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Abstract

The past decade has seen a proliferation of new species of Miniopterus bats (family Miniopteridae) recognized from
Madagascar and the neighboring Comoros archipelago. The interspecific relationships of these taxa, their colonization
history, and the evolution of this presumed adaptive radiation have not been sufficiently explored. Using the mitochondrial
cytochrome-b gene, we present a phylogeny of the Malagasy members of this widespread Old World genus, based on 218
sequences, of which 82 are new and 136 derived from previous studies. Phylogenetic analyses recovered 18 clades, which
divide into five primary lineages: (1) M. griveaudi; (2) M. mahafaliensis, M. sororculus and X3; (3) M. majori, M. gleni and M.
griffithsi; (4) M. brachytragos; M. aelleniA, and M. aelleniB; and (5) M. manavi and M. petersoni recovered as sister species,
which were in turn linked to a group comprising M. egeri and five genetically distinct populations referred to herein as P3,
P4, P5, P6 and P7. Beast analysis indicated that the initial divergence within the Malagasy Miniopterus radiation took place
4.5 Myr; most species diverged between 4 and 2.5 Myr, and a secondary period was between 1.25 and 1 Myr. DNA K2P-
distances between recognized taxa ranged from 12.9% to 2.5% and intraspecific variation was less than 1.8%. Of the 18
identified clades, Latin binomials are only associated with 11, which indicates much greater differentiation than currently
recognized for Malagasy Miniopterus. These data are placed in a context of the dispersal history of this genus on the island
and patterns of ecological diversity.
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more classic taxonomic characters. As such, the results of these
studies provide the means to differentiate shared evolutionary
history versus convergence. The recent recognition of an endemic

Introduction

Madagascar is well known as a center of endemism for a wide

assortment of plant and animal taxa. This is directly associated
with the island’s considerable ecological and topographic diversity,
as well as isolation in deep geological time [1,2,3]. In contrast to
other areas of the Old World tropics, Madagascar’s distinctive
biota contains numerous endemic groups at higher taxonomic
levels, representing distinct radiations. In some cases, such as
certain reptiles [4], these endemic groups are best explained as
vicariant relicts originating before the break-up of Gondwana
some 165 million years ago [5,6]. However, much more common
are plant and animal groups that successfully colonized the island
by over-water dispersal in more recent geological time [7]. These
post-Gondwana-split colonizations occurred across multiple geo-
logical periods, resulting in levels of differentiation ranging from
endemic orders to genera [7-9].

Recent molecular research has provided considerable new
insight into these different evolutionary events, levels of taxonomic
diversity, and the complexity of various Malagasy radiations.
These studies have uncovered cryptic species belonging to
previously unrecognized taxa that are largely indiscernible using
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Malagasy bird family, the Bernieridae, is an excellent example. It
comprises 11 species that share no defining morphological
characters and formerly were placed in three different songbird
families [10,11]. Members of the endemic family Vangidae were
also previously placed in three separate songbird families [12,13].
Finally, although the island holds a considerable diversity of land
mammals, all existing groups (carnivorans, lemurs, rodents, and
tenrecs), which show extraordinary morphological variation, can
be explained by four colonization events [14]. Study of the extant
fauna has therefore shown that successful colonization of
Madagascar by land mammals has been rare and accompanied
by subsequent adaptive radiations. While several different
hypotheses have been presented to explain patterns of endemism
and micro-endemism in the island’s biota [2,3,15], recent research
has shown that a single model cannot explain the different patterns
observed in the living biota of the island.

In the present study, we explore the complex micro-radiation of
a widespread Old World group of bats, the family Miniopteridae.
While their wing structure is not designed for high speed, they are
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relatively strong flyers [16], attested by their capacity to colonize
offshore and oceanic islands. In a review of Madagascar’s
chiropteran fauna, Peterson et al. [17] reported four species from
the island: one endemic, two shared with the nearby Comoro
archipelago, and one in common with continental Africa. Less
than two decades later, largely based on insights from molecular
genetics and to a lesser extent morphology and bioacoustics, 11
species are recognized today from the island, all endemic with the
exception of two shared with the Comoros [18,19].

