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Abstract

Recent research has focused on the monitoring of global–scale online data for improved detection of epidemics, mood
patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other
important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making
global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key
nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-
articulated social network and show that a simple method can yield not just early detection, but advance warning of
contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly
choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full
Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the
use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the
method actually works better than expected due to network structure alone because highly central actors are both more
active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring
is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global–scale
networks.
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Introduction

Modern social, informational, and transactional platforms offer

a means for information to spread naturally (e.g, as in the case of

the ‘‘Arab Spring’’ [1]), and there is increasing interest in using

these systems to intentionally promote the spread of information

and behavior [2–5]. In addition, they also yield a brand-new and

large-scale global view of social interactions and dynamics of

formerly hidden phenomena [6]. Recent work has taken

advantage of such monitoring of global-scale online data for

improved detection of epidemics [7–10], mood patterns [11,12],

stock performance [13], political revolutions [14], box-office

revenues [15], consumer behavior [9,16] and many other

important phenomena. However, the advent of global monitoring

has recently heightened concerns about privacy [17], and

anonymization is often insufficient to guarantee it [18]. Thus,

future efforts to monitor global phenomena may be restricted to

analysis at a local scale [10,19] or to incomplete pictures of the

system. Moreover, the explosive growth of online data has made it

more and more difficult to perform a complete global analysis. As

a result, scholars are beginning to develop local methods that

sample small but relevant parts of the system [20,21].

Here, we elaborate the theoretical framework of [22] sampling

technique to take advantage of the local structure inherent in

large-scale online social networks, to allow monitoring of a

network without relying on a complete picture of the system; and

we use it to test an important hypothesis about non–biological

social contagion.

If a message is transmitted exogenously via broadcast, then all

individuals are equally likely to receive it, regardless of their
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position in the network. On the other hand, if a message is

transmitted endogenously from person to person to person via

contagion, then individuals at the center of a network are likely to

receive it sooner than randomly-chosen members of the popula-

tion because central individuals are a smaller number of steps

(degrees of separation) away from the average individual in the

network [22,23]. As a result, for contagious processes, we would

expect the S-shaped cumulative ‘‘epidemic curve’’ [24] to be

shifted to the left (forward in time) for centrally located individuals

compared to the population as a whole.

If so, then the careful collection of information from a sample of

central individuals within human social networks could be used to

detect contagious outbreaks before they happen in the population

at large [22]. We call this the sensor hypothesis. In fact, the very

discrepancy in the time to infection between central and

randomly-chosen individuals could serve as a means to distinguish

between exogenous and endogenous mechanisms, either ex post by

comparing their mean times of infection or in real time by looking

for the first day in which there is a significant divergence in their

cumulative incidences.

Results

Using 6 months of data from Twitter recorded in 2009 [25], we

analyze a network containing 40 million users around the world

who are connected by 1.5 billion directed relationships (‘‘follows’’).

Over six months, these users sent nearly half a billion messages

(‘‘tweets’’), of which 67 million contained a user-supplied topic

keyword called a ‘‘hashtag’’. These hashtags are prefixed by a

pound sign (#) and are used to denote unique people, events, or

ideas, making them useful for studying the spread of information

online [26–28].

To test the sensor hypothesis, we need a sample of individuals

with higher network centrality (the ‘‘sensor’’ group) to compare

with a sample of randomly chosen individuals (the ‘‘control’’

group). However, measuring centrality can be a computationally

expensive task in large-scale networks like Twitter (see SI).

Therefore, we use a simplified approach that first randomly

selects a set of users for the control group, and then randomly

chooses ‘‘friends’’ of members of this group to put in an equally-

sized sensor group. This procedure generates a sensor group with

higher degree centrality than the control group because of the

‘‘friendship paradox’’: high-degree individuals are more likely to

be connected to a randomly chosen person than low-degree

individuals [22,29]. In other words, ‘‘your friends have more

friends than you do’’ [30].

In Fig. 1a we demonstrate that the sensor group contains more

high degree individuals and fewer low degree individuals, and this

is true even if we remove duplicates from the sensor group

(duplicates occur when the same person is randomly chosen as a

friend by multiple individuals in the control group). However, this

difference between the sensor and control groups depends on what

fraction of the network is sampled. As the fraction increases, there

is increasing overlap between the two groups, reducing the

difference in their degree distributions (Fig. 1b). We derive closed

form equations that characterize the expected degree distribution

for both the sensor groups (with and without duplicates) and

control groups based on the fraction of nodes sampled and an

arbitrary known degree distribution for the network as a whole (see

SI ‘‘An Analytic Elaboration of the Friendship Paradox’’). Fig. 1c,d

show that these equations fit the data well for a random sample of

1.25% of all users (500,000 total) on Twitter, confirming our

expectation that the sensor group is more central than the control

group.

