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Abstract

D-amino acids are toxic for life on Earth. Yet, they form constantly due to geochemical racemization and bacterial growth
(the cell walls of which contain D-amino acids), raising the fundamental question of how they ultimately are recycled. This
study provides evidence that bacteria use D-amino acids as a source of nitrogen by running enzymatic racemization in
reverse. Consequently, when soils are inundated with racemic amino acids, resident bacteria consume D- as well as L-
enantiomers, either simultaneously or sequentially depending on the level of their racemase activity. Bacteria thus protect
life on Earth by keeping environments D-amino acid free.
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Introduction

With the exception of glycine, all amino acids are chiral and

may exist as levorotatory (L) or dextrorotatory (D) enantiomer. At

Earth’s surface temperatures amino acids spontaneously racemize,

converting from one form to another [1]. Consequently, although

on Earth organisms only synthesize L-enantiomers, the appear-

ance of D-enantiomers is inevitable, especially in soils and

sediments where amino acids are sequestered [1,2]. Additionally,

in some organisms, racemization is enzymatically catalyzed (i.e. by

racemases), and the resultant D-amino acids are incorporated into

non-protein molecules. Such molecules include peptide antibiotics

[3], siderophores [4], surfactins [5], and peptidoglycans [6]. The

latter, which contain D-alanine, D-glutamic acid, and occasionally

D-aspartic acid as well, are ubiquitous in bacterial and

cyanobacterial cell walls. Relative to proteins, heterochiral

peptides are recalcitrant [7,8]. As a result, oceans, sediments,

and soils are enriched in peptide-bound D-amino acids [9–17]. In

North American grassland soils, for instance, more than 10% of

alanine, glutamic acid, aspartic acid, and leucine exist in D-forms

[18].

The fate of D-amino acids during matter cycling is unknown.

Early work considered the possibility of their utilization as a source

of nitrogen by eukaryotes. Many eukaryotes possess D-amino acid

oxidases (DAAOs), a detoxification enzyme that controls endog-

enous D-amino acids [19,20]. In the presence of DAAOs and

molecular oxygen, D-enantiomers, but not L-enantiomers, are

destroyed by oxidative deamination. Of the three products that

result, hydrogen peroxide is detoxified by catalases, while a-keto

acid and ammonium may be metabolized as carbon and nitrogen

sources. When exposed to external D-amino acids, however, only

yeasts and fungi up-regulate DAAOs fast enough to turn toxicity

into nutrient [21–25]. Plants and mammals appear to lack such

capacity and, as a result, suffer stunted growth [26–28].

Studies of Methanococcus maripaludis, an archaeon, and Schizosac-

charomyces pombe, a yeast showed that enzymatic racemization can

be coupled to L-amino acid catabolism as a more efficient way of

catabolizing D-amino acids [29,30]. In both organisms, this

capability is because of an inducible operon. The operon consists

of three genes acquired from bacteria via lateral transfer that

specify alanine permease, alanine racemase, and L-alanine

dehydrogenase. The permease imports L- and D-alanine. There-

fore, for M. maripaludis and S. pombe, D-alanine is essentially a

source of L-alanine.

Here we provide evidence that all bacteria are capable of

reverse racemization. Specifically, we show that when soils are

inundated with LD-alanine, LD-aspartic acid, LD-glutamic acid,

and LD-leucine, resident bacteria absorb L- and D-enantiomers in

equal or nearly equal rates. In the case of alanine, the conversion

of D-enantiomers appears to be enabled by constitutive alanine

racemases that are ordinarily anabolic in function (i.e. cell wall

synthesis). In the case of the other three amino acids, the exposure

to L-enantiomers appears to induce catabolic racemases. As a

result, as soon as L-enantiomers are exhausted, the organisms

could consume D-enantiomers.