To date, systematic research on Malagasy Miniopterus has
concentrated on the delimitation of species. Little attention has
been given to the evolutionary relationships of the different taxa
relative to Madagascar or nearby islands and continental areas.
The purposes of this paper are to apply molecular phylogenetic
data to explore primarily the patterns of diversification of
members of this genus in Madagascar, within an ecological
context. Secondarily, to explore aspects of their colonization
history and patterns of dispersal.

Methods

Bat sampling and specimens examined

Specimens were captured from diverse areas and habitats for
this study, essentially covering the entire range of Miniopterus spp.
on Madagascar (Figure 1), using mist nets and harp traps most
often placed at cave entrances. This study was conducted in strict
accordance with the terms of research permits issued by national
authorities in Madagascar (Direction du Systéme des Aires
Protégées, Direction Générale de I'Environnement et des Foréts,
and Madagascar National Parks; and in the Union of the Comoros
(Centre National de Documentation et de Recherche Scientifique),
following the laws of these countries, and the associated research
permit numbers are listed in the acknowledgements. Seventy-five
animals were captured, manipulated and euthnanized in accor-
dance with guidelines accepted by these different national
authorities and the scientific community for the handling of wild
animals [20]. Voucher specimens are housed in the Field Museum
of Natural History (FMNH), Chicago, and the Université
d’Antananarivo, Département de Biologie Animale (UADBA),
Antananarivo.

The mitochondrial cytochrome-b (cyt-b: 1140 bp) has previously
been shown to be informative at the species level in the study of
miniopterine bats [21-24], which is our primary focus herein. The
dataset we have employed includes all recently published work on
Malagasy miniopterine species and incorporates new sequences
from specimens previously defined as M. manavi [17]. In total, 264
sequences have been employed herein, 75 acquired for this study
and 189 previously used in different taxonomic studies (Table S1).
The dataset also incorporates sequences from islands in the
Comoros, including Grande Comore and Anjouan [25]. Due to
the reliance on pre-existing published sequences to build a
complete taxonomy, the study was limited to the use of cyt-b
alone, specifically as a number of tissue samples amomgst the 264
samples are not available to the authors for sequencing nuclear or
microsatellite markers.

Cyt-b sequences of African, European, Asian and Australasian
Miniopterus spp. were also included from Genbank records (Table
S1). With no clear sister group to the genus Minwplerus or the
family Miniopteridae, we chose Mpyotis ricketti (EF530349) as the
outgroup. The use of outgroup sequences from other chiropteran
families did not alter the relationships between the Minwopterus spp.
[23,24,26,27] Analysis using M. ricketti as the outgroup resulted in
two fully supported (posterior probability 1.00) Munwpterus clades:
one consisting of Malagasy, African and European taxa and
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another consisting of Asian and Australasian taxa. For reasons
detailed below and to improve resolution, the Asian and
Australasian clade was then used as the outgroup for determining
relationships between the Malagasy, African and European taxa.

Molecular analysis

Production of the sequences was achieved using the same
methods described in previous studies on Malagasy Miniopterus
[27].

Sequences were assembled and aligned using Sequencher
version 4.6 (Gene Codes Corporation, Ann Arbor, MI). Analysis
using DNA strider [28] showed that sequences did not contain
msertions, deletions or stop codons. All new sequences were
deposited in GenBank (Accession numbers listed in Table S1). The
program jModeltest v2.1.4 [29,30] reported HKY + G as the
optimal nucleotide substitution model for the dataset according to
Hierarchical Likelihood Ratio tests, Aikake Information Criterion
and Bayesian Information Criterion. This model was applied to
the Bayesian and molecular clock analyses.

Bayesian analyses were conducted using MrBayes v3.2 [31]
under uniform priors. Four chains were run under MrBayes for
2,000,000 generations with a sampling frequency of 1,000. Burn-
in was set at 25% of initial trees. The deviation of split frequencies
was below 0.01 at the conclusion of the analysis. Maximum
likelihood analyses were run using RaXML Black Box workbench
[32,33], using the GTRGAMMA model. Bootstrap values were
estimated using 1000 pseudoreplicates.

