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Abstract

The work addresses current knowledge gaps regarding causes for correlations between environmental and biomarker
measurements and explores the underappreciated role of variability in disaggregating exposure attributes that contribute
to biomarker levels. Our simulation-based study considers variability in environmental and food measurements, the relative
contribution of various exposure sources (indoors and food), and the biological half-life of a compound, on the resulting
correlations between biomarker and environmental measurements. For two hypothetical compounds whose half-lives are
on the order of days for one and years for the other, we generate synthetic daily environmental concentrations and food
exposures with different day-to-day and population variability as well as different amounts of home- and food-based
exposure. Assuming that the total intake results only from home-based exposure and food ingestion, we estimate time-
dependent biomarker concentrations using a one-compartment pharmacokinetic model. Box plots of modeled R2 values
indicate that although the R2 correlation between wipe and biological (e.g., serum) measurements is within the same range
for the two compounds, the relative contribution of the home exposure to the total exposure could differ by up to 20%,
thus providing the relative indication of their contribution to body burden. The novel method introduced in this paper
provides insights for evaluating scenarios or experiments where sample, exposure, and compound variability must be
weighed in order to interpret associations between exposure data.
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Introduction

Correlation coefficients between environmental and biomarker

measurements are widely used in environmental health assess-

ments and epidemiology to explain the exposure associations

between environmental media and human body burdens [1–4]. As

a result considerable attention and effort have been given to

interpretation of these coefficients [5–7]. However, there is limited

information available on how the variance in environmental

measurements, the relative contribution of exposure sources, and

the elimination half-life affect the reliability of the resulting

correlation coefficients. To address this information gap, we

conducted a simulation study for various exposure scenarios of

home-based exposure (e.g., inhalation, dermal uptake, non-dietary

dust ingestion) to explore the impacts of pathway-specific scales of

exposure variability on the resulting correlation coefficients

between environmental and biomarker measurements.

Biomonitoring data, including those from blood, urine, hair,

etc., have been used extensively to identify and quantify human

exposures to environmental and occupational contaminants [8,9].

However, because the measured levels in biologic samples result

from multiple sources, exposure routes, and environmental media,

the levels mostly fail to reveal how the exposures are linked to the

source or route of exposure [10]. Thus, comparison of biologic

samples with measurements from a single environmental medium

(e.g., dust or air) results in weak correlations and lacks statistically

significance. In addition, cross-sectional biological sample sets that

track a single marker have large population variability and do not

capture longitudinal (i.e. day-to-day) variability, especially for

compounds with relatively short biologic half-lives, which can be

on the order of days such as pesticides and phthalates. Therefore,

in the case where the day-to-day variability of biological sample

measurements is large, the use of biomarker samples with a low

number of biological measurements in epidemiologic studies as a

dependent variable can result in a misclassification of exposure as

well as questions of reliability [11].

For chemicals frequently found at higher levels in indoor

residential environments than in outdoor environments, it is

common to assume that major contributions to cumulative intake

are home-based exposure and/or food ingestion. This simplifica-

tion can be further justified because people generally spend more

than 70 percent of their time indoors [12,13]. Compounds with

significant indoor sources and long half-lives in the human body–

on the order of years for chemicals such as polybrominated
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diphenyl ethers (PBDEs)–have been found to have positive

associations between indoor dust or air concentrations and serum

concentrations in U.S. populations [4,14–17]. On the other hand,

extant research has not reported significant associations between

indoor samples and biomarkers for chemicals primarily associated

with food-based exposures, for example, bisphenol-A [18] and

perfluorinated compounds [19]. For chemicals with both home-

and food-based exposure pathways and short body half-lives (on

the order of days), as is the case for many pesticides, a significant

association between indoor samples and biomarkers is found less

frequently or relatively weak compared to PBDEs [1,20–23]. To

better interpret these types of findings, we provide here a

simulation study for various exposure scenarios to explore the

role of the chemical properties and exposure conditions that are

likely to give rise to a significant contribution from indoor

exposures. We then assess for these situations the magnitude and

variance of the associated correlation coefficients between

biomarker and indoor levels.

