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Abstract

Loss of consciousness in anesthetized healthy participants and in patients with unresponsive wakefulness syndrome (UWS)
is associated with substantial alterations of functional connectivity across large-scale brain networks. Yet, a prominent
distinction between the two cases is that after anesthesia, brain connectivity and consciousness are spontaneously restored,
whereas in patients with UWS this restoration fails to occur, but why? A possible explanation is that the self-organizing
capability of the brain is compromised in patients with UWS but not in healthy participants undergoing anesthesia.
According to the theory of self-organized criticality, many natural complex systems, including the brain, evolve
spontaneously to a critical state wherein system behaviors display spatial and/or temporal scale-invariant characteristics.
Here we tested the hypothesis that the scale-free property of brain network organization is in fact fundamentally different
between anesthetized healthy participants and UWS patients. We introduced a novel, computationally efficient approach to
determine anatomical-functional parcellation of the whole-brain network at increasingly finer spatial scales. We found that
in healthy participants, scale-free distributions of node size and node degree were present across wakefulness, propofol
sedation, and recovery, despite significant propofol-induced functional connectivity changes. In patients with UWS, the
scale-free distribution of node degree was absent, reflecting a fundamental difference between the two groups in adaptive
reconfiguration of functional interaction between network components. The maintenance of scale-invariance across
propofol sedation in healthy participants suggests the presence of persistent, on-going self-organizing processes to a
critical state – a capacity that is compromised in patients with UWS.
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Introduction

An essential feature of the healthy brain is that anesthetic-

induced loss of consciousness in general anesthesia is spontane-

ously and completely reversible after the withdrawal of the

anesthetic. Spontaneous restoration of consciousness is, however,

absent in patients with UWS (also known as persistent vegetative

state). During the past two decades, numerous neuroimaging

studies have been conducted to determine neural correlates of

unconsciousness in general anesthesia, coma, vegetative state,

sleep, and seizure, particularly focusing on the integrity and

reversibility of large-scale functional networks of the brain

[1,2,3,4,5,6]. Studies conducted in unconscious conditions of

different etiology generally showed common changes in regional

cerebral metabolic rate and in functional connectivity measured

by the temporal correlation of neurophysiological events between

spatially distinct brain regions [7,8,9]. Given the similarity of

functional alterations in various unconscious conditions, a critical

question is whether there is a further aspect of network

organization that allows the healthy brain to recover conscious-

ness, for example, after general anesthesia, but whose absence

impedes the recovery in severe neuropathological conditions, such

as UWS.

One possible explanation is that for the healthy brain, the

spontaneous restoration of consciousness after anesthesia is a

consequence of the self-organizing ability of neural networks,

which allows organization towards wakeful baseline consciousness

to occur without any predefined plans or external manipulation of

system parameters. Conversely, it is possible that this self-

organizing capability is compromised or absent in patients with

UWS. The purpose of this study was to examine differences in

network characteristics related to the self-organizing ability of the

brain in anesthetized healthy participants and in patients with

UWS.

A theoretical framework for explaining the emergence of

complexity and ubiquitous scaling laws in nature proposes that

complex systems often maintain a state of self-organized criticality

(SOC) [10,11], i.e., that they self-organize to operate near a critical

point of phase transitions. The theory was initially illustrated by a

sand-pile model. When a sand pile is flat, dropping sand to the

sand pile only cause local arrangement to occur, with no self-

organization and interesting dynamics. In contrast, when a sand
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pile is too steep, it will collapse by itself until the average slope

reaches a critical value where the system is minimally stable with

respect to small perturbations. A sand pile thus always tends to

evolve to and maintain a critical slope or a critical state. Dropping

sand to a sand pile in a critical state will cause reorganization of

sand to occur across all scales (or without a characteristic scale, i.e.,

scale invariance), which will ultimately evolve to a new critical

slope after equilibrium is reached. The central message of the

theory of SOC suggests that many types of natural complex

systems may approach a critical state through self-organization,

which naturally giving rise to power-law correlation functions for

noise and other observable physical quantities. By this framework,

the concepts of criticality, self-organization, and power-law (scale-

free or fractal) scaling characteristics of a complex system are

linked with each other [12]. Many real-world systems including

earthquakes, forest fires, mountain avalanches, and heartbeat

rhythms are now recognized to exhibit critical dynamics. Power-

law or scale-free scaling has been considered an empirical

signature of complex, non-equilibrium systems in a self-organized

critical state [11].

In neuroscience, it has been suggested living systems or the

working brain self-organize to operate near a critical point

[13,14,15]. A complex systems operating in a critical state is

optimal in performing various functions including system respon-

siveness, adaptability, information transfer and storage, etc. [16].