Bayesian and ML analyses were initially run with the full dataset
in order to confirm fine-scale topology (Figure S1); however, due
to the influence of wide variations in sequence divergences on the
gamma distribution and increased branch length, these analyses
were repeated using only two to four sequences from each major
clade and with the removal of the highly divergent outgroup.
Mpyotis proved to be more than 24% divergent in cyt-b (Kimura 2-
parameter, K2P) [34] from AMiniopterus, significantly altering the
shape of the tree and resulting in difficulties in the estimation of
rate heterogeneity parameters. As a consequence, Mpyotis was
removed from the analysis in order to aid in the resolution of the
tree and to avoid the extensive branch length difficulties reported
by recent studies of the phenomenon [35,36]. The overall topology
was unaffected by the removal of the additional individuals and
the outgroup.

Molecular clock analyses were conducted using BEAST 1.7.4
[37,38], incorporating a Yule trec model under a uniform
speciation prior. A relaxed uncorrelated lognormal molecular
clock [39] was applied using a variable rate of 2.0% sequence
evolution per lineage per million years [40]. No further calibration
was possible due to the paucity of the fossil record with regard to
this group.

All posterior parameter distributions for analysis were checked
in Tracer v1.5 [41] for modality and effective sample size (ESS).

Genetic divergence between and within clades were computed
as pairwise Kimura 2-parameter distances (K2P) with the software
MEGA version 3.1 [42]. The K2P model was chosen to be
comparable with previous studies reporting taxonomic inferences
on miniopterid bat species based on genetic distances

[22,24,25,27 43].

Results

Complete or near complete cyt-b sequences (1100 to 1140 bp)
were obtained for most of the 82 samples sequenced in this study,
as well as some critical specimens used in previous taxonomic
studies. Exceptions to this were: (1) the paratype of Miniopterus
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Figure 1. Bioclimatic map of Madagascar with collection localities of all specimens sequenced in this study (see Table S1).
doi:10.1371/journal.pone.0092440.9001
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manavi (FMNH 5650), a museum skin collected in 1896, and from
which 220 bp were obtained; and (2) a tissue sample of FMNH
151718 from which only 710 bp were obtained. All available cyt-b
sequences, including pre-existing sequences sourced from Gen-
bank, are provided by region and taxon in Table 1. Full specimen
details, including Genbank references, are provided in Table S1.

The initial ML and Bayesian analyses recovered the 264
specimens of Malagasy Minioptserus included in this study, as 18
clades (Figure S1). The X3 clade is represented by a single
individual. The two to four most divergent haplotypes in each
clade were then used for more extensive Bayesian, BEAST and
ML analyses. The resulting ML and Bayesian phylogenetic trees
produced broadly similar tree topologies, which recovered the
reduced set of 54 of Malagasy Miniopterus included in this study as
18 clades (Figure 2). Each of these clades received 100% bootstrap
(ML) and 1.00 posterior probability (Bayesian) support.

Table 1. Number of cyt-b sequences by taxon and region
included in the present study; with one exception all belong
to the genus Miniopterus.
Region Species/clade Number of sequences
Madagascar M. sororculus 17