Results

A simple nutrient solution containing 50 mM of D-glucose as a

carbon source and 4 mM of LD-alanine, LD-aspartic acid, LD-

glutamic acid, and LD-leucine as a nitrogen source was inoculated

with soils. The soils originated from South and North American

semiarid deserts, alpine forests, wetlands, and landscape lawns.

They contained between 16106 and 66106 colony-forming units
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(CFU) of bacteria per gram soil. The ratio of soil and medium was

1:2 (w:v). The soil suspensions were incubated at 20uC under

aerobic conditions.

The ensuing absorption of amino acid enantiomers followed

two patterns (Figure 1). For wetland and lawn soils, D- and L-

alanine were consumed simultaneously and in equal rates. In all

other cases, L- and D-enantiomers were consumed one after

another. More specifically, the consumption of D-enantiomers

occurred in three phases: a transient initial decline, an intervening

phase of stasis, and a final phase of rapid utilization. Only the first

phase was observed in sterile (autoclaved) soils, indicating that it is

abiotic in nature (Figure S1). During the course of the experiment,

the numbers of bacteria in the samples doubled 5–7 times.

To understand the consumption mechanisms, we studied the

Mojave Desert soil and Arthrobacter sp., a bacterium isolated from

the Atacama Desert, in more detail. When the soil received only

D-enantiomers, consumption dynamics changed. In the case of D-

alanine, absorption began immediately and was nearly identical in

rate to that of L-alanine, determined in a separate sample

(Figure 2A). Clearly, the organisms were capable of consuming D-

alanine, but did not do so if L-alanine were available.

Without L-enantiomers, absorption dynamics of D-aspartic

acid, D-glutamic acid, and D-leucine also were altered, but in a

different fashion. Little or no activity occurred in the first few

hours. With further incubation, consumption became progressive-

ly faster (Figure 2A). By hour 35, it was comparable to the

consumption of corresponding L-enantiomers (Figure 2B). To

verify that L-enantiomers induced catabolism of D-enantiomers,

we incubated soil in L-enantiomers before adding D-enantiomers.

Consumption began immediately and was rapid (Figure 2C).

When the same induced soil was given a mixture of L- and D-

enantiomers, however, consumption of D- enantiomers began only

after L-enantiomers were consumed (Figure 2D).

RNA synthesis and gene expression were essential to utilizing

D-aspartic acid, D-glutamic acid, and D-leucine. In the presence

of 25 mM of rifampicin, an antibiotic that inhibits RNA synthesis,

utilization of these three D-enantiomers was prevented. Con-

sumption of L-enantiomers and D-alanine, in contrast, remained

intact, indicating that the failure to use D-aspartic acid, D-

glutamic acid, and D-leucine was not due to cell death (Figure 2E).

When D- and L-aspartic acid were added to two Arthrobacter sp.

cultures (108 CFU/ml) as pure enantiomer preparations, they

were consumed identically (Figure 3). When they were added as a

mixture, utilization of D-aspartic acid did not begin until after L-

aspartic acid was consumed.

Discussion

Because D-alanine is an essential component of their cell wall

[6,31,32], all bacteria are expected to synthesize alanine racemases

constitutively. Although other D-amino acids are also essential,

they do not necessarily require specific racemases to form. For

instance, D-glutamic acid may form by racemization or transam-

ination, between D-alanine and L-glutamic acid [33]. Our study

suggests that when D-alanine is available externally, alanine

Figure 1. Microbial consumption dynamics of racemic amino acids (L-enantiomers: open symbol; D-enantiomers: filled symbol)
following addition to soils. The rapid absorption of D-enantiomers is presumably by bacteria, which possess amino acid racemases and can turn
D-enantiomers into L-forms.
doi:10.1371/journal.pone.0092101.g001
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racemases are temporarily freed from anabolic commitment to

serve a detoxification and catabolic function, turning excess D-

alanine (beyond what is needed for cell wall synthesis) into a source

of nitrogen.

