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Abstract

Amphibians vary in their response to infection by the amphibian-killing chytrid fungus, Batrachochytrium dendrobatidis (Bd).
Highly susceptible species are the first to decline and/or disappear once Bd arrives at a site. These competent hosts likely
facilitate Bd proliferation because of ineffective innate and/or acquired immune defenses. We show that Atelopus zeteki, a
highly susceptible species that has undergone substantial population declines throughout its range, rapidly and
exponentially increases skin Bd infection intensity, achieving intensities that are several orders of magnitude greater than
most other species reported. We experimentally infected individuals that were never exposed to Bd (n = 5) or previously
exposed to an attenuated Bd strain (JEL427-P39; n = 3). Within seven days post-inoculation, the average Bd infection
intensity was 18,213 zoospores (SE: 9,010; range: 0 to 66,928). Both average Bd infection intensity and zoospore output (i.e.,
the number of zoospores released per minute by an infected individual) increased exponentially until time of death
(t50 = 7.018, p,0.001, t46 = 3.164, p = 0.001, respectively). Mean Bd infection intensity and zoospore output at death were
4,334,422 zoospores (SE: 1,236,431) and 23.55 zoospores per minute (SE: 22.78), respectively, with as many as 9,584,158
zoospores on a single individual. The daily percent increases in Bd infection intensity and zoospore output were 35.4% (SE:
0.05) and 13.1% (SE: 0.04), respectively. We also found that Bd infection intensity and zoospore output were positively
correlated (t43 = 3.926, p,0.001). All animals died between 22 and 33 days post-inoculation (mean: 28.88; SE: 1.58). Prior Bd
infection had no effect on survival, Bd infection intensity, or zoospore output. We conclude that A. zeteki, a highly
susceptible amphibian species, may be an acute supershedder. Our results can inform epidemiological models to estimate
Bd outbreak probability, especially as they relate to reintroduction programs.
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Introduction

Differences in amphibian susceptibility to Batrochochytrium

dendrobatidis (Bd) infection were evident since the pathogen was

first described [1,2]. Species-specific responses to infection range

from tolerant [3,4] or resistant [5] to highly susceptible [6,7],

suggesting that a subset of species can disproportionately affect

pathogen spread and disease transmission [8,9]. Yet, we know

relatively little about contact rates, infectivity, and zoospore output

of Bd’s amphibian hosts in either the field or laboratory.

Differences in species transmission rates can cause variations in

pathogen spread and dispersal in the wild [10–12]. One

illustration of the potential effects of variable inter-specific

interactions are superspreaders [8], individuals or species respon-

sible for a greater than average number of secondary infections

[8,12,13]. Superspreading occurs under two scenarios: (1) super-

contacters transmit more disease by making more contacts in the

population per individual, or (2) supershedders transmit more

disease per contact (reviewed by [14]). To date, the primary

evidence for superspreading stems from supercontacters (e.g., [15–

17]); but growing evidence shows that species vary consistently in

pathogen infection intensities (e.g., [18,19]), especially in the

amphibian-Bd system (e.g., [20,21]).

An amphibian’s Bd infection intensity likely determines its

infectivity (i.e., an individual’s ability to infect another individual)

and survival time [6,22,23]. A host’s Bd infection intensity

increases via reinfection by zoospores released onto the surface

of the skin or by infection from zoospores in the environment.

Quantifying host-specific Bd zoospore output, the number of

zoospores released per minute by an infected individual [4], is

critical to understanding differences in infectivity across species

and species-specific contributions to the environmental zoospore

pool.

Highly susceptible amphibian species typically die at high Bd

infection intensities (e.g., [7,22]), suggesting that highly susceptible

species may act as supershedders for a short period of time. In

several cases across Central America [24,25], Bd has caused the

decline and extirpation of harlequin frog (genus: Atelopus)

populations. Of the 113 Atelopus species, as many as 30 species

have been declared Extinct in the Wild [24], and according to the

IUCN, 80% of Atelopus species are Critically Endangered and 70%

have declining populations. Atelopus experience rapid widespread

population declines upon Bd site invasion, demonstrating high
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susceptibility. Here, we refer to Atelopus as a candidate acute

supershedder to better describe the phenomena of high suscep-

tibility and pathogen shedding.