X3 1

M. mahataliensis 19

M. griveaudi 47

M. brachytragos 12

M. manavi 5

M. petersoni 1

P6 10

P7 2

P5 3

P4 5

P3 2

M. egeri 13

M. majori 38

M. griffithsi 6

M. gleni 28

M. aelleni A 15

M. aelleni B 24
Africa M. minor 9

M. fraterculus 10

M. natalensis 14

M. newtoni 4
Europe M. schreibersii 10
Australasia/Asia M. australis 1

M. macrocneme 1

M. oceanensis bassanii 1

M. oceanensis orianae 1

M. blepotis 1

M. fuliginosus 3

Myotis ricketti 1
Full details including Genbank numbers and literature references are included
in Table S1.
doi:10.1371/journal.pone.0092440.t001
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The 18 clades further clustered into five primary lineages. One
of these, M. griveaudi, encompassed a single species. The remaining
four sub-clades were comprised as follows: 1) the three taxa M.
gleni, M. griffithst and M. majori, supported with 0.94 posterior
probability; 2) the three taxa M. sororculus, X3 and M. mahafaliensis,
supported with 0.86 posterior probability; 3) the three taxa M.
aellemiA, M. aellewB and M. brachytragos with a lower support of
0.56; and 4) a sub-clade including M. petersoni, M. manav, M. egeri
and the genetically distinct populations referred to herein as P3,
P4, P5, P6 and P7, with an overall support of 1.00. Sister
relationships between 1) M. petersont and M. manavi; 2) M. aellentA
and M. aelleniB; 3) and M. sororculus and X3 were all supported
within their respective lineages at 1.00. The African taxa including
M. fraterculus and M. minor, as well as the Malagasy M. gleni/M.
griffithst/ M. majort lineage, formed a polytomy with M. natalensis, M.
newtont and the remainder of the Malagasy species. This is most
likely due to the effect of a rapid radiation combined with the fast
rate of evolution and fixation of the mitochondrial genome.

The Beast analysis (Figure 3) revealed that the initial divergence
within the Malagasy Miniopterus radiation took place at about 4.5
million years ago (Mya). This is, therefore, the minimum date
proposed for colonization of Madagascar by Miniopterus. Most of
the species level divergences are recorded from the period between
4 and 2 Mya. A second set of diversifications took place 1.25 to
0.75 Mya, although uncertainty around these estimates allows
some minor overlap between these two diversification periods.

Levels of DNA divergences between the recognized species of
Malagasy Miniopterus ranged from 12.9% to 2.5% Kimura 2-
parameter (K2P) (Table 1). Levels of within species variation were
less than 1.8% K2P.

Discussion

Origins of Malagasy Miniopterus

The DNA phylogenetic analyses recovered Malagasy and
African Miniopterus spp. as a monophyletic clade relative to Asian
and Australasian taxa (Figure 2). Although some Malagasy bird
species, which have similar capacity to bats for flight dispersal,
appear to have originated through colonization events {from Asia
and Australasia across the Indian Ocean [44,45], the cyt-b data of
the present study clearly supports an African origin for Malagasy
Muniopterus. With the recent taxonomic revision of Malagasy
members of the tribe Emballonurni [46], the only remaining bat
genus occurring on Madagascar that is demonstrably Asiatic in
origin is the large and strong-flying Preropus.

The available mtDNA data did not resolve conclusively whether
there were one or multiple colonization events from Africa into
Madagascar. The 18 clades identified among the Malagasy
Miniopterus clustered into five primary lineages, but these were
not recovered as a monophyletic assemblage, relative to African
taxa (Figures 2 and 3). The prevailing winds in the nearly 400 km
stretch of water separating Madagascar from Africa are westerly
since the early Cenozoic [47] and well before the evolution of
Miniopterus, indicating that colonizations in an easterly direction
(i.e. Africa to Madagascar) would be against the prevailing winds.
Under this scenario and based on extrapolation from a variety of
flying and terrestrial vertebrates [10-13,48], it is unlikely that the
five identified Malagasy lineages of Miniopterus would each
represent a separate colonization event.

Although the five primary lineages were not recovered as a
monophyletic group, two major assemblages were identifiable
among the Malagasy species: (1) M. gleni, M. griffithsi and M. majorz;
and (2) the remaining taxa. These two assemblages, referred to as
Y and Z (Figure 3), diverged approximately 4.5 Myr ago. They
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represent either two separate colonization events or a single event The BEAST analysis (Figure 3) also indicated that the five
that was followed by early divergence. Current data does not allow primary Malagasy lineages arose over a period of 3 to 4 Myr ago.
for the rejection of either of these hypotheses. There was a pulse of diversification in both assemblages Y and Z

around 2 to 3 Myr ago and a further one in assemblage Z within
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doi:10.1371/journal.pone.0092440.9003

the last million years. As Madagascar’s fossil record has a major during the inferred Pliocene-Pleistocene period of Miniopterus
gap from the Late Cretaceous to Late Quaternary, little is known diversification.
about the existing habitats and climatic regime on the island A caveat to the preceding discussion is that only a single

MtDNA gene (cyt-b) was analyzed in this study. Although this gene
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has proven highly useful in identifying cryptic taxonomic diversity
in Miniopterus [21-24] it is clear that further mtDNA augmented
with nuclear sequence data is required to better resolve the early
radiation and colonization history of the genus in Madagascar.
The clarification of the number of taxa as discussed further below
will set the framework for more detailed sequencing analyses.