Although direct evidence of criticality in the brain is sparse, and

the set of general characteristics to guarantee that a system is in

SOC remains to be defined [12,13], the presence of scale-free

characteristics in space or time has been found across all levels of

nervous systems [13,14,17,18]. Neuronal avalanches recorded by

multielectrode array follow a scale-free distribution and suggest the

presence of critical dynamics in the brain [15,16,19,20,21,22],

although the issue is still under debate [23]. Phase synchronization

and liability of global synchronization of the resting-state whole-

brain functional network in healthy volunteers measured by

functional magnetic resonance imaging (fMRI) and magnetoen-

cephalography (MEG) demonstrate power-law scaling consistent

with predictions by computational models, such as the Ising model

and Kuramoto model [21]. In addition, large-scale brain network

architecture identified by MEG [21,24], electroencephalography

(EEG) [25], and fMRI [26,27,28] exhibit scale-free properties in

conscious healthy human subjects.

Given the connection between the ability of a complex system to

self-organize to a critical state and the manifestation of scale-free

properties, and the proposition that consciousness emerges from

brain function as a network phenomenon [8,9], here we test two

hypotheses: (1) scale-free brain network organization is present in

healthy awake humans and is preserved during anesthesia-induced

unconsciousness; (2) scale-free brain network organization is in

some way disrupted in patients with UWS. These hypotheses were

formulated based on the presumed relationship between the self-

organizing capability of the brain and spontaneous recovery of

consciousness as well as the known facts that healthy subjects are

able to regain consciousness after anesthesia but patients with

UWS fail to do so. To date, few studies have investigated potential

alterations in scale-free properties of brain network organization

during loss of consciousness in healthy or pathological brain

conditions. Using multichannel EEG data, Lee et al. found that

global scale-free organization of the brain was maintained across

different states of consciousness modulated by the anesthetic

propofol [29]. Achard et al. investigated using resting-state fMRI

the functional connectivity characteristics of brain network

organization in 17 comatose patients who were scanned a few

days after major acute brain injury [30]. They reported that global

topological properties were similar in comatous patients compared

to healthy controls, but major network hubs were significantly

reorganized in the patients. In addition, the node-degree (number

of links per network node, usually above a threshold) distribution

exhibited an exponentially truncated power law in both patients

and healthy controls. However, the population was relatively

mixed, as five patients were diagnosed with UWS six months later,

while another three patients recovered and nine patients died.

Thus, it is not clear from the pooled results and delayed diagnosis

if in patients with UWS, scale-free node-degree distribution was

present or not.

Detection of scale-free properties in brain network organization

seems to be affected by the way network nodes are defined. At

voxel resolution, a handful of fMRI studies revealed scale-free

organization as indicated by power-law-distributed node degree in

healthy awake humans [27,28,31]. Other fMRI studies that used

anatomical parcellation of brain regions (e.g., 90 nodes) found

instead an exponentially truncated power-law node-degree distri-

bution [26,32]. It is possible that coarse-grained anatomical

parcellation may ignore distinct functional nodes contained within

each of the individual anatomical structures. In contrast, the voxel-

based approach may result in too many redundant network nodes

that have a nearly identical hemodynamic response profile on

fMRI.

In this study, we introduce a new combined anatomical-

functional parcellation algorithm that identifies distinct functional

nodes within each of the individual anatomical structures defined

by a standard template in the Talairach space [33]. Specifically,

we define network nodes as clusters of voxels that share a similar

blood-oxygen-level-dependent (BOLD) time series profile in one

run but are spatially confined by the boundaries of an individual

anatomical structure. This clustering process was first performed

separately with each of the 116 standard anatomical structures

[33] by taking account of all voxel time series included in an

anatomical structure. The final number of voxel clusters (network

nodes) formed within an individual anatomical structure was then

determined by applying a global threshold to the hierarchical

linkage-distance tree generated with each anatomical structure. By

varying the global threshold, the whole-brain network can be

defined flexibly at any desired spatial scale, or equivalently, at any

total number of network nodes. As we will show, this balanced

anatomical-functional parcellation approach with flexibility in

controlling the spatial scale of a defined network is capable of

revealing scale-free network organizations as the number of

network nodes are defined at sufficiently fine scales. Such a

capacity plays an essential role in differentiating brain network

organizations of anesthetized healthy participants from those of

patients with UWS.

Materials and Methods

Data acquisition
The fMRI data analyzed by this study were published in our

two previous investigations of healthy human participants

undergoing propofol sedation [6,34] and patients with UWS [5].

Healthy participants in the fMRI propofol sedation study provided

written informed consent to participate. Experimental protocols

were approved by the Institutional Review Board of the Medical

College of Wisconsin (Milwaukee, WI). Informed written consent

was obtained from the families of patients with UWS for the

resting-state fMRI scans. Experimental protocols were approved

by the Ethics Committee of Capital Medical University (Beijing,

China). The patients were diagnosed with UWS after repeated

clinical tests using the standard Glasgow Coma Scale (GCS) and
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the Chinese Vegetative State Scale (CVSS). Clinical profiles of the

UWS patients reported in this study are summarized in Table 1

and also in the previous publication [5].