Our goals in this study were to: (1) quantify Bd infection

intensity and zoospore output of Atelopus zeteki, (2) determine the

daily percent increase of Bd infection intensity and zoospore

output on A. zeteki, and (3) determine if prior Bd exposure affects

infection intensity and zoospore output. Our results are important

in understanding species and community responses to Bd invasion

and are relevant to future reintroduction programs.

Methods

Ethics statement
Our research strictly followed the guidelines of and was

approved by the University of Maryland Institute for Animal

Care and Use Committee (protocol #R-12-98) and the Maryland

Zoo in Baltimore Institutional Animal Care and Use Committee.

Experimental procedures
We obtained 13 captive-bred A. zeteki individuals, 15 months

post-metamorphosis, used in an earlier Bd experiment [26]. Ten

animals were uninfected controls, and three were previously

inoculated with JEL 427-P39 23 weeks before the start of our

experiment. During the course of the earlier experiment [26],

individuals were swabbed once every two weeks for 130 days. One

individual consistently tested Bd negative for the duration of that

experiment. The other two individuals tested Bd positive three and

four times, respectively. The last swabbing event was five weeks

before the start of our experiment where two of the three

individuals were mildly infected.

We matched individuals by weight into two groups of five. We

found no difference in weight between the infected and control

groups at the start of the experiment (p.0.05). The three

individuals previously exposed to Bd strain JEL 427-P39 were

assigned to the infected treatment. All individuals were sexed by

examination for eggs, ovaries, or testicles at time of death (12

female and 1 male). The single male had been placed in the

control treatment.

Animals were housed in plastic boxes filled with sphagnum

moss, a hide, and a water dish, in a laboratory maintained at 21–

22uC with a 12:12 light: dark photoperiod. We replaced all

housing materials every seven days, changed water dishes every

three days, fed frogs vitamin-dusted crickets or fruit flies (Drosophila

melanogaster) ad libitum every three days, and misted terraria daily.

We monitored individuals daily for clinical symptoms of Bd and

euthanized all individuals once they lost righting abilities by

applying Benzocaine 20% gel to the venter. All control individuals

were euthanized when the last infected individual was euthanized.

We inoculated individuals with Bd strain JEL 423, a member of

the hypervirulent BdGPL lineage, originally isolated from an

infected Hylomantis lemur during the epidemic at El Copé, Panama

in 2004 [27]. We grew Bd strain JEL 423 on 1% tryptone agar

plates for seven days, flooded plates with 1% trypone broth,

filtered the liquid to obtain a pure zoospore stock solution, and

diluted the pure stock solution with water to achieve the desired

concentration [26]. We individually inoculated the eight infected

treatment frogs with 30,000 Bd zoospores for 10 hours. The five

control individuals were exposed to a sham solution of water and

,1% tryptone broth, roughly the same amount that had been

used for the Bd treatment minus the zoospores, for the same

period.

We used a fresh pair of latex powder-free gloves when handling

each individual. We followed the swabbing protocol of Hyatt et al.

[28]. Immediately post-swabbing, we individually soaked each frog

in 50 mL of distilled water for 15 minutes and added 50 mL of

bovine serum albumen (BSA) to the water solution after removing

each frog [4]. We immediately filtered the solution using a 60 mL

sterile syringe and 0.45 mm filter for each sample. Filters were

plugged with syringe caps and stored in a 4uC refrigerator.

Swabbing individuals before soaking could reduce the number of

Bd zoospores estimated from the soak, thus our estimates are

minimum zoospore output estimates.

We swabbed and soaked all individuals starting on day seven

post-inoculation, thereafter every three to four days, and

immediately prior to euthanasia. We extracted DNA from samples

using PrepMan Ultra and analyzed samples using the standard

real-time quantitative polymerase chain reaction assay [28,29]. Bd

infection intensity was defined as the number of Bd genomic

equivalents detected on a single swab [7]. We categorized

individuals as Bd-positive when Bd infection intensity was greater

than or equal to one zoospore genomic equivalent [30].

We performed all statistical analyses in R [31]. We modeled the

change in Bd infection intensity (N) with respect to time (t) using

dN/dt = y0ert, where y0 is the initial infection intensity, r is the

daily rate of increase of infection intensity, and t is time in days.

We used the same equation to model the change in zoospore

output with respect to time. To calculate parameter estimates, we

fitted two linear mixed models with a first order autoregressive

correlation term to ln transformed response variables (i.e., Bd

infection intensity and zoospore output; package nlme, [32]). We

included prior infection history as an independent variable to

determine if prior Bd exposure affected either response variable.