Diversification of Malagasy Miniopterus

The various phylogenetic analyses (ML, Bayesian) all recovered
the same 18 clades (Figure 2) of Malagasy Minwpterus. Eleven of
these correspond directly with currently recognized species
[18,19,24,27,49-51]. The other seven clades may represent
additional species level diversity, but in certain cases other markers
will be needed to resolve relationships.

In terms of DNA distances, the lowest recorded level between
recognized sister species involved M. petersoni and M. manavi, where
DNA distances ranged from 2.5% to 3.3% across the different
haplotypes (Table 2). Distances between these two species and M.
egert ranged from 3.7% to 5.3%, while those involving comparisons
between M. majorr, M. glemi and M. gniffithst were higher still,
ranging from 7.3% to 8.7% (Table 2). These relationships provide
context for assessing the level of cyt-b differentiation recorded
between M. sororculus and taxon X3. Although recovered as sister
taxa, the two differed by a DNA distance of 7.2%, which is
consistent with species level differentiation. As currently under-
stood, M. sororculus is restricted to the central and southern portions
of the Central Highlands and the single known individual referred
to the X3 clade is from the foothills (810 m) of the central portion
of the Central Highlands (Table 3). These two clades are not
known to occur in sympatry and most likely represent an example
of allopatric speciation that occurred 2 Myr ago based on the
BEAST analysis (Figure 3). If this relationship is supported with
additional specimens and sequence data, a taxonomic diagnosis for
X3 will be required.

The M. aelleniA and M. aellemiB clades were less differentiated
with distances ranging from 3.1% to 3.6% across the different
haplotypes. Nevertheless, this is comparable to levels recorded
between closely related and morphologically distinct species such
as M. petersoni and M. manavi, as well as between these two species

Cryptic Radiation of Malagasy Bats

and M. egeri (Table 2). In this context, the two M. aelleni clades are
best treated as separate species. The type series of M. aelleni
includes individuals from the M. aelleniA clade [27]. Consequently,
a taxonomic diagnosis for M. aellemB is required. The M. aellemiA
clade includes individuals taken in dry deciduous forests, three of
the four being from Ankarana, while those in the M. aelleniB clade
are from humid forest formations, three being from Montagne
d’Ambre (Table 3). The sites of Ankarana and Montagne d’Ambre
are in close geographical proximity (about 40 km) and share
numerous faunistic elements [52].

The five taxa assigned to the P-group were genetically
differentiated at levels comparable to those separating M. manavi
and M. petersoni (Table 2). However, additional markers, specifi-
cally based on nuclear DNA, are needed to differentiate between a
single genetically variable taxon or several distinct species. It is
important to note that the clade assigned to M. manavi is based on
sequence data from a paratype of this species [24]. The most
closely related forms were P3, P4, and P7 with genetic distances
between them ranging from 2.5% to 3.3% (Table 2). Within each
taxon, haplotypes differed by 0.3% to 0.7%. Genetic distances
involving comparisons with P6 ranged from 3.2% to 5.3%, while
those involving P5 ranged from 2.7% to 5.1%. Within both P5 and
P6, haplotype variation did not exceed 1.6%. Distances between
M. egert and the various P taxa ranged from 2.9% to 6.9%.

The geographical distribution of the P clades provides further
mnsights into the patterns of taxonomic and genetic diversity,
although the following conclusions will need to be verified with
further field data. P3 is largely restricted to the central portions of
the Central Highlands, notably at Ambohitantely, where it shares
a day roost with members of the M. manavi, P7, M. aelle:B, and P5
clades. It also occurs at sites in the Northern Highlands [53],
specifically the Anjanaharibe-Sud and Marojejy Massifs. The form
P4 is restricted to a relatively well-defined region at the foot of the
Central Highlands (three individuals are from Midongy Sud and
the fourth individual is from Andringitra) and all taken between
800 and 875 m. The single known individual of the X3 clade was
also collected at Andringitra at 810 m. The form P5 shows a
relatively broad distribution, with two individuals taken at
Ambohitantely in the Central Highlands and at same day roost

Table 2. mtDNA distances between Malagasy taxa belonging to the genus Miniopterus based on Kimura distances [34].