To test whether sensors can provide early warning of a

contagious message spreading through the network, suppose ta
i

denotes the time at which a sampled user i first mentions hashtag a
(i.e the infection time). We would expect ta

i to be smaller on

average for users belonging to a central sensor group S than for

those of a random control group C. If we denote

Dta~StTi[S{StTi[C for hashtag a, the sensor hypothesis is that

Dta
v0.

However, note that Dta depends on the size of the samples in

two ways. For small samples, the number of ‘‘infected’’ users (i.e.

users mentioning hashtag a) will be scarce, leading to large

statistical errors. On the other hand, for big samples, the degree

distribution of the control and sensor groups tend to overlap and

consequently Dta approaches 0. Therefore, it may be necessary to

find an optimal ‘‘Goldilocks’’ sample size that gives statistical

power while still preserving the high-centrality characteristic of the

sensor group. Fig. 2a shows results from a theoretical simulation of

an infection [31] spreading in a synthetic network (see SI ‘‘Sensor

Performance in a Simulated Infection Model’’) while Fig. 2b shows

an empirical analysis of widely used hashtags in our Twitter

database (see SI ‘‘Sensor Performance in Real Data’’). Both theory

and data suggest that there exists an optimal (and moderate)

sample size that may perform best for detecting large and

significant differences between the sensor and control group

resulting from contagious processes.

To analyze the performance of the sensor mechanism, we

collected five random control samples of 50,000 users and a

random set of their followees of the same size to use as sensors for

each one. Focusing on the 32 most widespread hashtags that

appear at least 10 times in each control sample, Fig. 2c shows that

Dta is negative (i.e., the sensor sample uses the hashtag prior to the

control sample) in all but two cases, with a mean for all hashtags of

7.1 days (SEM 1.1 days). In the SI ‘‘Using the Sensor Method with

a Small Set of Samples’’, we also show this distribution for a wider

range of hashtags, and these all show that Dta tends to be negative.

In other words, the sensor groups provide advance warning of the

usage of a wide variety of hashtags.

We also hypothesized that comparative monitoring of a sensor

group and a control group may help distinguish which hashtags

are spreading virally via a contagious process and which are

spreading via broadcast. We studied 24 hashtags (Fig. 3a) that

were ‘‘born’’ during our sample period (they first appeared at least

25 days after the start date of data collection) and then became

widely used (they were eventually used more than 20,000 times).

Notably, the users using these hashtags tended to be highly

connected and many were connected to a giant component, a sign

that the hashtags may have spread virally online from user to user

(see Fig. 3d and Fig. S11 to S14 in File S1 for more examples).

For each of these hashtag networks, we constructed a random

control sample of 5% its size and a similarly-sized sensor sample of

their followees to calculate Dta. We then repeated this process

1,000 times to generate a statistical distribution of these observed

lead times (as in Fig. 2c). The sensor group led the control group

(Dta
v0) 79.9% (SE 1.2%) of the time. However, note that there

was considerable variation in lead times, from 20 days to a few

hours or no advance warning.

An alternative explanation to the sensors lead time might be

that hashtags are more likely to be created by the most active users

such as the ones in the sensor group, and that, being more central,

they are in a better position to make them popular; or from the

opposite perspective, that sensors end up being more central

because they create content that end up trending. In other words,

that central actors select novel topics rather than being agents of

contagion. In order to evaluate this possibility, we calculated the

Using Friends as Sensors
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Figure 1. Twitter exhibits the ‘‘friendship paradox’’. a) Expected degree distributions for a 1.25% random sample of the Twitter network (black
line), friends of this randomly chosen group (red line), and the same friends group with duplicates removed (blue line); b) Larger samples of friends
show a smaller difference in degree distribution from the overall network (black = overall network, green = 25% sample, blue = 7.5% sample,
red = 1.25%); c) and d) Respectively, In-degree (follower) and out-degree (followee) distribution of a random sample of 500,000 users, 1.25% of
Twitters users (the ‘‘control’’ group, black line) and the theoretical (red line) and observed (blue line) in-degree and out-degree distributions of their
friends (the ‘‘sensor’’ group) with duplicates from the friends group removed.
doi:10.1371/journal.pone.0092413.g001