In the propofol study, blood oxygen level-dependent (BOLD)

signals at 1.5 Tesla (repetition time, 2s; in-plane resolution,

3.7563.75 mm; thickness, 6 mm) were collected from eight

healthy volunteers (four men and four women; aged 24 to 42;

body mass index ,25) who performed a verbal memory task in the

scanner during each of the three 6-minute-long fMRI runs in

wakeful baseline, propofol-induced deep sedation, and recovery.

There were about 15 minutes of separation between the runs for

experimental preparation. During deep sedation, the target

plasma concentration of propofol was set as 2 mg/ml; at this

anesthetic depth, the participants no longer responded to verbal

commands. The resting-state BOLD signal acquisition in five

patients with UWS was performed at 3 Tesla [5] (duration of 6

minutes; repetition time, 2s; in-plane resolution 3.7563.75 mm;

slice thickness, 5 mm).

Data preprocessing
Imaging data analysis was conducted using Analysis of

Functional NeuroImages (AFNI, http://afni.nimh.nih.gov/afni)

and Matlab (The MathWorks, Natick, MA) software. For both sets

of data, high-resolution anatomical images obtained during the

scan session were transformed into standard Talairach space,

followed by co-registration of the functional data to the Talairach

space with resampling to 2-mm cubic voxels (adwarp in AFNI).

Subsequent data preprocessing included despiking, detrending

(3dDetrend in AFNI, using the Legendre polynomials with an order

of 3) and motion correction (3dvolreg in AFNI, producing three

translational and three rotational parameters for each image). The

first four points of the voxel time series of each run were discarded

to reduce the initial transient effects. Physiological noise contri-

butions from the white matter and the cerebrospinal fluid were

estimated using the average BOLD signal time series of these

structures, which were manually identified in each individual’s

anatomical images. The voxelwise BOLD time series from each

scanning run were then analyzed with a general linear regression

model (3dDeconvolve in AFNI) using the eight regressors represent-

ing noise artifacts from the six motion parameters, white matter,

and cerebrospinal fluid. The residual signals of the regression

analysis were considered representative of the denoised voxelwise

BOLD time series.

Network partitioning and evaluation of scale-free
statistics

The constituent nodes of the whole-brain network were defined

as clusters of voxels sharing a similar hemodynamic profile in one

run and spatially confined within the boundaries of a single

anatomical structure. The choice to use anatomically constrained

functional parcellation was motivated by the hierarchical modular

organization of human brain networks [35,36] and the fact that

the neuroanatomical substrate provides the structural basis for the

distribution, stability, and diversity of the basic functional units of

brain networks. [37,38]. Our anatomical-functional parcellation

scheme consisted of the following steps (Figure 1A). First, 116

anatomical regions in Talairach space were delineated in each

subject’s anatomical images according to a standard reference

template [33] (tt_n27_ez_ml.tlrc, provided with AFNI software

package). Second, hierarchical clustering was conducted separately

each time with the preprocessed BOLD time series of all voxels

included in each of the 116 anatomical structures. The clustering

was based on computing a dendrogram using the inner squared

distances (the minimum variance) among the normalized voxel
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time series, resulting in a hierarchical linkage distance tree for each

anatomical structure. Third, we applied a global threshold of

linkage distance to all obtained 116 dendrograms to determine the

number of clusters formed within each of the anatomical

structures, and therefore the total number of network nodes.

The magnitude of global threshold is solely determined by the

spatial scale, at which a desired number of clusters (nodes) are

obtained to cover the entire brain. In this study, the number of

network nodes ranges from 116 (the original anatomical partitions)

up to 4000 with step increases across different spatial scales. To

better describe the changes in the results, the step increase of the

number of network nodes is finer at coarse spatial scales than at

relatively fine scales. For each fMRI run, the mean voxel time

series of each identified voxel cluster was considered representative

of the node time series used in node degree (connectivity) analysis.

After defining network nodes at a given spatial scale, the cross-

correlation between each pair of the nodes was computed using

the node time series, resulting in a symmetric cross-correlation

matrix with a dimension equivalent to the total number of network

nodes. Histograms were then computed to evaluate two essential

properties of the brain network organization: (1) the distribution of

the size of network nodes measured by the number of voxels

contained in each node and (2) the distribution of the number of

node connections (node degree) after thresholding the cross-

correlation matrix. The threshold of the cross-correlation matrix

was set at 0.2 for the BOLD signals acquired at 1.5 Tesla with

healthy participants and at 0.4 for the BOLD signals acquired at

3.0 Tesla with UWS patients. The shapes of histograms were then

evaluated according to their fit to a power-law distribution. The

goodness-of-fit was evaluated by conducting a linear regression

with logarithm-transformed histogram data at a representative

spatial scale (2000 network nodes in this report). To assess whether

that the power-law distribution provides the best fit of the data, we

compared the fit of the power-law model with those of exponential

and logarithm models in terms of mean squared error (MSE).

These two additional models were chosen because they are the

most common models that could potentially provide a good fit to

data of similar shape to a power-law distribution. The comparisons

were conducted by paired two-sample t-tests with results consid-

ered significant at p ,0.05.