Comparison within taxa Maximum distance %

majori 1.1
griffithsi 0.3
gleni 1.0
manavi 1.8
petersoni 1.1
egeri 1.7
P7 0.3
P6 1.6
P5 1.6
P4 0.4
P3 0.7
aelleniA 1.7
aelleniB 15
sororculus 0.5

Comparison between taxa Distance range %
majori vs griffithsi 7.6 - 85
majori vs gleni 83-87
griffithsi vs gleni 73-79
petersoni vs manavi 25-33
manavi-petersoni vs P complex 32-53
manavi-petersoni vs egeri 37-53
egeri vs P7 40-53
egeri vs P6 46 - 6.9
egeri vs P5 38-53
egeri vs P4 33-45
egeri vs P3 29 -41
within the P complex 25-69
aelleniA vs aelleniB 31-36
sororculus vs X3 7.2
doi:10.1371/journal.pone.0092440.t002
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site as M. manavi, M. aelleniB, P7 and P3, as well as at 50 m
elevation in the eastern lowlands. P7 also occurs in the Central
Highlands (Ambobhitantely) and Fanadana co-occurring with M.
manavi, P6 and M. majorz. The form P6 is widespread and includes
individuals from the central western site of Namoroka, the
northwestern offshore island of Nosy Be, and Fanandana.

The fact that each P clade was recovered as monophyletic,
combined with the levels of genetic divergences between clades,
and the co-occurrence at Ambohitantely and Fanandana of several
of the P3 to P7 clades, requires further comment. One
interpretation is that the P clades represent distinct but closely
related cryptic species. The previous identification of additional
species diversity in the M. manavi complex (e.g. M. petersont, M. egerr)
has been defined by both DNA and morphological evidence, such
as tragus shape [19,27,49]. An examination of the tragi of animals
from Ambohitantely belonging to clades P5 and P7 did not
disclose noticeable differences in tragus structure. It may be that
the P forms are incipient species and although genetic separation
has occurred, obvious morphological differences have not yet
evolved.

The P clade may comprise cases of incomplete lineage sorting of
the mitochondrial genome, introgression and hybridization of
closely related taxa or possibly a combination of these processes
[54,55]. The source taxon, however, is not clear from the available
data: none of the P haplotypes were associated with any named
species. Further analysis of this complex will require multiple
nuclear markers in order to resolve their taxonomic status and
relationship.

One further aspect that may have confounded our analyses of
genetic relationships in the manavi group, including M. petersoni, M.

PLOS ONE | www.plosone.org

Table 3. Summary of different size and life-history parameters of Malagasy (M) and Comorian (C) Miniopterus spp. [19,52].
Taxon Body Size Elevation (m) Distribution Habitat

sororculus MB 950-2200 CS mhf, oh, sbf

X3 SB 810 E Ihf

mahafaliensis SB 0-950 G S W ddf, oh, sbf

griveaudi (M) SB 0-600 N, W ddf

griveaudi (C) SB 0-900 Grande Comore, Anjouan Ihf, oh

majori MB 0-1550 GN, S Ihf, mhf, oh

griffithsi LB 25-110 S sbf

gleni LB 0-1200 E, N, WS ddf, Ihf, mhf, oh, sbf

brachytragos SB 0-600 E, N, W ddf, Ihf

aelleniA (M) SB 40-500 N, W ddf

aelleniA (C) SB 220-700 Anjouan Ihf

aelleniB SB 810-1340 N, C Ihf, mhf

manavi SB 900-1500 E C mhf, oh

petersoni MB 10-550 S, E Ihf, oh

egeri SB 0-550 N, E Ihf

P3 SB 810-1340 N, C Ihf, mhf

P4 SB 800-875 E Ihf

P5 SB 50-1340 E C Ihf, mhf

P6 SB 60-1425 W ddf, mhf, oh

P7 SB 1340-1425 C mhf, oh

Body size: based on mean forearm length (FA), and animals are designated as small-bodied (SB), medium-bodied (MB) and large-bodied (LB); Distribution: E = east, N =
north, W= west, S = south, C = central and for the Comoros the name of the island is presented; Habitat: Ihf = lowland humid forest, mhf = montane humid forest,
oh = open habitat (anthropogenic), ddf = dry deciduous forest, sbf = spiny bush forest.

