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Abstract

The elastic network model (ENM) is a widely used method to study native protein dynamics by normal mode analysis (NMA).
In ENM we need information about all pairwise distances, and the distance between contacting atoms is restrained to the
native value. Therefore ENM requires O(N2) information to realize its dynamics for a protein consisting of N amino acid
residues. To see if (or to what extent) such a large amount of specific structural information is required to realize native
protein dynamics, here we introduce a novel model based on only O(N) restraints. This model, named the ‘contact number
diffusion’ model (CND), includes specific distance restraints for only local (along the amino acid sequence) atom pairs, and
semi-specific non-local restraints imposed on each atom, rather than atom pairs. The semi-specific non-local restraints are
defined in terms of the non-local contact numbers of atoms. The CND model exhibits the dynamic characteristics
comparable to ENM and more correlated with the explicit-solvent molecular dynamics simulation than ENM. Moreover,
unrealistic surface fluctuations often observed in ENM were suppressed in CND. On the other hand, in some ligand-bound
structures CND showed larger fluctuations of buried protein atoms interacting with the ligand compared to ENM. In
addition, fluctuations from CND and ENM show comparable correlations with the experimental B-factor. Although there are
some indications of the importance of some specific non-local interactions, the semi-specific non-local interactions are
mostly sufficient for reproducing the native protein dynamics.
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Introduction

The biological function of a protein cannot be completely

understood unless roles of the structure and its dynamics are

characterized. One method to obtain dynamic characteristic of a

protein around its native structure is the normal mode analysis

(NMA) [1,2]. Although molecular dynamics (MD) simulations give

more accurate dynamic pictures, NMA has its own advantages [3],

such as lower computational cost and analytically obtained normal

modes that capture native protein dynamics reasonably accurately.

The elastic network model (ENM) is currently the most popular

model for NMA [4]. In ENM the protein structure is modeled as a

set of atoms and each contacting pair of atoms are connected by a

harmonic spring. Moreover, the equilibrium length of such a

spring is set to the distance between the corresponding atom pairs

in the native structure. Therefore, the experimentally obtained

structure is guaranteed to be at the global energy minimum.

Because of this favorable property, ENM has been used

extensively [5–11].

In ENM the dynamics of a protein is characterized by using all

pairwise native distances. That is, O(N2) information for a N-

residue polypeptide. Therefore, from a ‘‘sequence-determines-

structure-(via-dynamics)determines-function’’ view one may argue

that a protein sequence needs to include all pairwise distance

information to express its function. This may be a prohibitively

large amount of information to be embedded in the protein

sequence. It is interesting to see whether a protein structure

actually needs this much information to realize its native

dynamics.

One of the drawbacks of ENM is that it does not include any

protein-solvent interactions. Therefore, the surface atoms are

involved in a less number of interactions than the core atoms. Such

atomic packing may cause unrealistic fluctuations of the surface

atoms. We observed significantly high surface fluctuations in our

previous study [12]. The unrealistic fluctuations of surface atoms

were also observed by Wako and Endo using only dihedral angles

as variables rather than all Cartesian coordinates [13]. If we

consider protein-solvent interactions then the surface atoms would

fluctuate to a lesser extent (due to solvent-dampening of the

fluctuations). Therefore, it is desirable to have an implicit-solvent

model that guarantees the native structure to be at a local energy

minimum.

In addition, there is a conceptual drawback in ENM that a

protein molecule is treated as a purely mechanical system

composed of atoms and springs. In this picture, some basic

physicochemical properties of the protein are not explicitly taken

into account. For example, ENM treats chemical bonds and

physical contacts indiscriminately so that the polypeptide structure

is of no importance, and the well-known ‘‘hydrophobic in,

hydrophilic out’’ principle of globular proteins is absent. While

such treatment of ENM comprises the simplicity and beauty of the

model, it also makes it difficult to connect the physics of dynamics

with the biology of sequence.
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To address the above issues in ENM we introduce here a new

model, named the contact number diffusion model (CND). The

contact number of an atom is the number of atoms that surround

the given atom in the native structure, and it is closely related to

the hydrophobicity of amino acid residues [14,15]. In CND, we

model the protein structure as an autonomous system of local

interactions and non-local contact numbers that are biased to the

native structure. Here we say two atoms are locally interacting if

the corresponding residues are separated within a certain number

(window size) of residues along the sequence. Atom pairs that are

not locally interacting are called non-local pairs. The autonomous

term of the local interactions tends to break the local structures.

On the other hand, that of the non-local contact numbers tends to

uniform contact numbers by their diffusion along the polypeptide

chain. The tendency for uniform contact numbers corresponds to

the autonomous behavior (that is, without native bias) of the model

that makes the polypeptide chain to form any random structures in

which no residue is particularly buried or exposed. In addition to

these autonomous behaviors of the ‘‘generic polypeptide’’ chain, a

natural protein with a particular amino acid sequence has a

specific bias toward the native structure under the physiological

condition. Identifying precise interactions comprising the native

bias is a complicated matter. In our model, such bias toward the

native structure is imposed through the Lagrange multipliers to

constrain local contacts and non-local contact numbers to the

native values. The non-local interactions in the CND are said to be

‘‘semi-specific’’ because they are biased to the native structure only

in terms of the contact number, which is defined for each atom

instead of each pair of atoms.

In CND the interaction network of protein atoms consists of

non-local contact numbers and local contacts. Therefore, the

requirement of O(N2) restraints in ENM is reduced to only O(N)

restraints in CND. We show in the following that such a reduced

set of restraints is sufficient to reproduce native protein dynamics.

Moreover, due to the contact number restraints in CND and its

multi-body nature, the fluctuations of surface atoms are lower

compared to ENM. Thus the drawback of ENM regarding

unrealistic surface fluctuations is reduced in CND. Furthermore,

since we separate local interactions from non-local ones, the chain

structure of the protein is more explicit; and since non-local

interactions are treated in terms of contact numbers rather than

pairwise contacts and the contact number is dual to hydropho-

bicity [14,15], the CND model can be more easily correlated with

the properties of amino acid sequence.