The objectives of this study are (1) to generate simulated

correlation coefficients between environmental measurements and

biomarkers with different contributions of home-based exposure to

total exposure and different day-to-day and population variability

of intake from both residential (home) environments and food, (2)

to interpret the contribution of home-based exposure to human

body burden for two hypothetical compounds whose half-lives are

on the order of days and years, and (3) to determine how the

pattern of variability in exposure attributes impacts the resulting

correlation coefficients linking biomarker levels to exposure media

concentrations.

Materials and Methods

2. 1. Overview
In this study, our first step is to synthetically generate daily

environmental concentrations and food exposure concentrations

based on variations of day-to-day intake from residential

environments and food as well as different relative contributions

of home-based and food-based exposure. As different chemicals

are likely to have different relative contributions from the home-

based and food-based exposure pathways, we conducted our

simulations across the full range of relative contributions between

the two pathways to address all plausible scenarios for various

compounds. We combine the simulated home-based exposures

associated with indoor environmental concentrations and food

concentrations, assuming that the total intake results only from

home-based exposure and food ingestion. From these inputs we

estimate time-dependent biomarker concentrations using a one-

compartment pharmacokinetic model. We then computed corre-

lation coefficients between simulated environmental and biomark-

er concentrations.

In order to facilitate numerous simulations, several simplifica-

tions are made regarding (1) a representative environmental

medium for home exposure, (2) a distribution of environmental

(inhalation/dermal) and food intake, and (3) sources of exposure.

First, we select chemical concentrations from indoor wipe samples

(Cwipe) as a way to represent home-based exposures that result

from all potential exposure routes, including inhalation, non-

dietary dust ingestion, and dermal uptake. From these wipe

concentrations, resulting home-based exposure (Ehome) can be

assumed to be linearly related to Cwipe and Ehome and Cwipe are

assumed for simplicity to be equal. In addition, we assume that a

contaminated food intake rate represents food exposures (Efood).

Second, we select Cwipe and Efood from log-normal distributions of

variability across both population and time [6]. Lastly, we assume

that the total intake accounting for biomonitoring data results

from Ehome and Efood, excluding any other exposure pathways.

Calculating the correlation coefficient between environmental

and biomarker measurements requires a number of steps. First, we

generate synthetic wipe concentrations for a subject’s home i on a

day 1 (Cwipe,i,1) and food exposure for a subject i on a day 1

(Efood,i,1). Second, we generate a wipe concentration for a subject’s

home i on a given day j (Cwipe,i,j) by correlating it with a wipe

sample on the previous day (Cwipe,i,j-1). We then apply this

approach for generating Cwipe,i,j to generate synthetic food

exposures for a subject i on a given day j (Efood,i,j). Third, we

vary the contribution of home exposure to total exposure (X1) to

generate a different contribution of home and food exposures,

based on the assumption that Ehome is linearly related and equal to

Cwipe. Fourth, we add Ehome,i,j and Efood,i,j for a total daily intake

rate for a subject i on a given day j. Fifth, time-dependent

biological concentrations are estimated using a one-compartment

pharmacokinetic model. Finally, we compute Pearson’s correlation

coefficients between wipe and biological (e.g., serum) concentra-

tions for our simulated population of 500 on each of 30 days.

2. 2. Monte Carlo Simulations
2.2.1. Simulated home and food exposures. We assumed

that wipe concentrations across the population are log-normally

distributed with mean (mwipe = 1.0 mg/g) and standard deviation

expressed as a coefficient of variation (CVwipe_pop = mwipe/swipe).

We used three different CVs–1.0, 2.0, and 4.0–in order to

generate synthetic wipe concentrations for a subject’s home i on a

day 1 (Cwipe,i,1). We estimated parameters (a, mean and b, standard

deviation) of the associated normal distribution, ln (Cwipe,i,1), by

the following method of moments [24].

bwipe pop~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log CVwipe pop

2z1
� �q

ð1Þ

awipe pop~log mwipe

� �
zbwipe pop

2 ð2Þ

where awipe_pop and bwipe_pop are the mean and standard deviation

of ln (Cwipe,i,1), respectively. We then used the following lognormal

inverse cumulative distribution function (cdf) to generate wipe

concentrations for 500 homes with a residential receptor

population for the first day of exposure.