Results

Network nodes within each hemisphere exhibited similar

distributions with respect to their total number (e.g., at the scale

of 2000 network nodes: Left, 1007646; Right, 993646; P = 0.67

for a significant difference) and average size (Left, 71.563.4;

Right, 72.463.2; P = 0.72) in healthy participants during wake-

fulness (Figure 1B). Moreover, the spatial locations of network

nodes generally showed a trend of interhemispheric symmetry

across examined spatial scales. These characteristics were also

replicated in the states of deep sedation and recovery.

To verify whether the identified voxel clusters (nodes) truly

capture functionally distinct units within each of the individual

anatomical structures, we performed a connectivity analysis using

eight voxel clusters identified from the whole thalamus as seed

regions. The unthresholded full correlation maps derived from two

seed regions were shown at a same sagittal slice (Figure 1C, left and

right panels). Compared with each other, the correlation maps

revealed largely opposite patterns of correlation magnitude in the

overall distribution pattern and in local details, indicating that the

combined anatomical-functional parcellation algorithm is capable

of differentiating hemodynamically distinct voxel clusters within an

anatomical structure.

Node-size distribution in wakefulness, deep sedation,
and recovery

In all three conditions, a power-law distribution of node size

became evident as the number of network nodes was increased. As

an example from one of the participants, a power-law node-size

distribution at wakeful baseline was first recognizable at 300 nodes

and became increasingly evident at higher numbers of node

partitions (Figure 2). Similar effects were present in deep sedation

and recovery (Figure S1 and Figure S2). Across all subjects, power-

law distributions of node size and degree were clearly present at

and above 2000 nodes. We therefore chose the 2000-node

parcellation as a representative spatial scale for the demonstration

of group results. Node-size distributions at this spatial scale are

summarized for the eight participants across the three states of

consciousness in Figure 3A-C, with linear regression of logarithm-

transformed data (within the range of node sizes from about 60 to

280 voxels) in Figure 3D-F. The r-squared values for power-law

fitting were 0.9560.02, 0.9460.03 and 0.9360.03 for the states of

wakefulness, deep sedation, and recovery, indicating a good fit of

the data. Compared with exponential and logarithmic models,

power-law fitting was significantly better or demonstrated a

stronger trend in minimizing MSE, suggesting a better fit overall

(Table 2).

Node-degree distribution in wakefulness, deep sedation,
and recovery

As with node-size distribution, a power-law distribution of node

degree became evident as the number of network nodes was

increased. As demonstrated in data from the same participant as

shown in Figure 2, the node-degree distribution followed a power-

law distribution at 2000 nodes or higher (Figure 4). In seven of

eight participants, node-degree distribution followed a power-law

at or above 2000 nodes. One participant’s data showed an

abnormal pattern of connectivity in deep sedation possibly due to

noise of unknown origin during scanning and were excluded from

this analysis. The same pattern of power-law node-degree

distribution was observed during deep sedation (Figure S3) and

recovery (Figure S4). The node-degree distributions at the spatial

scale of 2000 nodes are summarized for the seven participants

across the three states of consciousness in Figure 5A-C, with linear

regression of logarithm-transformed data (within the range of node

degree from about 20 to 280 connections) in Figure 5D-F. The r-

squared values for power-law fitting were 0.960.05, 0.8560.1 and

0.960.07 for the states of wakefulness, deep sedation, and

recovery, indicating a good fit of the data. Compared with

exponential and logarithmic fittings, power-law fitting is signifi-

cantly better in minimizing MSE in all three states, suggesting a

better fit of the data (Table 3).

Node-size and node-degree distributions in UWS patients
Node-size distribution in patients with UWS showed a

consistent a power-law-shaped distribution at approximately the

spatial scale of 2000 nodes (Figure S5). However, unlike the

healthy sedated individuals, patients with UWS failed to show a

power-law-shaped node-degree distribution even at fine-scale node

parcellations, regardless of threshold. One example from the UWS

patients demonstrated a nearly flat node-degree distribution across

all fine spatial scales (Figure 6). The node size and degree

distributions at the spatial scale of 2000 nodes are summarized for

the five UWS patients in Figure 7. It is obvious from the figure that

the node-degree distribution varied significantly across the

patients, but none of them adheres in general to the profile of a

power-law distribution.