We compared the characteristics of the normal modes obtained

from CND and ENM. Thus obtained normal modes were

evaluated in comparison with (1) explicit solvent MD simulation,

(2) apo-holo conformational change, and (3) crystallographic B-

factor. We observed that CND correlated better with MD

simulation than ENM. CND and ENM fit equally well to the

apo-holo conformational changes of 13 pairs of proteins [13]. In

many cases CND and ENM were comparable in terms of

correlation between atomic mean-square fluctuations (MSF) and

experimentally observed B-factor. In addition, we found that the

normal modes obtained from CND are more collective than those

from ENM.

Theory

1) Normal Mode Analysis (NMA)
Let a protein molecule consist of N atoms with coordinates

ri = (xi, yi, zi)
T = (xi,1, xi,2, xi,3)T, where i = 1,…,N and superscript

‘T’ indicates transpose operation. We remark the native structure

with the superscript ‘09 in the following sections, e.g. ri
0 indicates

the native coordinate of atom i. In NMA, the potential energy of

the native structure (U({ri
0})) is assumed to be at a local minimum,

and therefore, the potential energy at any instance (t) can be

approximated as

U rif gð Þ& 1

2

X
i,j

ri{r0
i

� �T
Kij ri{r0

i

� �
ð1Þ

where constant and higher order terms are neglected and

Kij~
L2U

LriLrj

" #0

: ð2Þ

Based on this linearized potential function, the equation of motion

is given as

mirri~{
XN

j~1

Kij rj{r0
j

� �
ð3Þ

where mi is the mass of the atom i and rri denotes the second-order

derivative of coordinate with respect to time. By introducing the

generalized mass-weighted coordinates rk~ria

ffiffiffiffiffi
mi
p

, where

a,b[ 1,2,3f g and k~3 i{1ð Þza, l~3 j{1ð Þzb, the elements of

the mass-weighted Hessian H are represented as,

Hkl~Kij,ab=
ffiffiffiffiffiffiffiffiffiffi
mimj
p ð4Þ

Solving the above equation of motion (eq. 3, 4) reduces to solving

the eigenvalue problem in generalized mass-weighted coordinates,

Hv~v2v, ð5Þ

the result of which is a set of normal modes, i.e., eigenvalues vk
2

and the corresponding eigenvectors nk (k = 1,…,3N).

2) Contact Number Diffusion (CND) Model
In CND two atoms (i and j) are defined to be locally interacting

when the corresponding residues are separated by at most w

residues along the chain. To implement this we introduce an NxN

matrix h the element of which is 1 if two atoms are locally

interacting and 0 otherwise.

One of the most essential ingredients of CND is non-local

contact number (ni) defined as

ni~
1

N

XN

j

r dij

� �
1{hij

� �
ð6Þ

where r is a non-negative monotonically decreasing function of

the distance (dij) between atoms i and j. This definition of contact

number is a slight modification of those used in previous studies

[16–18]. In the present study the functional form of r(dij) is,

r dij

� �
~rij~

1

1zexp d2
ij{d2

cut

� �
=2s2

h i , ð7Þ

where dcut is a cutoff distance (5 Å in the current study) and s
determines the steepness of the sigmoidal function.

Contact Number Diffusion Model of Protein Dynamics
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The energy function of CND is given as

UCND~
A

2

XN

i~1

XN

j~i

r2
ijhijz

B

2

XN

i~1

XN

j~i

r2
ijhij ni{nj

� �2

{
XN

i~1

XN

j~i

rijhijlij{
XN

i

nimi:

ð8Þ

The first two terms in the right-hand side of this equation model

the autonomous behavior of the system and the last two terms bias

the autonomous system to the native structure through the

Lagrange multipliers lij and mi. The first term on the right hand

side includes all local pairwise distances and destabilizes the local

structure. The second term on the right hand side penalizes

heterogeneity of the contact numbers along the polypeptide chain.

Therefore, the autonomous behavior of the system tends to unfold

the structure. The constants A and B are free positive parameters.

To obtain the native restraints we need to determine the values

of lij and mi, which is done by setting the Jacobian of the above

energy function

LUCND

Lxk,a
~
XN

i

Rki,ahki ArkizBrki nk{nið Þ2{lki

h i

z
XN

i

Lni

Lxk,a

� �
BDi{mi½ �

ð9Þ

to zero at the native structure. Here we define

Rij,a~{
1{rij

� �
rij

s2
xi,a{xj,a

� �
, ð10Þ

Di~
XN

j

r2
ijhij ni{nj

� �
: ð11Þ

This Di term can be interpreted as a diffusion of contact

numbers along the polypeptide chain. That is, if ni in the

summation is large compared to its neighboring atoms, Di is large

and the atom i tends to move to the direction where its contact

number ni will decrease (or the neighboring atoms will diffuse

away). A solution to LUCND=Lxk,a

	 
0
~0 is

l0
ij~Ar0

ijzBr0
ij n0

i {n0
j

� �2

ð12AÞ

m0
i ~B

XN

j

hij r0
ij

� �2

n0
i {n0

j

� �
: ð12BÞ

Here equation (12A) is meaningful only for local pairs.

It is worth explaining the behavior of the model in terms of the

force (Eq. 9). As for the local pairs (the first term on the right hand

side of Eq. 9), the term Arki originating from the first term of Eq. 8

tends to break the local structure. This tendency is strengthened by

the term Brki nk{nið Þ2 originating from the second term of Eq. 8

especially if two atoms have very different contact numbers. That

is, a local pair of atoms, one with a large contact number and the

other with a small contact number, will strongly repel each other.

If both atoms have similar contact numbers, whether large or

small, the repulsion is not so strong. Nevertheless, this autonomous

behavior is corrected by the native constraint lki
0 (c.f. Eq. 12A),

which represents the intrinsic tendency for specific local structures

of the given protein. The second term on the right hand side of Eq.

9 contains the diffusion term Di so that an atom with a relatively

large contact number (compared to its local neighbors) tends to

move to a less crowded region in space whereas an atom with a

relatively small contact number to a more crowded region so that

the contact number tends to be uniform along the polypeptide

chain. Again, this autonomous behavior is corrected by the native

constraint mi
0 (c.f. Eq. 12B), which represents the intrinsic

tendency of atomic burial (or hydrophobicity) of the native protein

structure. Note that restraining the contact number (with protein

atoms) implicitly restrains the number of contacts with solvent

atoms to the value that is favored in the native structure. In this

manner, the diffusion term Di together with the native constraint

term mi
0 models protein-solvent interactions implicitly. In

summary, the autonomous terms, representing the default

behavior of a feature-less generic polypeptide chain, tend to break

local and non-local structures, the former by repulsive forces

between local pairs and the latter by uniforming contact numbers;

the constraint terms correct this autonomous behavior by

counterbalancing it with the opposing forces produced at the

native structure.