Cwipe,i,1~F{1(p awipe pop,bwipe pop

�� ) ð3Þ

where Cwipe,i,1 is the wipe concentration selected with probability

of p from the inverse lognormal cdf with parameters awipe_pop and

bwipe_pop for a subject’s home i on a day 1. Since the wipe

concentration for a subject’s home i on a given day j (Cwipe,i,j) is

likely to be correlated to that on a previous day (Cwipe,i,j-1), we used

a log-Gaussian random walk to generate auto-correlated Cwipe,i,j.

In other words, we first generated random numbers that are log-

normally distributed using mean (m= 0) and standard deviation

(swipe_day = 1.0, 2.0, and 4.0). Then, we randomly multiplied 1 or

21 by the randomly generated numbers and computed cumula-

tive sums. This allows us to approximate the temporal autocor-

relation expected for the same house from day to day. In addition,

since wipe concentrations should be positive, they were scaled up

to assure positive values, maintaining the distribution of concen-

trations from random walk.

The method to generate ‘home’ and ‘food’ exposures is the

same, but the simulated numbers are different as we used a

Tracking Contributions of Exposure Sources to Human Body Burden
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random number generator for each exposure source. Thus, for

food exposures, Equations 1 through 3 are used to generate food

exposures for each simulated subject i on a given day j (Efood,i,j) by

replacing mwipe, swipe_day, and CVwipe_pop with mfood, sfood_day, and

CVfood_pop. Auto-correlated wipe concentrations and food expo-

sures are provided in Figure S1.

2. 2. 2. Biological concentrations. Because we assumed

that the biological levels result from different combinations of

average home exposure (Ehome) and food exposure (Efood), we

computed the relative Efood to Ehome ratio using the following

equation.

Efood~Ehome| X2=X1ð Þ~Ehome| 1{X1ð Þ=X1ð Þ ð4Þ

where X1 and X2 are the percent contribution of exposure from

home and food, respectively. Here, because we assumed that total

exposure (Etotal) is equal to the sum of Ehome and Efood, the sum of

X1 and X2 is 100%.

Using the different contributions to exposure from the home

(X1), we added Ehome,i,j and Efood,i,j to obtain a total daily intake

rate for a subject i on a given day j (Ii,j). Then, we used the one-

compartment pharmacokinetic model described in Equation 5 to

estimate time-dependent biological concentrations [3,25] using

serum as the representative biological medium.

Cserum,i,j~Cserum,i,j{1
:e{kz 1{e{k

� � f

k:V
Ii,j ð5Þ

where Cserum,i,j is the serum concentration of the compound for a

subject i at time j (mg/L), k is an excretion rate coefficient of the

compound (1/day), f is the fraction of the ingested compound

present in the blood after absorption across the gastrointestinal

tract and distribution throughout the body (unitless), V is the

volume of blood (L), and Ii,j is the intake rate of the compound for

a subject i at time j (mg/day), summed from Ehome,i,j and Efood,i,j.

In this model, the excretion rate coefficient k can be expressed

as ln(2)/t1/2 where t1/2 is the half-life of the compound in the

human body. We assumed that the fraction f is assumed to be 1 for

all compounds and the blood volume V is about 5 L for all subjects

[26]. This approach can be applied for urine concentrations and

can be adjusted as needed.

2. 3. Sensitivity Analysis
Identifying the most important sources of overall exposure

variability allows researchers to concentrate resources on obtaining

the most important exposure data [6]. Thus, we conducted a

sensitivity analysis to determine which sources of variability have

relatively more influence on the R2 value for a given home-exposure

contribution. Four types of exposure variability, swipe_day,

CVwipe_pop, sfood_day, and CVfood_pop, were considered in our

study. We computed the mean R2 for compounds with short and

long half-lives by varying one exposure variability (e.g., CVwipe_day)

from 0.2 to 4.0, but fixing other exposure variability at 1.0 and then

repeated this computation for other variability.