Soil catabolic activities involving D-aspartic acid, D-glutamic

acid, D-leucine almost certainly are enabled by induced racemas-

es. In other words, catabolic operons like those in M. maripaludis

and S. pombe but specific for aspartic acid, glutamic acid, and

leucine are common in bacteria. The comparable or equal

consumption rates of L- and D-enantiomers (Figure 1) suggest that

most or all bacteria that consume L-enantiomers also consume D-

enantiomers. The contribution of DAAOs cannot be ruled out,

but is likely minor, for two reasons. First, yeasts and fungi are

present in these soils in minor numbers [34–36]. Second, DAAOs

are induced by D-enantiomers, not L-enantiomers [21,24,37–40].

It may seem counterintuitive that catabolic racemases are

induced by L-enantiomers. The ecological necessity of this feature

becomes evident, however, if we consider the alternative: catabolic

Figure 2. Microbial consumption dynamics of amino acids (L-enantiomers: open symbol; D-enantiomers: filled symbol) by a Mojave
Desert soil. Amino acids were added under four different conditions: A) first injections containing L- or D-enantiomers; B) and C) second injections
containing L- or D- enantiomers; D) second injections containing racemic mixtures; and E) first injections containing L- or D-enantiomers and 25 mM
of rifampicin, an antibiotic that inhibits RNA synthesis. For bacteria to catabolize D-enantiomers two conditions must be met: 1) racemases are
induced if not already present due to anabolic functions, e.g. alanine racemase, and 2) L-enantiomers are exhausted.
doi:10.1371/journal.pone.0092101.g002
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operons are induced by D-amino acids only. That is, when

encountering racemic amino acids, bacteria ‘‘wait’’ until after L-

amino acids are exhausted to synthesize racemases. The organisms

would find themselves in a dilemma. To use D-enantiomers, they

need racemases. To manufacture racemases, however, they need

L-enantiomers, which are no longer available and, without

racemases, cannot be supplied by the conversion of D-enantio-

mers. This is why when only D-enantiomers are added to soils

catabolic activities emerge slowly (Figure 2A). The fact that they

emerge at all may be because of constitutive alanine racemases.

Amino acids racemases are not highly specific. They bind multiple

amino acids with varying degrees of efficiency. By expressing

catabolic racemases while L-enantiomers are still available,

however, bacteria avoid the dilemma and instead transition from

using L-enantiomers to using D-enantiomers without interruption.

In racemase-enabled catabolism, D- and L-enantiomers com-

pete with each other kinetically in an asymmetrical manner

(Figure S2). Because L-enantiomers are assimilated without

conversion, they are always at advantage and can competitively

shut down the influx of D-enantiomers, but not vice versa. The

application of Michaelis-Menten principles predicts three scenar-

ios (Figure 4; for detailed model description see Text S1 and

Figures S3, S4, S5). If the capacity of racemase exceeds that of

permease, L- and D-enantiomers are consumed simultaneously

and in equal rates (Figure 4, scenario I). This scenario describes

the consumption of DL-alanine by wetland and lawn soils. If the

capacity of racemase is less than or equal to that of permease, two

different scenarios may arise. If the capacity of racemase is greater

than the excess capacity of permease above the rate of

assimilation, L- and D-enantiomers are imported simultaneously

but in unequal rates (Figure 4, scenario II). If the capacity of

racemase is less than the excess capacity of permease, the influx of

D-enantiomers is prevented. Consumption does not begin until L-

enantiomers fall below a critical concentration (Figure 4, scenario

III). Most of our soil results and the result with the bacterial isolate

Arthrobacter sp. conform to scenario II or III.

Available evidence, therefore, warrants reassessment of the

generally-held view that the primary biological function of

racemases is D-amino acid making. Rather, racemases may have

originated for detoxification of D-amino acids from geochemical

racemization. Anabolic racemases are likely a secondary biological

invention. This evolutionary sequence is more logical, since a

detoxification mechanism needs to be in place before a toxin is

synthesized for constructive purposes.