Now that we have determined the multipliers lij
0 and mi

0, we

can obtain the Hessian at the native condition. The Hessian can

be written as a 363 matrix each element of which is an N6N

matrix. Each such block is defined as,

Kab~ Mað ÞT CMbz Mað ÞT Qbz Qað ÞT MbzGab

h i0

ð13Þ

where we defined the following matrices,

Mij,a~
Lni

Lxj,a

� �0

~dij

X
k

Rik,a

� �0

1{hikð Þ

{ 1{dij

� �
Rij,a

� �0

1{hij

� �
,

ð14AÞ

Cij~dijB
X

k

hik r0
ik

� �2
{ 1{dij

� �
Bhij r0

ij

� �2

, ð14BÞ

Qij,a~2dijB
X

k

Rik,a

� �0

hikr0
ik n0

i {n0
k

� �

{2 1{dij

� �
B Rij,a

� �0

hijr
0
ij n0

i {n0
j

� �
,

ð14CÞ
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Gij,ab~dij

X
k

Rik,a

� �0

Rik,b

� �0

hik AzB n0
i {n0

k

� �	 


{ 1{dij

� �
Rij,a

� �0

Rij,b

� �0

hij AzB n0
i {n0

j

� �h i
:

ð14DÞ

3) Elastic Network Model (ENM)
The elastic network model describes a protein structure as a set

of atoms interconnected by a network of Hookean springs [4]. The

potential energy function for the ENM is given by,

UENM~
AENM

2

XN

i~1

XN

j~i

cij dij{d0
ij

� �2

, ð18Þ

where cij are the spring constants and AENM is a phenomological

constant that we set to unity. The Jacobian of UENM is given as,

LUENM

Lxk,a
~
XN

i~1

XN

j~i

cij dij{d0
ij

� � Ldij

Lxk,a
, ð19Þ

and the mass-unweighted Hessian at the native configuration is

given as,

L2UENM

Lxk,aLxl,b

 !0

~
XN

i~1

XN

j~i

cij

Ldij

Lxk,a

� �0 Ldij

Lxl,b

� �0

: ð20Þ

An N6N block of the mass-unweighted Hessian matrix is given as

Kab,ENM , the (i,j) element of which is given as,

KENM
ij,ab ~dij

X
k=i

cik

x0
i,a{x0

k,b

� �
x0

i,b{x0
k,b

� �
d0

ik

� �2

{ 1{dij

� �
cij

x0
i,a{x0

j,a

� �
x0

i,b{x0
j,b

� �
d0

ij

� �2
:

ð21Þ

In the present study we defined

cij~exp {
1

2

d0
ij

dcut

 !2
2
4

3
5 ð22Þ

where dcut is 5 Å, in accordance with previous works [12,13].

In comparison with the contact number diffusion model, a

model analogous to ENM can be formulated. By setting hij~1 for

all i, j in eq. (8), we have

UCND~
A

2

XN

i~1

XN

j~i

r2
ij{

XN

i~1

XN

j~i

l0
ijrij (hij~1 for all i,j) ð23Þ

where ni~0 for all i (c.f. Eq. 6) and l0
ij~Ar0

ij (c.f. Eq. 12A).

Substituting these lij
0 values in eq. (23) under native condition we

get

Figure 1. Dominance of low-frequency modes. Cumulative eigenvalues of covariance matrix normalized by sum of eigenvalues obtained from
CND, ENM and MD simulation for ADKA. a) The trend over all the modes, and b) the trend over 100 lowest-frequency modes.
doi:10.1371/journal.pone.0091347.g001
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UCND~
A

2

XN

i~1

XN

j~i

r2
ij{2rijr

0
ij

h i

~
A

2

XN

i~1

XN

j~i

rij{r0
ij

� �2

{
A

2

XN

i~1

XN

j~i

r0
ij

� �2

ð24Þ

The second term in the right-hand side of eq. (24) is a constant,

which only shifts the absolute value of the energy. The first termPN
i,j

rij{r0
ij

� �2

is analogous to the standard ENM potential energy

function (eq. (18)). This indicates that, in essence, ENM is a special

case of CND where the window size is sufficiently large.

Results

1) Low-frequency Modes are More Dominant in CND
than in ENM and MD

In normal mode analysis low-frequency modes are often

analyzed to gain insight about collective motions of a protein.

We compared the distribution of eigenvalues of the covariance

matrices obtained from CND and ENM as well as a MD trajectory

of ligand-free adenylate kinase from Escherichia coli (referred to as

ADKA in the following) (Figure 1). Note that the covariance

matrices were analyzed instead of Hessian matrices so that the

MD trajectory can be compared with normal modes. The CND

normal modes saturated more rapidly than ENM normal modes

and MD principal modes, whereas ENM normal modes saturated

more slowly than MD principal modes (Figure 1a). The first 50

low-frequency modes in CND accounted for the 82% of the

overall variance (corresponding values for ENM and MD were

23% and 28%, respectively; Figure 1b). In summary, the first few

collective low-frequency modes of CND largely dominated the

overall dynamics compared to ENM and even MD.

2) Dynamics from CND Model are Correlated with MD
Simulation

To compare the dynamics obtained from CND and ENM to

MD simulation more concretely, we compared CND and ENM

normal modes (100 lowest-frequency normal modes) to the MD

principal modes (30 lowest-frequency modes) by cumulative least-

square fitting (see Materials and Methods, Figure 2). Trivially,

more normal modes would fit better to a principal mode, as

demonstrated by a monotonic decrease of relative RMSD with

increasing number of normal modes (Figure 2a). The areas under

the curve (AUC) obtained from the cumulative fitting of the

principal MD modes by ENM and CND normal modes were

compared (Figure 2b). We observed that the AUCs of the ENM

modes were greater than those of CND modes for majority of the

principal modes. This indicates that the normal modes of CND

better capture principal modes of the MD simulation.