Results

3. 1. Correlation Coefficient and Home Exposure
Contribution

In this study, we applied various exposure scenarios to

investigate the relationship between R2 and a relative contribution

of home exposure to total exposure for compounds with different

biological half-lives. Figure 1 shows that the R2 between wipe and

serum concentrations increases with the increasing contribution of

home exposure. Overall, as the home contribution increases, the

gap between the median R2 for a long half-life compound (empty

box) and that for a short half-life compound (filled box) increases.

In addition, the median R2 is almost always larger for a compound

with a short biological half-life compared to a compound with a

long half-life when these compounds have the same average

exposure contribution from the home environment. This is

because biologic concentrations for the compound with a short

half-life are more sensitive to home exposure with large variance,

while concentrations for the compound with a long half-life

remain relatively stable due to the longer body retention of the

compound, which to a large extent buffers the variations. This

result also indicates that for compounds primarily associated with

food-based exposure, in other words, for those with little

contribution from home exposure (e.g., BPA and outdoor use

pesticides) [1,18,20–23], the R2 value becomes very small, as

expected. In addition, for compounds with a large fraction of

exposure resulting from indoor residential environments, such as

PBDEs, the median R2 at 90–100% of home contribution is

approximately 0.6 [4,14–17] as shown in Figure 1.

To look at the results in Figure 1 in a different point of view, we

plot the percent of home exposure contribution with different R2

values to reveal the relationship between the biological half-life of

the compound and the relative contribution of home exposure in

Figure 2. This figure illustrates that, although the R2 between wipe

and serum concentrations for two compounds with different half-

lives is within the same range, the relative contribution of home

exposure to total exposure differs by up to 20% between

compounds. For example, when the R2 values for two compounds

with different half-life values is between 0.3 and 0.4, the resulting

contribution from the home environment for the short half-life

compound is 20% smaller than that for the long half-life

compound.

In actual exposure situations, we expect the day-to-day

variability of wipe concentrations for semivolatile organic com-

pounds to be small, due to their strong persistence on surface

materials and dust [27]. In this study, we did not include the day-

to-day variability associated with the relationship between the

concentration in the home environment and the resulting

exposure. There are two basic models for relating home

concentrations to exposure. First, there are models that assume

that exposure is driven by direct surface contacts, which are likely

to have high day-to-day variability [28]. Second, there are models

that assume that air-to-skin trans-dermal uptake becomes more

significant than dermal uptake from surface contacts, and air-to-

skin transfer is likely to be less variable day to day [12,29]. These

model choices are important because R2 values will also be linked

to whether intake is primarily associated with air-to-skin trans-

dermal uptake or dermal uptake from surface contacts. Thus,

under the same conditions used in Figures 1 and 2, but with equal

contributions from home and food (X1 = X2 = 0.5), we also

investigated relative changes of R2 with different day-to-day

variability of wipe concentrations (i.e., swipe_day) with results

shown in Figure 3. The gap between the median R2 for a long

half-life compound (empty box) and a short half-life compound

(filled box) increases with increasing swipe_day. For all values of

swipe_day, the median R2 for a compound with a short half-life is

larger than that with a long half-life. This result indicates that day-

to-day variability of wipe concentrations determines not only the

magnitude of R2 for both compounds, but also the relative

magnitude of R2 between compounds.