Figure 2. Friends as sensors yield early detection of the use of hashtags. a) Measures of lead times based on simulations of an infection
spreading through a network with infection probability l~0:1 and recovery probability c~0:01 on a Barabasi-Albert random network with tail
exponent bw3 show that a sensor group tends to provide earlier warning than a randomly-chosen control group in smaller samples, but decreasing
sampling variation in larger sample sizes means that the statistical likelihood of providing early warning is maximized in moderately-sized samples. b)
Observed results for hashtags on Twitter used by 1% of the individuals using a hashtag of each sample. c) Average lead time of first usage of each
hashtag in the sensor group vs. the control group for all hashtags used by at least 10 users in each of 5 random samples of 50,000 random users.
doi:10.1371/journal.pone.0092413.g002
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exposure rates of sensors and controls (i.e. the number of users

who used the hashtag after being exposed to it). The results (see SI

‘‘Using the Sensor Method with Hashtag Networks’’) show that

the exposure rate is significantly higher in the sensor group,

meaning that sensors are better transmitters in Twitter (they are

aware of whats happening in Twitter and transmit it very soon)

while controls seem to introduce more information in Twitter from

other sources (or to create it), rather than transmitting what they

are exposed to in Twitter. These findings therefore militate against

the selection idea in favor of the contagion hypothesis.

To see how the sensor method works for hashtags that are not

spreading virally, we generated a null distribution in which we

randomly shuffled the timestamp of each hashtag use within the

fully observed data, and then measured the resulting difference in

the sensor and control group samples, DRta. There is a positive

correlation between degree and number of tweets per day so,

having higher degrees on average than controls, sensors also tend

to tweet more often. Therefore, in the shuffling process sensors

actually have a greater chance of getting smaller times of infection

than controls because they have more tweets to be assigned a new

timestamp. By shuffling the timestamps of every tweet we are

measuring the lead time sensors would get not because of their

centrality in a viral process but because of their higher tweeting

rates. The difference, therefore, between this lead time and the

observed one corresponds to the viral component of the process.

Again, we repeated the procedure 1,000 times to generate a

statistical distribution (see SI ‘‘Using the Sensor Method with

Hashtag Networks’’). The results show that the observed

distribution of lead times falls outside the null distribution for

Figure 3. Signs of virality in hashtag usage. a) The average lead for the 24 most-used hashtags time across 1,000 trials of the sensor group (in
blue) vs. the same calculated lead time when all times of hashtag usage are randomly shuffled (in red). Vertical bars are SEM.; b) daily incidence and c)
cumulative daily incidence for the hashtag #openwebawards show a shift forward in the S-shaped epidemic curve and a burst in the sensor group
relative to the control group that could be used to predict the outbreak of this hashtag on the 13th day (the first day on which, using all available
information up to that day, there is a significant difference between the sensor and control groups with p-valuev0.05), 15 days before the control
group reaches the same cumulative incidence and before the estimated peak in daily incidence; d) greatest connected component of the follower
network of users using the #openwebawards hashtag shows that many users are connected in a large component.
doi:10.1371/journal.pone.0092413.g003

Using Friends as Sensors

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e92413



65.4% (SE 1.2%) of the hashtags, suggesting they did, in fact,

spread virally (Fig. 3a).

The hashtags also generally showed a shift forward in the daily

and cumulative incidence curves of the sensor group compared to

the control one (Fig. 3c,d). This shift forward, another sign of

virality in itself, could allow for identification of an outbreak in

advance, as the sensors deviation from the trajectory of the control

group identifies a process that is spreading through the network,

affecting central individuals faster than random ones. For example,

estimating the models each day using all available information up

to that day, for #openwebawards users, we find two consecutive

days of significant (pv0:05) lead time by the sensor group

compared to the control group on day 13, a full 15 days before the

estimated peak in daily incidence (see SI ‘‘Using the Sensor

Method with Hashtag Networks’’ and Fig. S11 to S14 in File S1),

and also 15 full days before the control sample reaches the same

incidence as the sensor group (See Fig. 3c).

One can also use fixed thresholds to trigger a ‘‘divergence

alarm’’ when the sensor group usage of a particular hashtag is

growing faster than the control group usage. We tested a variety of

these thresholds (see SI ‘‘Reproduction Rates of Hashtags as a

Factor Affecting Early Detection’’) and found that they consis-

tently provided advance warning of the hashtags that would be

most likely to yield high usage in future. In Fig. 4a, we show that

the false positive rate for these alarms (an alarm that was triggered

by a hashtag that would not be widely used) is low. In Fig. 4b, we

also show that the alarms can anticipate behavior outside Twitter

as well. A survey of several Google search terms that are closely

related to certain hashtags in our data shows that the peaks in

Twitter usage tend to precede or coincide with Google Trends

peaks, and thus increases in the Twitter sensor group and their

divergence with the control group provide early warning not only

on Twitter but on Google searches as well (see SI ‘‘Twitter,

Sensors in Twitter, and Google Trends’’ for several examples).