We also compared mean square fluctuations (MSFs) obtained

from the CND and ENM models to those of the MD simulation

(Figure 3). We observed that the correlation coefficient between

MSFs of CND and MD was 0.89, which was higher than that

between ENM and MD (0.83). A closer inspection of the MSFs

revealed that the fluctuation of CND especially better correlated

with MD around residues 130 to 150. These observations can be

further verified from Figure 3b where the differences of NMA-

based MSF from MD-based MSF are plotted.

3) Normal Modes Obtained from CND and ENM fit
Experimental Conformational Changes

One of the advantages of studying the normal modes obtained

from ENM is that these modes often reproduce a conformational

change between two conformations of a protein [11,13]. In

general conformational changes can be studied by comparing apo-

holo pairs, and Table 1 lists 13 such pairs used in the current

study. We compared the performances of the CND and ENM

models in the same way as we did for the comparison with the MD

simulation. That is, we fitted the conformational changes by linear

combinations of up to the first 100 low-frequency normal modes

obtained from CND or ENM (Figure 4). We observed that in all

the pairs fitting by CND and ENM are comparable (Figure 5).

The conformational changes can be fitted by using normal

modes based on either holo or apo structures. Previous studies

have shown that ENM based on holo structures, rather than apo

structures, can better fit conformational changes [11,13]. This is

indeed confirmed in the present study (Table 2). But, we also find

that the same trend applies to CND. Hence, CND is comparable

to ENM in this respect.

It is interesting to note that larger conformational changes are

better fitted by CND or ENM normal modes. For example, more

than 70% of the conformational changes in 1USG-1USI apo-holo

pair (7.32 Å) or in 4AKE-1AKE apo-holo pair (7.19 Å) are

covered by the first 100 CND or ENM normal modes (Table 2).

On the other hand, small conformational changes are harder to fit

by CND or ENM normal modes. For example, less than 12% of

the conformational changes in 1CA2-1CIM (0.64 Å) and 1KPA-

1KPE (0.53 Å) pairs are covered by the first 100 CND or ENM

normal modes.

4) Suppression of Fluctuation of Exposed Atoms
One of the drawbacks of ENM is that it often yields extremely

large fluctuations of a small number of the surface or exposed

atoms, presumably due to the lack of protein-solvent interactions

(e.g., Figure 6a). In CND protein-solvent interactions are implicitly

taken into account through the contact number restraints. As a

result, the extreme fluctuations of surface atoms are indeed

suppressed (e.g., Figure 6b).

We compared the average fluctuation of exposed atoms (atoms

with nonzero accessible surface area (ASA) [19]) in CND and

ENM. The normalized MSFs averaged over exposed atoms (see

Figure 7a legend) in CND were smaller than that in ENM in

majority of the cases (Figure 7a, see also Figure S2). In accordance

with this, the normalized MSFs averaged over buried atoms (i.e.

atoms with zero ASA) in CND were larger than that obtained

from ENM. Overall, the variation of fluctuation between exposed

and buried atoms in CND is relatively smaller than that in ENM.

This behavior of CND results from the multi-body nature of the

contact numbers. Figure 7b showed that by decreasing the

parameter A of CND the variation of fluctuation between exposed

and buried atoms can be increased.

5) Fluctuation of CND Modes are Correlated with
Experimental Thermal Fluctuations

The normal mode analysis obtains thermal motion of a protein

around its equilibrium configuration. Therefore, the thermal

characteristics obtained from such models, i.e. MSF, can be

compared with experimental B-factors. For the 26 structures in the

current dataset ENM showed slightly better correlations than

CND (Figure 8a: in 9 cases they were comparable; 5 cases, CND

was better; 12 cases, ENM was better).

Contact Number Diffusion Model of Protein Dynamics
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By dividing the 26 structures into apo and holo structures we

found that in general for holo structures ENM performed better

than CND, while for apo structures CND performed slightly better

than ENM (Figure 8a). For example, in case of the 1RF5-1RF4

pair of apo-holo structures CND showed better correlation than

ENM (0.59 over 0.42) in the apo condition, whereas ENM showed

better correlation than CND (0.59 over 0.39) in the holo

condition. This suggests that specific non-local interactions as in

ENM may play a greater role in more compact (e.g., ligand-

bound) structures.

We also compared MSFs of CND and ENM computed using

the first 100 low-frequency modes, rather than all the modes, with

crystallographic B-factor (Figure 8b). The low-frequency modes of

CND showed significantly higher correlation to B-factor than

ENM for all the structures, except for human protein kinase C

interacting protein 1 (1KPA and 1KPE; these are an apo-holo

pair). A comparison of MSFs in CND using the low-frequency

modes (the average correlation over all the structures was 0.57)

and all the modes (0.54) showed that the correlation with B-factor

did not improve significantly (P-value of Students’ t-test was

2.98561021) by using all the modes. A similar comparison in

ENM (0.35 against 0.56) showed that the correlations improved

significantly (P-value was 8.104610214). These results were in

accordance with Figure 1, showing the dominance of low-

frequency modes in CND in overall dynamics.

Discussion

The normal mode vibrations of a protein characterize its

large-scale motions. Such vibrational motions were successfully

used previously to predict the conformational change. Also it

has been observed that in many cases normal modes match well

to the MD simulation data [10,20]. In NMA the construction of

a network model is crucial to obtain meaningful dynamic

characteristics of the protein [9]. In all-atom ENM such a

network is obtained by modeling each protein atom as a node

and the potential energy of the system depends on the pairwise

distance information among all the nodes [4,9]. This indicates

that for an N-atom system we need N2 number of distance

information to restrain the motion of a protein to its native

state. This implies that the primary sequence of a protein has to

somehow contain O(N2) information to exhibit its function via

the dynamic structure. On the other hand if each atom in an

N-atom system includes only its local structural properties then

the number of restraints can be considerably reduced. In fact,

specific local structures are known to play a very important role

in determining the native structure [21]. In CND we restrained

the local structure of a protein molecule by a sum
PN

i,j hijrijlij

where h was defined with the window size of 1 (i.e. tri-peptide

segments). By using this in CND the number of restraints are in

the order of N (Table S1). Despite the fact that CND uses fewer

restraints than ENM we observed that CND captures native

protein dynamics well. We have observed in many respects the

results obtained under these two models are comparable.