Tracking Contributions of Exposure Sources to Human Body Burden
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Figure 1. R2 between wipe and serum concentrations with different contribution of home exposure for two compounds with 3 days
of half-life (filled) and 2.3 years of half-life (empty).
doi:10.1371/journal.pone.0093678.g001

Figure 2. Contribution of home exposure (%) to total exposure with different R2 for two compounds with 3 days of half-life (filled)
and 2.3 years of half-life (empty).
doi:10.1371/journal.pone.0093678.g002
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3. 2. Influential Source of Variability on Correlation
Coefficients

We determined the sensitivity of the mean R2 value to each of

the four different types of variability (i.e., swipe_day, CVwipe_pop,

sfood_day, and CVfood_pop) across a range of scales of variability

(e.g., CV = 0.2, 1.0, 2.0, and 4.0). Table 1 shows the mean R2 at a

specific variability for two compounds with different biological

half-lives (t1/2). In terms of changes in mean R2 between

compounds, a compound with a 2.3 year half-life is shown to be

less sensitive to day-to-day variability of food concentrations (i.e.,

sfood_day) than one with a 3 day half-life and both compounds

have similar sensitivity to day-to-day variability of wipe concen-

trations (i.e., swipe_day). In terms of changes in mean R2 within

compounds, R2 is most sensitive to day-to-day variability of wipe

concentrations for both compounds. In addition, the contributions

of population variability of wipe concentrations and food

exposures to changes in mean R2 are minimal.

3. 3. Implications/Limitations
Because some indoor contaminants are considered potential

threats to human health, many studies have applied significant

resources to examine the relationship between exposure to indoor

pollutants and adverse health effects. However, these studies are

potentially limited by the use of a single or a few environmental

and biological samples. The significant implications of this

situation are reflected in our results. Multi-day, multi-person

sample analyses are costly and labor-intensive. In addition, the

resulting R2 values from these studies are not interpreted or poorly

interpreted in terms of variability and contribution of exposure

sources and the biological half-life of a compound. In this regard,

the simulation study in this paper provides an important step

towards interpreting the relative contribution of home-based

exposure to human body burden for two compounds whose

biological half-lives are significantly different (days versus years).

Although these two compounds do not cover the full range of

chemical substances, bracketing half lives allows us to quantify the

Figure 3. R2 with different day-to-day variability of wipe concentrations for two compounds with 3 days of half-life (filled) and 2.3
years of half-life (empty).
doi:10.1371/journal.pone.0093678.g003

Table 1. Mean R2 at a specific variability for four types of variability (coefficient of variation (CV) or standard deviation (s)) for two
compounds with different half-lives (t1/2).

t1/2 = 3 days t1/2 = 2.3 years

s or CV 0.2 1.0 2.0 4.0 range 0.2 1.0 2.0 4.0 range

swipe_day 0.36 0.71 0.91 0.94 0.36–0.94 0.20 0.44 0.69 0.80 0.20–0.80

CVwipe_pop 0.72 0.71 0.72 0.75 0.71–0.75 0.45 0.44 0.45 0.50 0.44–0.50

sfood_day 0.84 0.71 0.44 0.13 0.13–0.84 0.52 0.44 0.30 0.07 0.07–0.52

CVfood_pop 0.71 0.71 0.73 0.68 0.68–0.73 0.43 0.44 0.47 0.42 0.42–0.47

doi:10.1371/journal.pone.0093678.t001
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significance of source, measurement, and exposure pattern

variability for disaggregating body burden. In particular, it shows

that exposure variability and different contributions of exposure

sources are more interconnected than commonly considered in

many experimental studies. The work also brings to attention the

need to understand the impact of a chemical half-life on the

relationship between environmental exposures and biomonitoring

data. The sensitivity of day-to-day variability of wipe concentra-

tions and food exposures on the resulting R2 values also points to

the importance of understanding variability and contribution of

exposure sources. Finally, future work includes computing the

relative number of samples needed for various levels of confidence

to disaggregate body burden for various types of compounds (half

lives), environments, and exposure pathways.

Despite the lack of experimental data, the simulated results

provide key insights on the role of the variability and contribution

of exposure sources and biological half-lives in quantifying a

relationship between indoor exposure and human body burden.

This approach will be useful for designing future exposure and

epidemiologic studies that includes indoor environmental samples

and biomonitoring data.

Supporting Information

Figure S1 Randomly selected example of auto-correlat-
ed wipe concentrations (top) and food exposures (bot-
tom) from log-Gaussian random walk.
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