Finally, while the sensor mechanism allows us to identify a more

central group, in terms of degree–centrality, that can be used to

detect contagious outbreaks in advance, it may also allow us to

focus on users who have other characteristics that could improve

Figure 4. Early warnings of the sensor mechanism and differences between users in the sensor and control groups. a) The Twitter
sensor sample anticipates outbreaks in both Twitter hashtags and Google searches. The purple solid line shows a normalized measure of the number
of Google searches per day for ‘‘health care’’. The green dashed line shows the a normalized measure of the number of tweets using the hashtag
#healthcare per day. Thinner lines at the bottom show normalized daily incidence (DI) for the control (dotted red) and sensor (dashed blue) groups.
Thinner lines from the bottom left to the upper right show the empirical cumulative distribution (ECDF) of control (dotted red) and sensor (dashed
blue) groups. Vertical dotted lines show dates when an alarm was first triggered by a 2.5% divergence (orange) and 5% divergence (red) in the sensor
and control groups. b) An early warning alarm triggered by a 0.25% divergence in the sensor and control groups predicts overall usage with relatively
few false positives (see SI ‘‘Reproduction Rates of Hashtags as a Factor Affecting Early Detection’’ for details). c & d) Users in the sensor group (blue)
are more active (c) and also use a wider variety of hashtags (d) than those in the control group (red), even controlling for activity. These attributes
both contribute to early warning provided by the sensor groups structural position.
doi:10.1371/journal.pone.0092413.g004
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monitoring. First, in terms of network centrality, we have found

sensors to have also greater betweenness. Second, in terms of

activity, users in the sensor group may be more central because

they are more active on twitter, and indeed we find this to be true

too (Fig. 4c). On average, users in the sensor group sent 154 tweets

(SE 2.8) during the six months they were monitored, while users in

the control group tweeted only 55 times (SE 1.0, difference of

means t = 36, pv2:2e{16). However, we also find that sensor

users tend to use a greater variety of hashtags, even controlling for

activity levels (Fig. 4d) (see SI ‘‘Differences in Sensor and Control

Characteristics That Also Affect Propagation’’). In summary, the

sensor mechanism, while targeting users with higher degree

centrality, is able to identify users that are more central in many

ways.

The distribution of the number of users using any one hashtag is

heavy tailed (see SI ‘‘The Twitter Data’’) with most hashtags being

used by less than a few hundred people and very few reaching the

tens of thousands. Therefore, for most hashtags, the probability of

finding sufficient users to perform a significant analysis in a

random sample of Twitter is very small. Yet, despite the relatively

small size of the infected populations, the sensor mechanism we

test here seems to anticipate the global spread of information in a

wide variety of cases. And, importantly, it only requires a tiny

fraction of the network as a whole to be monitored, allowing us to

find a sample 6 times more connected than selecting the most

connected users of a sample 5 times larger (see SI ‘‘Friends vs.

Most Connected Nodes and Most Connected Friends as Sensors’’).

Discussion

We believe that this method could be applied in a wide variety

of contexts in which scholars, policy-makers, and companies are

attempting to use ‘‘big data’’ online to predict important

phenomena. For example, the sensor method could be used in

conjunction with online search to improve surveillance for

potential flu outbreaks [8,22]. By following the online behavior

of a group known to be central in a network (for example, based

on e-mail records which could be used to construct a friend sensor

group), Google or other companies that monitor flu-related search

terms might be able to get high-quality, real-time information

about a real-world epidemic with greater lead time, giving public

health officials even more time to plan a response. Similarly,

policy-makers could monitor global mood patterns [12] to

anticipate important changes in public sentiment that may

influence economic growth, elections, opposition movements, or

even political revolutions [14]. We also conjecture that investors

might use these methods to better predict movements in the stock

market [13].

Just as we find variation in lead time for different hashtags, we

expect that the ability of the sensor method to detect outbreaks

early, and how early it might do so, will depend on a number of

factors, including: the online context (e.g., whether twitter or some

other data environment); the intrinsic properties of the phenom-

enon that is spreading and how it is measured; the size or

composition of the population, including the overall prevalence of

susceptible or affected individuals; the number of people in the

sensor group; the topology of the network (for example, the degree

distribution and its variance, or other structural attributes) [23];

and other factors, such as whether the outbreak modifies the

structure of the network as it spreads (for example, by affecting the

tendency of any two individuals to remain connected after the

information is transmitted). Nevertheless, it seems clear that taking

advantage of the topological architecture of human populations

offers the prospect of detecting a wide variety of contagious

informational or behavioral outbreaks in advance of their striking

the general population.
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