Scale-Free Network Properties of the Human Brain in Sedation and UWS
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Figure 1. A combined anatomical-functional parcellation algorithm that defines nodes of the whole-brain network at an arbitrary
scale. (A) The algorithm involves performing a hierarchical clustering analysis with all voxels included in each of the 116 individual anatomical
structures, followed by applying a global threshold to the generated linkage-distance tree with each single anatomical structure to separate voxel
clusters functionally distinct from each other. The panel A shows the thresholds at three different values that divide the whole brain into 300, 500,
and 1000 clusters (nodes). The color-coded cluster distributions were shown at an intermediate slice of the axial plane. (B) The centers of mass
(nodes) of the 116 anatomical structures (from the standard template) and of voxel clusters obtained using procedures described in A at three
different spatial scales are marked by distinct colors according to their lobe or subcortical location. The number and distribution of network nodes are
approximately equal in the left and right hemispheres across the spatial scales. (C) Full correlation maps computed using two identified thalamic
voxel clusters as the seeds for connectivity analysis showed largely opposite patterns of correlation magnitude in the overall distribution pattern and
in local details. One lateral and one medial slices along the sagittal plane were shown for the two maps (left and right panels).
doi:10.1371/journal.pone.0092182.g001

Scale-Free Network Properties of the Human Brain in Sedation and UWS

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e92182



Discussion

Understanding the neurobiological mechanisms that govern the

state of consciousness as modulated in physiological, pharmaco-

logical or pathological conditions is arguably one of the most

fundamental challenges in neuroscience. The power of the brain to

self-organize may be particularly relevant to the subject of

consciousness [39], specifically with respect to the question of

why consciousness spontaneously recovers in the healthy brain

after general anesthesia or deep sleep, but does not in brains under

severe neuropathological conditions. The current study tested the

hypothesis that the scale-free property of network organization –

an empirical signature of self-organization associated complex

systems in a critical state – is fundamentally different between the

brains of anesthetized healthy participants and patients with UWS.

As we showed in this study, the sharp contrast in scale-free

characteristics of node-degree distribution between the two groups

suggests that unlike the brains of anesthetized healthy humans, the

brains of patients with UWS may in fact have compromised ability

to self-organize and thus fail to regain consciousness.

Loss of consciousness is accompanied by significantly altered

metabolic activity and functional connectivity in widespread

cortical and subcortical networks in anesthetized healthy humans

and patients with UWS. In both cases, prominent reductions in

regional cerebral metabolism and blood flow were identified in

significantly overlapping brain areas, including the prefrontal,

premotor and parietotemporal association areas, the posterior

cingulate and retrosplenial cortices and the precuneus [7,9,40,

41,42]. In addition, the unconscious conditions are usually asso-

ciated with a disruption of functional connectivity in large-scale

brain networks, specifically those of the frontoparietal association

cortices and the thalamocortical networks [1,5,6,9,43,44]. More-

over, in both conditions, stimulus-dependent brain activation was

found preserved in primary sensory cortices but not in higher

multimodal association areas, given the overt suppression of

cognitive perception [3,34,45,46,47]. These studies together

suggest that changes in the area and magnitude of brain metabolic

activity and functional connectivity alone are insufficient in

explaining why consciousness is recoverable to anesthetized

healthy humans but not to patients with UWS. Instead, these

findings imply that there may be further unidentified mechanisms

of brain network organization that underlie the difference between

the two groups in regaining consciousness from an unconscious

state.

Experimental and theoretical advances that characterize emer-

gent properties of complex systems provide useful clues for

identifying such mechanisms. According to the theory of self-

organized criticality [10], complex systems evolve autonomously to

a critical state characterized by power-law or scale-free charac-

teristics, even given exogenous perturbations. There is now

increasing evidence that such processes may be observed in the

human brain, which is a typical example of a complex network

[13,14,15,16,17,18]. Understanding the pervasiveness and impli-

cation of scaling laws in cognitive science is still at its early stage

[12,14]. Arguments have been made that existence of scaling laws

may be uninformative because of the existence of other non-

critical, artificial solutions that could produce scaling laws. For

example, it is easy to generate apparent power-law-looking

distributions as the sum of Gaussian processes acting over different

time/space scales. One specific such example is represented by the

Figure 2. Node-size distribution across different spatial scales in one healthy participant at the wakeful baseline. (A) Node-size
distribution of the original 116 anatomical nodes. (B-L) As network nodes were defined at finer spatial scales, a power-law node-size distribution
became increasingly evident. The minimum and maximum node sizes were shown in the subplots.
doi:10.1371/journal.pone.0092182.g002
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Perlin noise [48], which, however, has been widely used to

simulate realistic-looking visual effects like clouds, textures, and

terrains that are formed as a result of self-organization in natural

complex systems. With regard to the debate, Kello et al. argued

that the extent and magnitude of identified scaling laws in biology

is beyond being mere coincidence, suggesting that ‘‘scaling laws

describe a fundamental order in living and complex systems’’ [14].

Although our study was not designed and intended to resolve the

debate over the presence of critical dynamics in the brain [23],

experimental and theoretical advances in the fields of nonlinear

dynamics, complex systems, and modern network theory do

provide useful intellectual frameworks for understanding the

emergent properties of human consciousness in various conditions.