Let us consider the similarities and differences between CND

and ENM. As far as local interactions are concerned, the two

models are essentially identical. In fact, ENM is a limiting case of

CND when the window size covers the complete polypeptide

chain (see theory section discussing ENM, eqns. 23, 24). As for the

non-local interactions, ENM requires all specific pairwise interac-

tions in the same manner as local interactions, whereas CND

requires only semi-specific interactions in terms of contact

Figure 2. Fitting of CND and ENM normal modes to MD principal modes. Least-square fitting of 1st and 2nd principal modes (in (a)) by linear
combinations of 100 lowest-frequency normal modes obtained from CND and ENM. The normal modes were taken cumulatively to fit to the MD data
(by varying Nm, see methods). The relative RMSD is defined in the section 5 of Materials and Methods. b) The area under the curve (AUC) obtained
from the fitting of first 30 principal modes. The AUC obtained for each principal mode was obtained from the sum of the relative RMSD over 100
normal modes. The error bars were calculated by bootstrapping over all the AUC values. A larger AUC for the higher principal modes results from
poorer fitting by the normal modes. This indicates that the lowest 100 normal modes less efficiently fit higher principal modes and more efficiently fit
lower principal modes.
doi:10.1371/journal.pone.0091347.g002

Contact Number Diffusion Model of Protein Dynamics

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e91347



numbers. In previous studies it was indicated that contact numbers

included significant amount of information about the native

structure [22–24]. Our study further indicates that the non-local

contact numbers also include significant amount of information

about the native dynamics. Another difference between CND and

ENM is the way of imposing native restraints. While ENM

imposes native restraints as harmonic potential, CND imposes

native restraints by the Lagrange multipliers in conjunction with

autonomous terms. This formulation of CND makes it an

extensible model. For any fine-tuning of the energy function one

may add more terms in the autonomous part and the

corresponding Lagrange multipliers. One distinguishing feature

of CND is the autonomous diffusion term (the second term of right

hand side of eq. (8)). This term penalizes a large difference in

contact numbers between locally contacting atoms; thus these

atoms tend to have similar contact numbers, whereas atoms that

are far apart may have very different contact numbers. In this

Figure 3. Mean square fluctuation (MSF) of CND, ENM and MD. a) MSF of residues averaged over atoms obtained from CND, ENM normal
modes and MD simulation for ADKA. The MSF from the normal mode analyses were scaled so that the average MSF over all residues were equal. The
bottom panel indicates color-coded DSSP secondary structures [65], where b-strand are in blue, helices are in orange, turns are in black and others are
in gray. b) Difference of MSF between MD and CND (or ENM). The horizontal gray line indicates identical MSF from MD and NMA given for visual
guidance.
doi:10.1371/journal.pone.0091347.g003
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sense, CND models phase separation of high and low contact

numbers, or of hydrophobic and hydrophilic residues.

One of the important findings in the present study was good

fitting of conformational changes by CND normal modes (Figure 4,

5). Figure 4 showed comparable performance of CND and ENM

in the cumulative least-square fitting of the first 100 low-frequency

modes of ADKA. This is further exemplified in Figure 9. The

experimentally observed conformational change from apo to holo

structures (Figure 9b) is nearly identical to the conformational

changes obtained from the best-fitting linear combination of the 5

lowest-frequency normal modes vectors in CND (Figure 9c) and

ENM (Figure 9d). In particular, closing of helices and b-strands in

two distal lobes are similar in Figure 9b–d.

We observed that CND suppressed motion of the exposed

atoms. The variation of normalized fluctuation between exposed

and buried atoms is observed to be less in CND than in ENM

(Figure 7a). Such an analysis indicated that the magnitudes of

fluctuation of buried atom relative to the exposed atom from CND

is greater than that obtained from ENM. For holo cases we

observed that such significant motion of the buried atoms is due to

the exclusion of ligand molecule in NMA or no consideration of

hydrogen-bond network. In 3 out of 13 holo structures we

observed that such highly fluctuating buried atoms in CND

interact with the ligand molecules, which are not included in NMA

of the holo structures. One such example of highly flexible buried

atom is shown in Figure 10, where the side-chain amide nitrogen

of Arg123 in holo ADK (1AKE) shows high MSF and also

interacts with the ligand molecule. Such a high fluctuation is not

observed in ENM. Moreover, the atoms that specifically interact

with the ligand molecule show significantly lower fluctuation than

the non-interacting atoms in ENM. Note that, in ENM all the

non-local interactions are specific, whereas in CND those

interactions are semi-specific. Do specific interactions among the

protein atoms near its active site dictate protein-ligand interaction

specificity? Such an analysis may provide valuable information

Table 1. Dataset of apo and holo structures [30–49], corresponding root-mean square deviation (RMSD) (all-atom
superimpositiona) and previous studies on the data setb.

Apo Holo
RMSD
(Å)

Large-scale domain
motion [50]

Side-chain
flexibility [51]

Prediction of holo
conformation [52]

PDB IDc Chain ID Resolution (Å) PDB ID Chain ID Resolution (Å)

1USG A 1.53 1USI A 1.80 7.32 od x o

4AKE A 2.20 1AKE A 2.00 7.19 o o x

1SW5 A 1.80 1SW2 A 2.10 5.29 o x o

1K5H A 2.50 1Q0Q A 1.90 5.28 o x x

1Y3Q A 1.90 1Y3N A 1.60 4.91 o x o

1GUD A 1.71 1RPJ A 1.80 4.72 o x o

1RF5 A 2.30 1RF4 A 2.20 3.92 o x o

1ZA1 A 2.20 1Q95 A 2.46 2.57 o x x

1HOO B 2.30 1CG0 A 2.50 2.51 o x x

1TJD A 2.50 1EEJ B 1.90 2.38 o x x

1JEJ A 2.50 1JG6 A 1.90 2.31 o x o

1CA2 A 2.00 1CIM A 2.10 0.64 x o x

1KPA B 2.00 1KPE B 1.80 0.53 x o x

aRMSD were obtained by superimposition of apo structure to holo structure [66].
bPreviously the data set were used in predicting conformational change between apo and holo conformation by a linear combination normal modes obtained under
ENM by Wako and Endo [13]. This data set was part of other studies as referred in last three columns [50–52]. The large scale domain motion was studied by Brylinski
and Skolnick [50] for almost all the pair of structures. Side-chain flexibility between apo and holo structures of few pairs in the present data set was studied by
Najmanovich et al [51]. A few pair of structures was part of docking studies to predict holo conformation from apo conformation by Seeliger and De Groot [52].
cIn the current study a protein structure is often referred by its 4-letter PDB identifier [57].
d‘o’ and ‘x’ indicates (in last three columns) the whether or not the corresponding pair was previously included in a study cited at the column header.
doi:10.1371/journal.pone.0091347.t001