We used AIC to compare model fit.

To determine if Bd infection intensity and zoospore output were

correlated, we used a generalized linear mixed model with a first

order autoregressive correlation term and a lognormal error

distribution. To determine if survival curves of frogs with different

infection histories differed, we used a logrank-test (package survival,

[33]).

Results

All frogs exposed to Bd lost righting abilities and were

euthanized within 33 days post-inoculation (Figure 1; 100%

mortality, mean: 28.88 days, SE: 1.58). All control animals tested

negative at all sampling events, and no control animal experienced

mortality during the course of the experiment.

At time of death, infected frogs had an average Bd infection

intensity of 4,334,422 zoospores (SE: 1,156,576; range = 520,436

to 9,584,158) and an average zoospore output of 23.55 zoospores

per minute (SE: 22.78; range = 0.00 to 172.61; Table 1).

Bd infection intensity and zoospore output increased exponen-

tially over time (t50 = 7.018, p,0.001; t46 = 3.164, p = 0.001,

respectively). Including prior exposure or higher order polynomi-

als did not improve model fit. The daily percent increase in Bd

infection intensity and zoospore output were 35.4% (SE: 0.05) and

13.1% (SE: 0.04), respectively. Bd infection intensity and zoospore

output were positively correlated (Figure 2; t43 = 3.926, p,0.001).

Prior Bd exposure did not affect Bd infection intensity or zoospore

output (t6 = 1.896, p = 0.106; t6 = 0.624, p = 0.555, respectively).

Survival rates also did not differ between naı̈ve and previously

exposed individuals (p.0.05).

Filtered water from frog soaks produced more false negatives

than skin swabs. Seventeen soaks tested negative, even though skin

swabs tested positive. Only three swabs tested negative during the

entire experiment. At time of death, three individual soaks tested

Bd negative, although swab infection intensity from the same

Atelopus zeteki Fungal Infection Intensity
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sampling period was extremely high (Table 1), suggesting either

zoospores were trapped in the filters or the PCR reaction was

inhibited.

Discussion

Exposing Atelopus zeteki to Bd strain JEL 423 produced

individuals with Bd infection intensities among the highest

reported for any species to date (Table 2). Individuals also had

high zoospore output, indicating A. zeteki were highly infectious

and may contribute disproportionately to the environmental Bd

zoospore pool. Other experimental infections [26,34] and field

studies [35] also show that Atelopus spp. develop high Bd infection

intensities, further suggesting that the genus Atelopus may be acute

supershedders.

Other Atelopus studies have shown similarly high Bd infection

intensities. Experimental infections of A. zeteki with other Bd strains

(another Panamanian isolate JEL408 and a Puerto Rican isolate

JEL427) showed Bd infection intensities ranging between 7.26104

and .106 zoospores at death (Table 2; [26,34]). Field studies also

show high infection intensities in other species of Atelopus. Lampo

et al. [35] reported the Bd infection intensity of a single dying

Atelous crucifer individual as high as 244,000 zoospores. We cannot

rule out Bd identity as the cause of variable high infection

intensities at death because Atelopus were exposed to different Bd

strains. Yet, the infection intensities in all lab and field studies were

very high and caused rapid mortality.

Although we used an unnaturally high inoculation dose in this

experiment, our results and conclusions are applicable to field

scenarios because they mimic late stage infections. Carey et al.

[22] showed that all individuals of Bufo [Anaxyrus] boreas died of

infection at the same Bd infection intensity, those receiving lower

doses only took longer to build infections and die. We used a high

inoculation dose to minimize the duration of the experiment.

Further studies are needed to document Bd infection intensities of

Atelopus in the field and to determine whether Atelopus drives disease

dynamics in other species.

Figure 1. Survival curves of Atelopus zeteki with (n = 3) and without (n = 5) prior Bd exposure (log-rank test: x2 = 0.7, p = 0.40).
doi:10.1371/journal.pone.0093356.g001

Table 1. Summary of Atelopus zeteki infection intensity (number of zoospores on skin swabs) and zoospore output (number of
zoospores released per minute) at death.