For example, it has been proposed that at a critical point of

anesthetic-induced transition to unconsciousness, the abrupt

change in brain state can be characterized by a first-order phase

transition model in the cortex, similar to thermodynamic phase

changes in classical physics [49,50]. From our perspective, it is not

that the presence of criticality would necessitate the presence of

conscious awareness, since criticality is most likely also present

during unconsciousness in the healthy brain during deep

dreamless sleep or anesthesia, but that the self-organizing

capability of a complex system operating in the critical regime

would endow the brain with the potential to maintain or regain

consciousness as it does, for example, during general anesthesia,

after the withdrawal of the anesthetic, or during natural sleep

under the stimulation of wake-promoting neural circuitry. Based

on findings of our own and of others [13,15], we surmise that for

the healthy brain, criticality persists in both conscious and

unconscious conditions, permitting transitions of the state of

consciousness as produced by anesthetic administration or

endogenous sleep modulation, which in turn manifest power laws.

Such presence of criticality and self-organization, at least with

respect to conscious functioning, is, however, compromised in

patients with UWS. From this perspective, the SOC theory

provides a plausible explanation for the findings of our study and

therefore offers a useful conceptual framework for an understand-

ing of emergent behaviors of human consciousness.

Figure 3. Node-size distributions at the spatial scale of 2000 nodes in eight healthy participants in the states of wakeful baseline,
deep sedation, and recovery. (A-C) Node-size distributions in the three states of consciousness. (D-F) Linear fittings of logarithm-transformed
frequency count and node size. Power-law fitting is significantly better or demonstrates a stronger trend than exponential and logarithmic fittings in
minimizing MSE, providing a better fit of the data.
doi:10.1371/journal.pone.0092182.g003

Table 2. MSE for three models of node-size distribution in the three states of consciousness.

Power-law fit Exponential fit Logarithmic fit P-value (P,E) P-value (P,L)

Wakefulness 55637 96678 1586127 0.04 0.01

Sedation 74654 856113 1386124 0.37 0.06

Recovery 119686 1356213 2506337 0.39 0.1

(P: Power law fit; E: Exponential fit; L: Logarithmic fit).
doi:10.1371/journal.pone.0092182.t002
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A novel aspect of our study is the introduction of a combined

anatomical-functional parcellation algorithm that is able to define

the whole-brain network across arbitrary spatial scales, represent-

ing an extension to the existing methods [51]. Macroscopic

anatomical boundaries have a general, though imperfect, relation

to functional boundaries. The proposition of nested network

organization in the central nervous system suggests that the basic

functional units of the brain first emerge individually within each

of the individual anatomical structures [52,53,54]. Thus, by

defining a network node as a cluster of voxels sharing a similar

BOLD time series profile and constrained by the boundaries of a

single anatomical structure, our approach takes into consideration

both the anatomical and functional significances of identified

network nodes, with increased node specificity (as compared with

coarse-grained anatomical parcellation) and reduced node redun-

dancy (as compared with voxel-based approach). In fact, our

results show that in healthy participants, the scale-free node size

and degree distributions only become evident with an increase of

number of network nodes, that is, at increasingly finer spatial

scales, the constitution of the most basic functional units of the

brain and their interactions are getting more and more reflected

by the constructed network, as suggested by Figure 1C. One could

argue that if the criticality hypothesis holds true to the functioning

of the brain, then the associated scale-free network characteristics

should only be revealed when the structure and functional

dynamics of network components can be expressed at a sufficient

level of temporal and spatial resolutions. Moreover, of a

noteworthy result in this study, power-law node-degree distribu-

tion, which reflects the organization of functional interactions

between network nodes, appears to be more susceptible to brain

injuries in the UWS patients than that of node size. We consider

that to some extent the phenomenon is analogous to disruption of

air traffic across the country by a large-scale severe weather

condition. In such a case, the original power-law-distributed

airport size would still be maintained, but the power-law-

distributed airport traffic volume would be disrupted.

The preservation of scale-free distributions of node size and

node degree during sedation in healthy participants is consistent

with previous findings obtained with EEG [29]. Despite significant

propofol-induced alterations of functional connectivity in task-

related [34] and thalamocortical [6] networks, scale-free network

organization was persistently maintained in propofol sedation and

in subsequent recovery of consciousness with healthy participants,

consistent with the prediction by the theory of self-organized

criticality [10]. The findings are also compatible with the

preserved fractal small-world organization obtained from MEG

measurements in healthy humans in both resting and task

conditions [24]. Fractal network structure naturally gives rise to

scale-free characteristics [12,13]. In both healthy humans [55,56]

and animals [57], significant spatiotemporal reconfiguration in

large-scale brain functional networks during anesthetized states

have been observed; nevertheless, major topological features such

as small-worldness are maintained in the anesthetized brain. Also,

in chronic neuronal degenerative pathologies such as the

Alzheimer’s disease [58,59], the small-world characteristic of the

brain remains present in spite of detectable changes in network

organization. Compared with patients with chronic neuronal

degenerative disease, patients with UWS are characterized by

an overwhelming loss of brain functioning and consciousness. A

goal of future studies may be to determine whether the loss of

Figure 4. Node-degree distribution in one healthy participant (as shown in Figure 2) at the wakeful baseline. (A) Node-degree
distribution of the original 116 anatomical nodes. (B-L) As network nodes were defined at finer spatial scales, a power-law node-degree distribution
became increasingly evident. The minimum and maximum node degrees after thresholding were shown in the subplots.
doi:10.1371/journal.pone.0092182.g004
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power-law node-degree distribution is uniquely associated with

severe neuropathological conditions such as UWS. Nevertheless,

with respect to the node-degree distribution in patients with UWS,

our results are at variance with a recent neuroimaging study [30].