Figure 4. Fitting of CND and ENM normal modes to a
conformational change. The relative RMSD obtained from the
least-square fitting of the conformational change between 4AKE (apo)
and 1AKE (holo) by the 100 lowest frequency normal modes of apo
structure.
doi:10.1371/journal.pone.0091347.g004
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regarding the mechanism of the binding process and would be an

interesting subject for future studies.

The thermal characteristics in CND and ENM can be obtained

from all the vibrational modes or only the low-frequency modes.

When all the vibrational modes were used the MSF from ENM

correlated with the B-factors slightly better than CND. When only

the first 100 low-frequency modes were used CND correlated

much better than ENM (Figure 8). The correlations with B-factor

saturated by first 100 low-frequency modes in CND but not in

ENM (from the comparison between Figure 8a and b). In Figure 8,

1KPA and 1KPE were the exceptions those showed significantly

low correlation with the B-factor. This can be explained on the

basis of dimeric structure of 1KPA or 1KPE. In the present

analysis we performed NMA of the chain B of those structures

(Table 1), and that completely disregards any inter-subunit

contacts. The correlation of MSF (from all the modes) of chain

B with B-factor significantly improved from 0.18 to 0.55 by NMA

of the whole complex (considering chain A and B together); the

corresponding correlation in ENM improved from 0.30 to 0.63.

The correlation of MSF from CND with B-factor depends on

the parameters of CND (Figure S1). For example, the correlation

with B-factor increased with increasing parameter A of CND

(Figure S3). However, when parameter B was set to zero a

negative correlation (20.25) was observed, which indicated the

importance of semi-specific non-local interaction.

There exist a number of models for NMA that use stability of

protein local structure or contact numbers. For example, the

chemical network model introduced by Kondrashov et al. [25]

classifies inter-residue connections into different types of Hookean

springs depending on the residue types. This model successfully

predicted crystallographic B-factors by separating bonded and

non-bonded interactions in the Hessian matrix. Ming and

Brüschweiler [26] introduced the reorientational contact-weighted

ENM to predict experimental N–H bond order parameters. A

different approach was taken by Halle [27], who related atomic

mean square displacements to the reciprocal of local density of an

atom. In his work Halle approximated that an atom undergoes

harmonic fluctuation under a potential of mean force (‘local

density model’). Later, Li and Brüschweiler [28] introduced an all-

atom contact model by the combination of the reorientational

contact-weighted ENM and the local density model. All of the

above models were introduced mainly to predict X-ray crystallo-

graphic B-factor. However, CND model is not aimed to predict

only B-factors. Rather, it is aimed to obtain functionally relevant

collective motion of a protein. Atilgan et al. [29] also showed that

by separating the Hessian matrix into ‘essential’ (including specific

contacts) and ‘residual’ (including non-specific contacts) parts the

collective motions of a protein could be identified only from the

essential part. In their study the ‘essential’ part included both local

and non-local contacts. However, in the present study we

separated local and non-local contacts on the basis of chemical

structure.

Conclusion
We introduced and evaluated a new model, the contact number

diffusion model, to understand collective dynamics of protein

structures. This model aims to model local phase separation

between hydrophilic and hydrophobic components in native

protein structures. While this ‘‘phase separation’’ (i.e., ‘‘hydro-

phobic in, hydrophilic out’’) is believed to be an important

determinant of the protein structure, it was not possible with ENM

to relate this principle to protein dynamics, and hence protein

function. However, rather than treating hydrophobicity directly,

we have used the contact number which is dually related to

hydrophobicity [14,15]. Most importantly, the result of this study

has shown that CND can yield dynamic characteristics compa-

rable to ENM in spite of much fewer restraints than ENM.

Additional benefits of CND over ENM are reduced surface

fluctuations (Figure 6) and more collective motions (Figure 1). The

dynamic features obtained from our model correlated well with

the MD simulation result (Figure 2, 3). Moreover, low-frequency

modes of CND matched apo-holo conformational changes

Figure 5. Comparison of fitting of CND and ENM normal modes to conformational changes. The area under the curve (AUC) obtained by
fitting conformational change between apo and holo structure by a cumulative linear combination of 100 lowest-frequency normal modes (see
methods and equation (28)). The apo and holo structures were separated by a dotted line.
doi:10.1371/journal.pone.0091347.g005
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(Figure 4, 5) and correlated well with B-factors (Figure 7). The

CND model generalizes ENM, where the latter is a limiting case of

the former (eq. (18B)). In summary, the results presented here

suggest non-local or long-range interactions need not to be fully

specific for reproducing native protein dynamics when the solvent

effect is taken into account.

Materials and Methods

1) Data Set of Protein Structures
We took 13 pair of protein structures [30–49] (Table 1) from a

previous work by Wako and Endo [13], where each pair included

an apo (ligand unbound) and a holo (ligand bound) structures. In

all the apo-holo pairs, the numbers of atoms in the apo and holo

structures were identical. In most cases the data set included an

apo structure that shows large-scale domain motions upon ligand

binding (Table 1) [50]. For three pairs of apo-holo structures

ligand binding involves side-chain conformational changes [51].

Moreover, 6 of the 13 pairs were used to predict holo structures

from the apo structures in a docking benchmark study [52].

To compare surface fluctuations in CND and ENM we have

used all the above 26 structures and additionally Ubiquitin

structure (1UBQ [53], chain A, residues 1 to 72).