Prior exposure Total days survived post-inoculation Bd infection intensity at death Zoospore output at death

Naı̈ve 21 520,436 3.5

Naı̈ve 28 1,697,306 0.0

Naı̈ve 18 4,454,759 4.9

Naı̈ve 31 8,781,016 0.2

Naı̈ve 25 9,584,158 170.6

Previous 18 2,291,631 7.1

Previous 33 2,960,916 0.0

Previous 31 4,385,154 0.0

doi:10.1371/journal.pone.0093356.t001
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We not only found that Bd infection intensity in A. zeteki at time

of death was .106, but that A. zeteki had a high daily rate of

increase in Bd infection intensity and zoospore output. We are only

aware of a few studies that have quantified the daily rate of

increase in Bd infection intensity [22,36] or zoospore output [28].

Bufo [Anaxyrus] boreas had daily percent increases in Bd infection

intensity of 68% and produced individuals with .107 zoospores at

death (Table 2). Interestingly, Rana [Lithobates] muscosa/sierra had

daily percent increases in Bd infection intensity of only 8% and

infection intensities at death were approximately 104 zoospores

[36]. Meanwhile, Litoria caerulae had a daily rate of increase in

zoospore output of 15.43% (SE: 2.29; [28]), but we were unable to

compare the Bd infection intensity at death or mortality rate of this

species to others because it was not reported. Yet, the first three

species mentioned (A. zeteki, B. boreas, and R. muscosa/sierra) have

experienced mass mortality and widespread population declines

[6,7,24,25,37–39], suggesting that where infections build rapidly,

frogs die with higher burdens.

Our study also provides evidence that Bd pre-exposure is

insufficient to change the outcome of infection. This suggests that

either (1) A. zeteki can not mount an effective adaptive immune

response or (2) Bd possibly evades [40] and/or suppresses the

immune system [41–43]. For example, Fites et al. [43] showed that

Bd cells and supernatant impaired lymphocyte proliferation and

induced apoptosis. The three individuals that were inoculated with

JEL427-P39 may have persisted with mild infections during the

first experiment because of several mechanisms acting singly or in

concert: (1) their immune system was able to minimize infections,

(2) the attenuated strain did not reproduce well, or (3) the

inoculation was ineffective. We have no data to inform the first or

Figure 2. Relationship between Bd infection intensity and zoospore output. The solid black line corresponds to the linear regression fitted
to all points (t43 = 3.926, p,0.001). Bd infection intensity and zoospore output were positively correlated and not influenced by prior Bd exposure of
the amphibian.
doi:10.1371/journal.pone.0093356.g002

Table 2. Average Bd infection intensity of adult amphibians at death by several experimental studies.

Species Study Bd strain Average Bd infection intensity at death

Bufo boreas Carey et al. [22] JEL 275* 107 to 108

Atelopus zeteki Becker et al. [34] JEL 408* .106

Atelopus zeteki This study JEL 423* .106

Litoria booroolongensis Cashins et al. [47] Native* 104 to 105

Pseudacris regilla Reeder et al. [4] Unknown 2.26105

Atelopus zeteki Langhammer et al. [26] JEL 427-P9 1.26105

Atelopus zeteki Langhammer et al. [26] JEL 427-P39 7.26104

Rana sierrae Rosenblum et al. [48] Sierra Nevada-Bd* 5.66104

Rana muscosa Rosenblum et al. [48] Sierra Nevada-Bd* 2.26104

Rana muscosa/sierrae Stice and Briggs [36] LJR119* 5.16103

* indicates the Bd strain used occurs within the amphibian species native range.
doi:10.1371/journal.pone.0093356.t002
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second possibility, although the first possibility seems unlikely

given the eventual mortality of those individuals; and the third

possibility can be eliminated, given that all individuals, except one,

tested Bd positive during the experiment.

Ex situ captive assurance Atelopus colonies are used as

conservation tools to prevent extinction of the genus, with the

ultimate goal of returning individuals to their native habitats. Yet,

high Bd infection intensities and zoospore output of A. zeteki may

create challenges for reintroduction programs. Not only do Atelopus

experience high mortality rates when exposed to Bd, but there is

substantial cause for concern if Atelopus are acute supershedders.

To determine the feasibility of Atelopus reintroductions, future

studies should examine Bd infection intensity, zoospore output,

and immune function of Atelopus under different environmental

conditions (e.g., [44–46]). Understanding infectivity, duration of

infectiveness, and transmission heterogeneity among amphibian

species and populations will lead to a more comprehensive

understanding of factors leading to different disease outcomes

among populations following Bd invasion.
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