Achard et al. reported that node-degree distribution conformed to

an exponentially truncated power law in both comatose patients

and healthy controls, whereas our UWS patients failed to display a

power-law node-degree distribution. The difference may be

attributed to a few factors. First, Achard et al. scanned 17

comatose patients a few days after major acute brain injuries. Of

the reported patients, five were diagnosed with UWS six month

later (three other patients recovered and nine died). Because of the

mixed patient population, one cannot determine whether the

node-degree distribution was scale free in patients with UWS. It is

likely that in coma patients, brain organization is different at the

early stage of brain injury from that several months later when

formal diagnosis was performed. Second, the network construction

by the authors was based on 417 homogeneous anatomical

partitions. In contrast, we identified functionally distinct network

nodes within individual anatomical structures at a parcellation into

2000 nodes. Finally, the authors performed connectivity analysis

only within a very limited frequency interval of fMRI signal (0.02–

0.04 Hz) using wavelet analysis. In contrast, we did not apply a

band-pass filter in order to preserve the full spectrum of the fMRI

signal. Recent studies suggest that there may be important

contributions from the BOLD signal at frequencies higher than

the usual 0.1 Hz cutoff to the resting-state connectivity [60,61].

Cautions in interpreting the results are in order. First, the notion

and function of self-organization are only loosely defined in the

literature. In this paper, we focus on self-organization in the

context of the brain’s ability to spontaneously recover conscious-

ness. It should be noted that the presence of sleep-wake cycles in

patients with UWS suggests a certain degree of self-organization,

including the maintenance of autonomic functions by key

subcortical structures, especially the brainstem [62]. Thus, there

may be multiple, parallel self-organizing processes simultaneously

Figure 5. Node-degree distributions at the spatial scale of 2000 nodes in seven healthy participants in the states of wakeful
baseline, deep sedation, and recovery. (A-C) Node-degree distributions in the three states of consciousness. (D-F) Linear fittings of logarithm-
transformed frequency count and node degree. Power-law fitting is significantly better than exponential and logarithmic fittings in minimizing MSE,
providing a better fit of the data.
doi:10.1371/journal.pone.0092182.g005

Table 3. MSE for three models of node-degree distribution in the three states of consciousness.

Power-law fit Exponential fit Logarithmic fit P-value (P,E) P-value (P,L)

Wakefulness 1286112 4556284 2706171 0.004 0.01

Sedation 76658 2106125 127673 0.000 0.02

Recovery 82652 2856157 155685 0.004 0.009

(P: Power law fit; E: Exponential fit; L: Logarithmic fit)
doi:10.1371/journal.pone.0092182.t003
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ongoing in the brain that serve different functional goals at any