2) Determining CND Parameters
In CND there are four free parameters, viz. A, B, w and s. A few

initial runs indicated that A need to be three orders of magnitude

larger than B in order to fit apo-holo conformational change. To

find an optimum set of parameters we fixed B at 1 unit and varied

A as 1000, 5000 or 10000 unit, w as 1, 3 or 5 and s as 1, 2 or 3,

and obtained normal modes from CND of apo ‘adenylate kinase’

(PDB ID: 4AKE, referred to as ADKA in the following, where

superscript ‘A’ indicates apo structure), apo ‘L-Leu binding

protein’ (1USG) and apo ‘human protein kinase C interacting

protein 19 (1KPA) (Figure S1). We chose above three proteins

because (1) the 1USG-1USI pair shows largest conformational

change (Table 1), (2) the 4AKE-1AKE pair is one of the standard

model systems to analyze a large conformational change, and (3)

the 1KPA-1KPE pair shows very small conformational change to

which ENM of the apo structure hardly fits. Apart from fitting to

the apo-holo conformational changes, the MSF obtained from

NMA of different runs were correlated with the B-factor of the

structures. The results of this parameter search were compared to

that from ENM. We observed from Figure S1 that better results

are obtained at highest A (10000 unit) and when s is 2 or 3 and w

is 1. Therefore, we set w = 1 and s = 2 Å to perform NMA using

CND of all the 26 structures (Table 1). Note that, the value of dcut

was set at 5 Å. The value of A = 10000 may appear very large

compared to B = 1. Nevertheless, the contribution of terms

involving A to the Hessian is limited to the band-diagonal

elements (Eq. 14D), and the only contribution to the other off-

band-diagonal elements comes from terms with B and the number

of off-band-diagonal elements are far greater than the number of

band-diagonal elements. Therefore, however small the value of B

(as long as it is not zero), the contact number diffusion term

imposes a non-negligible effect on the dynamics.

3) Normal Mode Analysis
We performed NMA of all-atom system using CND and ENM.

The source codes to perform NMA of CND were written in the R

programming language [54] and that of ENM was written in C

[12,55]. In CND and ENM we set dcut to 5 Å.

We diagonalized mass-weighted Hessian matrix to obtain all

non-zero eigenvectors (3N-6 in number). The DSYEVR routine of

LAPACK was used for diagonalization [56]. The molecular

figures were obtained by using jV [57,58] for which the atomic

displacement vectors were prepared by a combination of perl and

R scripts.

4) Molecular Dynamics Simulation
ADKA (4AKE) was subjected to a 12 ns NVT molecular

dynamics simulation (time step 1 fs) in explicit water using the

GROMACS program [59]. The system was set up in the following

way. The Amber99SB force field was used for protein [60].

Initially the protein molecule was immersed in a 55665675 Å3

simulation box containing 7322 TIP3P water molecules [61] with

periodic boundary condition. The particle mesh Ewald method

was used for electrostatic interactions with 12 Å cutoff and a

dumping factor 0.26 Å21. Adding 24 Na+ and 20 Cl- ions

neutralized four additional charges of the protein and the final

concentrations of ions were 0.15M. The final system consisted of

25351 atoms. Such a system was energy minimized in two steps.

Table 2. Coverage of conformational changea obtained from
the least-square fit to the conformational change between
apo and holo by normal mode vectors.

Number of low-frequency modes 5 100

Normal mode model ENM CND ENM CND

Apo

1USG 70.36 70.20 74.77 77.57

4AKE 62.69 66.82 76.67 77.06

1SW5 59.70 56.20 67.38 69.80

1K5H 9.57 8.26 40.34 38.31

1Y3Q 64.10 64.88 74.92 76.36

1GUD 55.88 63.48 69.43 71.18

1RF5 49.98 52.45 61.09 60.88

1ZA1 20.38 20.46 40.83 40.14

1HOO 16.50 19.80 37.78 40.14

1TJD 24.83 29.08 41.51 47.24

1JEJ 41.12 44.02 56.67 57.45

1CA2 3.15 0.91 11.05 5.00

1KPA 1.69 4.08 9.71 11.97

Holo

1USI 43.27 51.76 61.07 65.36

1AKE 21.41 28.66 53.81 60.96

1SW2 44.46 37.66 56.78 60.90

1Q0Q 9.72 7.60 24.35 33.26

1Y3N 49.56 57.18 66.82 72.95

1RPJ 40.08 37.06 56.91 61.06

1RF4 31.62 25.84 50.91 53.89

1Q95 8.56 10.55 37.31 38.80

1CG0 10.59 12.44 22.73 27.17

1EEJ 26.79 30.46 46.77 48.41

1JG6 34.29 36.37 48.57 52.95

1CIM 0.65 0.93 10.24 5.86

1KPE 2.36 4.37 15.83 11.97

aThe coverage of conformational change is obtained from
100 1{RelativeRMSDð Þ. Its higher value indicates better fitting to the
conformational change.
doi:10.1371/journal.pone.0091347.t002
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Figure 6. Examples of surface fluctuations. Five lowest-frequency normal modes of Ubiquitin from ENM (a) and CND (b). The atomic
displacements from modes 1 to 5 are shown in blue, brown, cyan, green and magenta, respectively. The Ubiquitin structure is shown in the gray stick
model. Note the extremely large fluctuations of a small number of surface atoms in ENM modes (a). Such behavior is absent from CND modes (b).
doi:10.1371/journal.pone.0091347.g006

Figure 7. Suppression of surface fluctuations in CND. a) Average normalized MSF over exposed and buried atoms for 26 structures in our data
set. The exposed and buried atoms were identified from solvent accessible surface area (ASA), where buried atoms have zero ASA. The MSF of all
atoms were normalized so that the average over all atoms is unity in CND and ENM, and therefore the normalized MSF values are unitless. b) Average
MSF (in the unit of Å2) over exposed and buried atoms by varying parameter A of CND for ADKA. By increasing A the variation of fluctuation between
exposed and buried atoms can be decreased, where exposed atoms follow more pronounced changes than buried atoms.
doi:10.1371/journal.pone.0091347.g007
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First the system was subjected to the conjugate gradient energy

minimization with positional restraints on heavy atoms until the

maximum force became less than 100 kJ/mol/nm. Further

conjugate gradient minimization was applied without positional

restraints (with the same tolerance). Before production run the

system was subjected to 100 ps NPT simulation (time step 0.5 fs)

at P = 1 atm and T = 300 K to equilibrate against Berendsen

barostat [62], where positions of the heavy atoms were restrained

to the initial structure of the simulation. After equilibration the

system size becomes 54.0663.8673.7 Å3. In the production run

we saved 12000 snapshots in total for 12 ns. Here, the covalent

bonds between hydrogen atoms and heavy atoms were constrained

with the LINCS method [63]. For the analysis of the trajectory we

discarded the first 2 ns of the trajectory.

