produce a particular sound, or filters, if

they are unnecessary or insufficient, but are nonetheless likely to

be coupled to a source feather. Due to aerodynamic coupling,

filters vibrate in forced response to sources, and evolve in shape in

response to evolved changes in the source. I propose both of these

features pre-adapt them to become sources.

The source-filter model proposed here provides a conceptual

framework for understanding how multiple feathers interact to

produce complex sounds. The wings and tails of birds are arrays of

feathers, meaning that feather-feather interactions between

neighbors are potentially widespread. As most birds that produce

sonations during flight have multiple adjacent modified feathers,

such as red cotingas [20]; twist-wings [21]; guans [36], Little

Bustard [37] or Crested Pigeon [19], feather-feather interactions

are likely important for the origin and filtering of nonvocal sounds

in many birds. This source-filter model therefore provides a

framework for further studies of the mechanism of sound

production by fluttering feathers.

There is an important distinction between my source-filter

model and the classic source-filter model of vocalizations [26]. In

my model, the source and filter are not partially independent as

they are in vocalizations; they are coupled. I do not know of any

evidence that birds have independent behavioral control over the

filter feather in the same way that a human controls phonation

through the independent actions of the larynx and mouth. As a

result, the filter simply acts as an intrinsic component of the

system, modifying the form of the produced sound. In this sense,

an alternative perspective to that presented here would be to

consider all feathers that could possibly play any role in the sound

production as a part of the source, even though experiments show

some individual feathers are not, on their own, necessary or

sufficient for sound production.

Finally, this raises the issue of what is meant by ‘‘for sound

production’’: sounds have several physical qualities, some of which

are easier to quantify than others, e.g. frequency is easier to

measure than loudness. From an experimental perspective, the

filter will usually be hypothetical, because, by definition, exper-

iments will demonstrate it is unnecessary and/or insufficient for

components of sound that are easy to quantify. Filters therefore

lack one of the lines of evidence necessary to assign causality. For

example, Allen’s missing R2 had a dive-sound with similar spectral

content to unmanipulated individuals (Figure 1E; Table 1), though

subjectively, the sound may have been quieter. The loudness of a

rapidly moving animal is difficult to quantify, due to uncertainty of

distance and a shifting (and presumably directional) sound field, so

I do not have the data to rigorously test for this possible loudness

difference. Therefore, the conservative conclusion is that R2 is not

necessary for the spectral content of the dive-sound. It is

hypothetically a filter, amplifying the sound of R3, as this

amplification mechanism has been demonstrated in wind tunnel

experiments [11]. Accordingly, there will always be more

uncertainty about the true role of a hypothesized filter, than there

will be about source feathers.

I suggest that two criteria are necessary to invoke the existence

of a filter: 1. the mechanism is physically plausible, for example it

has been empirically demonstrated; 2. The geometric arrangement
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of the feathers (or similar) makes coupling likely. For example, in

my arguments above, I have invoked filters under the logic that

neighboring flight feathers are coupled aerodynamically. The

nature of this aerodynamic coupling is not entirely clear—in the

wind tunnel, it is easy to elicit an aerodynamic responses in

feathers separated by a couple mm, and I occasionally elicited

responses at further distances of ,1 cm. These results came from

an experimental setup not well suited to carefully map the

proximity required to produce coupled-feather aerodynamic

interactions. It therefore remains unknown how such aerodynamic

interactions scale with size, i.e. how they may manifest in larger

birds.
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