one time or in a particular state. The necessity or sufficiency of

criticality for consciousness in general is difficult to test because

there are numerous counter examples in nature in support of

either position. For example, a sand pile at a critical slope clearly

does not have consciousness, in deep unconscious sleep the brain

can be in critical state, and the conscious brain may have non-

critical processes. Our findings suggest that the specific aspects of

self-organization processes subserving conscious functions are

seriously compromised in the brain of patients with UWS. As

far as the relevance to consciousness is concerned, the formation of

subjective experience has been postulated to depend on wide-

spread information transmission and integration in a global

workspace involving large-scale brain networks [63,64]. There-

fore, the investigation of the organization of the whole-brain

network and the anatomical-functional parcellation scheme for

identifying network nodes can be deemed appropriate for

addressing consciousness-related questions. Second, a well-known

limitation of fMRI is that it indirectly reflects mass neuronal

activity [65]. This defines the hemodynamic nature and possible

spatial resolution of functional units (network nodes) that can be

derived from the fMRI data. Third, imaging healthy participants

undergoing propofol sedation and patients with UWS were

performed using different scanners of variant magnetic field

strengths. 3.0 Tesla scanning (with UWS patients) has a higher

signal-to-noise ratio, resulting in stronger correlation strengths

when compared with that obtained with a scanner of 1.5 Tesla

(with healthy participant undergoing sedation). This gave rise to

an issue on the selection of thresholds when cross-correlation

matrices had to be thresholded to estimate node-degree distribution

in the two groups. A uniform threshold would incur different

degrees of separating effects to the correlation matrices of the two

groups because of the differences introduced by scanning param-

eters, particularly by the magnetic field strength. Meanwhile, too

low or too high thresholds would ultimately result in either fully

connected or unconnected networks, preventing an assessment of

scale-free characteristics. The issue, however, was mitigated by an

experimental selection of different thresholds applied to the

correlation matrices of the two groups. In our case, the threshold

was set at 0.2 for the correlation matrices of healthy participants and

at 0.4 of patients with UWS. The selection of the thresholds could

result in approximately comparable numbers of remaining connec-

tion pairs in the correlation matrices of the two groups. We also

verified that varying the thresholds around a small neighborhood of

the chosen values would not significantly alter the results. Lastly, the

proper statistical method that can be used to validate a power-law

scaling in experimental data with mathematical rigor has been

controversial [66,67]. We consider that by comparing power-law

fitting with exponential and logarithmic fittings, our approach

provides a reasonably well estimation on the issue. We are aware of

the maximum likelihood estimator developed by Clauset et al. for

evaluating power-law distribution in empirical data [68]. When we

applied this approach to our datasets, the goodness-of-fit tests did

not show a power-law distribution of node degrees. We speculate

that the discrepancy is due to a difference between mathematical

reality and biological reality, as often encountered in statistical tests

and corrections, such as the correction for multiple comparisons in

neuroimaging signal analysis. Given the fact that the formation of

the histograms of node size and node degree and the resultant

dynamic ranges of the histograms were largely determined by the

Figure 6. Node-degree distribution in one example of the UWS patients. (A) Node-degree distribution of the original 116 anatomical
partitions. (B-L) Regardless of spatial scale at which a whole-brain network was defined, the UWS patient showed no power-law-shaped node-degree
distribution as compared to that observed in healthy individuals.
doi:10.1371/journal.pone.0092182.g006
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spatial scale, i.e., the number of network nodes, we did not expect

the power-law distribution extend over several orders of magnitude,

as found, for example, in neuronal avalanches [16].

In summary, this study reports a fundamental difference in the

node-degree distribution of brain network organization between

anesthetized healthy participants and patients with UWS. The

maintenance of scale-free configuration in healthy brains across

the states of general anesthesia, despite profound propofol-induced

functional connectivity changes, suggests the presence of a self-

organizing process that persists from wakefulness to sedation and

recovery. In contrast, the node-degree distribution of patients with

UWS shows no scale-free characteristics. This suggests an absence

of self-organizing processes for regulating functional interactions

among network components, which potentially accounts for the

patients’ failure to spontaneously regain consciousness. The SOC

theory, which motivated this study from the beginning, appears to

provide a plausible conceptual framework for the prediction and

explanation of findings by the study. Future investigations should

extend the findings to examine if the presence or absence of

power-law characteristics in the brain’s structural and functional

network organizations may have predictive value for the recovery

of consciousness in brain-injured patients, such as those in coma or

minimally conscious state.

Supporting Information

Figure S1 Node-size distribution across different spa-
tial scales in one healthy participant (as shown in
Figure 2) in deep sedation. (A) Node-size distribution of the

original 116 anatomical nodes. (B-L) As network nodes were

defined at finer spatial scales, a power-law node-size distribution

became increasingly evident. The minimum and maximum node

sizes were shown in the subplots.

(TIF)

Figure 7. Node-size and node-degree distributions in five UWS patients. (A-B) Power-law-shaped node-size distributions were maintained
in (A), with linear fittings of logarithm-transformed frequency count and node size in (B). (C-D) In contrast to that in healthy individuals (Figure 5),
node-degree distributions in UWS patients demonstrated no evidence of a power-law relation (C), with linear fittings of logarithm-transformed
frequency count and node degree showing inconsistent profiles (D).
doi:10.1371/journal.pone.0092182.g007
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Figure S2 Node-size distribution across different spa-
tial scales in one healthy participant (as shown in
Figure 2) in recovery. (A) Node-size distribution of the original

116 anatomical nodes. (B-L) As network nodes were defined at

finer spatial scales, a power-law node-size distribution became

increasingly evident. The minimum and maximum node sizes

were shown in the subplots.

(TIF)

Figure S3 Node-degree distribution in one healthy
participant (as shown in Figure 4) in deep sedation. (A)

Node-degree distribution of the original 116 anatomical nodes. (B-
L) As network nodes were defined at finer spatial scales, a power-

law node-degree distribution became increasingly evident. The

minimum and maximum node degrees after thresholding were

shown in the subplots.

(TIF)

Figure S4 Node-degree distribution in one healthy
participant (as shown in Figure 4) in recovery. (A) Node-

degree distribution of the original 116 anatomical nodes. (B-L) As

network nodes were defined at finer spatial scales, a power-law

node-degree distribution became increasingly evident. The

minimum and maximum node degrees after thresholding were

shown in the subplots.

(TIF)

Figure S5 Node-size distribution in one UWS patient (as
shown in Figure 6). (A) Node-size distribution of the original

116 anatomical nodes. (B-L) As network nodes were defined at

finer spatial scales, a power-law-shaped node-size distribution

became increasingly evident. The minimum and maximum node

sizes were shown in the subplots.

(TIF)
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