doi:10.1371/journal.pone.0092440.t003

egert and the P group of clades, is that we used a mitochondrial
marker that is only transmitted by females [56]. Hence, our
evaluations here are only of the genetic relationships passed on by
females, which may not accurately reflect patterns of overall gene
flow. In bats, females tend to be notably more philopatric than
males [57] and the use of bi-parentally inherited genes might
provide further insight into the phylogenetic relationships of these
different clades. However, we come to the same question as above:
to which species do the P haplotypes align? Clearly, further
morphological, ecological and behavioral work is required to
understand better the taxonomic status of the five P taxa. At the
very least, they may represent a single cryptic species with high
levels of haplotype diversity to five currently unrecognized taxa
requiring formal description.

Colonization of the Comoros

It has been demonstrated that two species of Minwpterus are
shared between Madagascar and the Comoros [58,59] and include
M. griveaud: and M. aelleni [27]. Using mtDNA and microsatellites,
it was concluded that M. griveaudi colonized the Comoros from
Madagascar some 180 000 years ago [58]. Although this suggests a
similar colonization history for M. aelleni, DNA differentiation was
not compared between Malagasy and Comorian populations of
the latter because of low sample sizes [58].

Herein, our study reveals that individuals of M. aellen: from
Comoros are nested within the M. aelleniA clade (Figure 2). This
indicates a recent colonization of the Comoros from a member of
this apparent species complex. As the principal four islands of the
Comoros have never been connected to other landmasses,
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dispersal would have been over-water in a westerly direction and
following the prevailing winds.

Although M. griveaud: and M. aellemiA are not phylogenetically
closely related, they are similar in their habitats, distribution and
morphology (Table 3). Both taxa occur in dry deciduous forests in
Madagascar. The ability to colonize islands in these two taxa is
likely linked to similar ecological parameters. Interestingly, the
populations in the Comoros of both M. griveaudi and M. aelleniA
occur in lowland humid forest, the former also occurring in open
habitat (anthropogenic).

Patterns of ecological diversification and speciation

in Madagascar

All of the individuals in the P3 to P7 clades occur in the eastern
humid forests at high (Central Highlands) to low (Sahafina)
elevations (Table 3), with only a few exceptions: P6 includes two
individuals from the dry deciduous forest site of Namoroka and
one individual from the transitional dry deciduous/humid forest
Sambirano formation of Nosy Be. Thus, most of the genetic
diversity has been generated in the east. Based on the Beast
analysis for extant species, the differentiation of the Malagasy
Muniopterus radiation commenced about 4.5 Myr ago, with two
periods of cladogenesis: 4-2 Myr and 0.75-1.25 Myr. These are
periods for which little hard data exist for environmental
conditions on the island and an interpretation of the ecological
and evolutionary forces that gave rise to this differentiation is not
evident. However, given the high level of syntopic occurrence of
members of the P group, specifically at Ambohitantely and
Fanandana, it is possible that past fragmentation of populations
followed by range expansion are related, for example, to the cyclic
climate changes of the Late Pleistocene/Early Holocene [60,61],
particularly in more montane zones, such as the Central
Highlands, where Ambohitantely and Fandanana are found.

Using measures of species diversity of Miniopterus on Madagascar
and the Comoros, the number of recognized species has gone from
four in 1995 [17] to eleven currently recognized species [18,19].
When the current genetic data are analyzed together, there are
indications that, at least from the perspective of phylogenetic
species, something approaching 18 taxa occur on Madagascar.
Similar studies of continental African Miniopterus reveal that levels
of species richness are higher than current estimates would
indicate [62] and that, for example M. minor is paraphyletic
(Figures 2 and 3). We suspect the same pattern will be found in
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