Today on Earth, bacteria are a source and also the primary sink

for D-amino acids. The latter is a globe-wide ecosystem service. It

prevents free-form D-amino acids from accumulating in the

environments to toxic concentrations.

Materials and Methods

Soils were collected from the Mojave Desert (N35u119370,

W115u499420), the Clark County Wetland Park (N36u6980,

W115u19180), and Mount Charleston (N36u169190,

W115u349120) with permission from the Mojave National Preserve

Figure 3. Consumption dynamics of L- (open symbol) and D-aspartic acid (filled symbol) by bacterium Arthrobacter sp. when they
were added separately and in a racemic mixture.
doi:10.1371/journal.pone.0092101.g003

Figure 4. Model-predicted bacterial consumption dynamics of racemic amino acids. Three scenarios occur depending on relative
racemase activity: I) the capacity of racemase exceeds that of permease (i.e. VR max .VL max); II) the capacity of racemase is equal to or less than that of
permease but greater than the excess permeation capacity above the rate of assimilation (i.e. VL max $ VR max . VL max –Va max); and III) the capacity of
racemase is less than the excess permeation capacity (i.e. VR max , VL max –Va max).
doi:10.1371/journal.pone.0092101.g004
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(permit# MOJA-00048), the Southern Nevada Water Authority,

and the National Forest Service, respectively. No permits were

required to collect from the Atacama Desert (S28u289400,

W70u429420) or landscape lawns in Las Vegas (N36u69470,

W115u89430). None of these activities involved endangered or

protected species. A soil import permit was issued by the US

Department of Agriculture (P526-100813-013).

Bacteria were enumerated by serial dilution and plating on

Lauria-Bertani agar. Study medium was prepared in 0.2 M

phosphate buffer saline solution. Quantification of amino acid

enantiomers followed the high performance liquid chromatogra-

phy protocol of Zhao and Bada [41]. Briefly, 10 ml of sample

supernatant were mixed with 10 ml of 0.2 M sodium borate buffer

(pH 9.45) and 5 ml of o-phthaldialdehyde and thiol N-acetyl-L-

cysteine reagent. After one minute, the derivatization reaction was

stopped by addition of 475 ml of 50 mM sodium acetate buffer.

Immediately, 20 ml of the derivatized sample were analyzed on an

Agilent 1100 HPLC system with a Phenomenex Luna C18

column. The mobile phase consisted of methanol and 50 mM

sodium acetate, mixed in a gradient program. The flow rate was

1 ml/minute. Column effluent was monitored with a fluorescence

detector at excitation wavelength of 340 nm and emission

wavelength of 450 nm. Amino acid quantity was calculated from

peak area and calibrated against standards. Measurements were

reproducible with less than 1% error.

Supporting Information

Figure S1 Abiotic adsorption of racemic amino acids (L-
enantiomers: open symbol; D-enantiomers: filled sym-
bol) by autoclaved soils. Unlike biological consumption, this

activity is transient and stereo-optically nonselective.

(TIF)

Figure S2 Schematic diagram of racemase-enabled
consumption of racemic amino acids. D- and L-enantio-

mers are imported by the same permease. In the cell, D-

enantiomers are converted to, and assimilated as, L-forms.

(TIF)

Figure S3 Model-predicted uptake of racemic amino
acids when the capacity of racemases is greater than
that of permease. D- and L-enantiomers are consumed equally.

(TIF)

Figure S4 Model-predicted uptake dynamics of racemic
amino acids when the capacity of racemase is less than
or equal to that of permease but greater than the excess
capacity of permease above the rate of assimilation. D-

and L-enantiomers are consumed simultaneously but in unequal

rates.

(TIF)

Figure S5 Model-predicted uptake dynamics of racemic
amino acids when the excess capacity of permease is
greater than the capacity of the racemase. Consumption of

D-enantiomers begins after L-enantiomers are depleted, with rate

that may be limited by assimilation (a) or racemization (b).

(TIFF)

Text S1 Model description.

(DOC)
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