5) Least-square Fitting of Normal Modes to
Conformational Changes

To define a conformational change between apo and holo

structures we superimposed the former to the latter. The difference

Figure 8. Correlation between MSF and crystallographic B-factors. Correlation between MSF and X-ray crystallographic B-factor for the 26
structures in the data set obtained from CND and ENM. The right and left panels (separated by a dotted-line) include results from apo and holo
structures, respectively. The errorbars were calculated using bootstrapping. The MSFs were obtained from all the vibrational modes (in (a)), and first
100 low-frequency modes (in (b)).
doi:10.1371/journal.pone.0091347.g008
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between the superimposed coordinates of apo and holo structures

defines the conformational change (e.g. YAH represents a vector of

mass-weighted conformational change from apo to holo). We

approximated the normalized conformational change (i.e. �YY AH or
�YY HA, where �YY is obtained by normalizing Y) by a linear

combinations of the normal modes [13]. For example, an apo-

holo conformational change is approximated as,

�YY AH&
XNm

i

f A
i vA

i , ð23AÞ

where vA
i is the i-th normal mode of the apo structure, f A

i is its

coefficient, and Nm is the number of normal modes considered in

the fitting. In a similar way, we approximate holo-apo conforma-

tional change by

�YY HA&
XNm

i

f H
i vH

i , ð23BÞ

where, vH
i is the i-th normal mode of the holo structure and f H

i is

its coefficient. The above procedure is similar to the least-square

fitting of the conformational change by a set of normal mode

vectors discussed in the reference [13].

We performed the above least-square fitting by sets of normal

mode vectors to the conformational change cumulatively (i.e. by

varying Nm from 1 to 100) obtained from the CND and ENM. We

evaluate the performance of such fitting by �YY AH{
PNm

i

f A
i vA

i

����
���� or

�YY HA{
PNm

i

f H
i vH

i

����
����, which we call relative RMSD in the following.

This quantity is bounded between 1 (i.e. complete failure in fitting)

and 0 (i.e. complete fitting).

We also analyzed MD trajectory by principal component

analysis [64], and fitted 30 lowest-frequency principal components

of ADKA by cumulative addition of 100 low-frequency CND or

ENM modes.

Figure 9. Experimental conformational change expressed in terms of linear combination of normal modes. a) Tube representation of
ADKa structure. The helices (H1, H2 and H3) and b-strand that show large-scale motion during the apo to holo conformational change were
annotated. The helices are numbered from the amino-acid sequence, where ‘H19 represent the first helix from the N-terminal. b) The apo-holo
conformational change is shown by atomic displacement vectors in blue. c,d) The atomic displacement vectors (in black and red, respectively) were
obtained from least-square fitting of the first 5 low-frequency modes to the apo-holo conformational change. In (c) and (d) normal modes in CND and
ENM were used respectively.
doi:10.1371/journal.pone.0091347.g009
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Supporting Information

Figure S1 Determination of CND parameters. We

searched for the optimal set of parameters (A, w and s) by varying

them for the structures (4AKE, 1USG, and 1KPA). Among these

structures the former two show a large conformational change

between the apo and holo conformations and 1KPA includes small

structural change between apo to holo. We compared the maximum

and minimum relative RMSD obtained by fitting the conforma-

tional change to the first 100 normal modes (left panel, solid circles

indicate maximum relative RMSD by using only the first mode,

open circles minimum relative RMSD by using all the 100 modes).

In the right panel we compared correlation between the B-factor

and the MSF obtained from all the normal modes. In all the figures

the points shown in red are obtained from NMA of ENM.

(DOC)

Figure S2 Comparison of maximum atomic fluctuation
in CND and ENM. Maximum of the normalized MSF over

exposed and buried atoms for 26 structures in our data set

(Table 1, main text). The MSF of all atoms were normalized so

that the average over all atoms was unity in CND and ENM.

(DOC)

Figure S3 Influence of parameter A of CND to the
correlation between B-factor and MSF. Correlation be-

tween MSF and B-factor with increasing values of parameter A of

CND for ADKA. The horizontal dotted line (in magenta) indicates

correlation obtained from ENM of ADKA.

(DOC)

Table S1 Number of restraints used on the apo structure in

CND model.

(DOC)
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49. McCarthy AA, Haebel PW, Törrönen A, Rybin V, Baker EN, et al. (2000)

Crystal structure of the protein disulfide bond isomerase, DsbC, from

Escherichia coli. Nat Struct Biol 7: 196–199.

50. Brylinski M, Skolnick J (2008) What is the relationship between the global

structures of apo and holo proteins? Proteins 70: 363–377.

51. Najmanovich R, Kuttner J, Sobolev V, Edelman M (2000) Side-chain flexibility

in proteins upon ligand binding. Proteins 39: 261–268.

52. Seeliger D, De Groot BL (2010) Conformational Transitions upon Ligand

Binding: Holo-Structure Prediction from Apo Conformations. PLoS Comput

Biol 6: 9.

53. Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8

A resolution. J Mol Biol 194: 531–544.

54. R Development Core Team R (2011) R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing 1: 409.

55. Dasgupta B, Nakamura H, Kinjo AR (2014) Rigid-body motions of interacting

proteins dominate multispecific binding of ubiquitin in a shape-dependent

manner. Proteins 82: 77–89.

56. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, et al. (1999) LAPACK

Users’ Guide. Third. Philadelphia, PA: Society for Industrial and Applied

Mathematics.

57. Standley DM, Kinjo AR, Kinoshita K, Nakamura H (2008) Protein structure

databases with new web services for structural biology and biomedical research.

Briefings Bioinf 9: 276–285.

58. Kinoshita K, Nakamura H (2004) eF-site and PDBjViewer: database and viewer

for protein functional sites. Bioinformatics 20: 1329–1330.
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