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Abstract

A procedure to achieve the semi-automatic relative image normalization of multitemporal remote images of an agricultural
scene called ARIN was developed using the following procedures: 1) defining the same parcel of selected vegetative
pseudo-invariant features (VPIFs) in each multitemporal image; 2) extracting data concerning the VPIF spectral bands from
each image; 3) calculating the correction factors (CFs) for each image band to fit each image band to the average value of
the image series; and 4) obtaining the normalized images by linear transformation of each original image band through the
corresponding CF. ARIN software was developed to semi-automatically perform the ARIN procedure. We have validated
ARIN using seven GeoEye-1 satellite images taken over the same location in Southern Spain from early April to October 2010
at an interval of approximately 3 to 4 weeks. The following three VPIFs were chosen: citrus orchards (CIT), olive orchards
(OLI) and poplar groves (POP). In the ARIN-normalized images, the range, standard deviation (s. d.) and root mean square
error (RMSE) of the spectral bands and vegetation indices were considerably reduced compared to the original images,
regardless of the VPIF or the combination of VPIFs selected for normalization, which demonstrates the method’s efficacy.
The correlation coefficients between the CFs among VPIFs for any spectral band (and all bands overall) were calculated to
be at least 0.85 and were significant at P=0.95, indicating that the normalization procedure was comparably performed
regardless of the VPIF chosen. ARIN method was designed only for agricultural and forestry landscapes where VPIFs can be
identified.
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Introduction

Remote sensing observations are usually instantaneous and are
affected by many factors, such as atmospheric conditions, sun
angle, viewing angle, dynamic changes in the soil and plant-
atmosphere system, and changes in the sensor calibration over
time [1,2]. The goal of radiometric corrections is to remove or
compensate for all of the above effects. Exceptions to this
procedure include corrections for actual changes in the ground
target to retrieve surface reflectance (absolute correction) or to
normalize the digital counts obtained under the different
conditions and to establish them on a common scale (relative
correction) [2].

Absolute radiometric corrections (ARC) make it possible to
relate the digital counts in satellite image data to radiance at the
surface of the Earth. This relation requires sensor calibration
coeflicients, an atmospheric correction algorithm and related input
data among other corrections [2]. A considerable amount of
research has been performed to address the problem of correcting
images for atmospheric effects. Radiometric normalization of
remote imagery requires all of the previously mentioned informa-
tion at the time of image acquisition. For most historically remote
scenes, these data are not available, and for planned acquisitions,
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the data may be difficult to obtain [3]. Consequently, absolute
surface reflectance retrieval may not always be practical [2].
Relative radiometric normalization (RRN) based on the
radiometric information intrinsic to the images themselves is an
alternative whenever absolute surface radiances are not required.
RRN of imagery is important for many applications, such as land
cover change detection, mosaicking and tracking vegetation
indices over time, and supervised and unsupervised land cover
classification [2,3,4,5]. Several methods have been proposed for
the RRN of multitemporal images collected under different
conditions at different times [2,4]. All methods operate under
the assumption that the relationship between the at-sensor
radiances recorded at two different times from regions of constant
reflectance is spatially homogeneous and can be approximated by
linear functions. The most difficult and time-consuming aspect of
these methods is the determination of suitable time-invariant
features that will serve as the basis for normalization [3]. Ya’allah
and Saradjian [5] developed an automatic normalization method
based on regression applied to unchanged pixels in urban areas.
The proposed method is based on efficient selection of unchanged
pixels through image difference histogram modeling using
available spectral bands and calculation of relevant coefficients
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Figure 1. ARIN flowchart.
doi:10.1371/journal.pone.0091275.g001

for dark, gray and bright pixels in each band. Yang and Lo [6]
studied five methods of RRN applied to Landsat images. This
method includes pseudo-invariant features, radiometric control
set, image regression, no-change set determined from scatter-
grams, and histogram matching, all of which require the use of a
reference-subject image pair. Factors that affect the performance
of RRN include land-use/land-cover distribution, water-land
proportion and topographic relief [6]. Ground reference data
are expensive and difficult to acquire for most remotely sensed
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(satellite) images, and the selection of PIF is generally subjective
[2]. In practice, vegetative targets of absolutely constant reflec-
tance do not exist. Therefore, the concept of PIF is adopted with
the assumption that the reflectance is constant over time [2].
Several authors have developed powerful statistical approaches
to determine invariant features for the atmospheric normalization
of image pairs. Hall et al. (1991) [7] and Coppin and Bauwer
(2004) [8] developed radiometric rectification techniques for land
cover change detection through the use of landscape elements
whose reflectance values are nearly constant over time. Hall et al.
(1991) [7] selected PIFs with two sets of data, bright and dark. The
two sets were selected in different images by visual inspection. Du
et al. (2002) [2] developed a new procedure for radiometric
normalization between multitemporal images of the same area. In
this method, the selection of PIF is performed statistically, and
quality control and principal component analysis (PCA) are used
to find linear relationships between temporal images of the same
area. Several authors have proposed a change-detection technique
called multivariate alteration detection (MAD), which is invariant
to linear and affine scaling [3,9]. Thus, if MAD was used for
change detection applications, pre-processing by linear radiomet-
ric normalization is superfluous. An iteratively re-weighted
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modification of the MAD transformation (IR-MAD) established a
better background of no change upon which significant changes
can be examined [10-11]. Some authors have used the IR-MAD
transformation for relative radiometric normalization of mult-
temporal images and MAD transformation for change detection
[12]. Others converted digital number values to reflectance
directly by relative radiometric normalization using IR-MAD
[13]. Baisantry et al. (2012; [14]) performed RRN using MAD
transformation and selected PIFs automatically through the Bin-
Division Method. Kim et al. (2012; [15]) developed a method
designed to automatically extract pseudo-invariant features for the
RRN of hyperion hyperspectral images and used band-to-band
linear regression. Philpot and Ansty (2013; [16]) developed an
analytical formula that relates pseudo-invariant features (PIFs) to
the radiometric properties of the scenes. The formula is then
inverted to yield an estimate of the ratio of the transmission spectra
of the two images given the path radiance for each scene and a set
of invariant features. Sadeghi et al. (2013) [17] proposed an
automated RRN to adjust a non-linear based on artificial neural
network and unchanged pixels.

QUAC (quick atmospheric correction) and FLAASH (fast line-
of-sight atmospheric analysis of spectral hypercubes) are atmo-
spheric correction modules used in ENVI image processing
software (Exelis-Visual Information Solutions, Inc. 4990 Pearl
East Circle Boulder, CO 80301 USA, http://www.exelisvis.com).
QUAC is an on-the-fly method for use in real-time data processing
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that determines parameters directly from the information
contained in the scene using the observed pixel spectra [18].
FLAASH is a physics-based correction method built on MOD-
TRAN4 atmospheric correction software [19]. FLAASH allows
the user to define all parameters that influence atmospheric
absorption and scattering, such as relative solar position,
atmospheric, aerosol, and scattering models, and visibility
parameters, among others. The advantage of QUAC is that an
in-scene approach is easily implemented, while FLAASH uses a
very diverse atmospheric ancillary parameter, and the data are
therefore highly tunable by the image expert. Hu et al. (2011, [20])
compared the FLAASH and MAD normalization methods on
Landsat time-series images. Other authors applied FLAASH to
change detection applications [21].

To our knowledge, no information is available on relative image
normalization (ARIN) of multitemporal agricultural scenes based
on VPIFs or on the development of software to achieve this semi-
automatically. Our specific objectives were as follows: 1) to
describe the ARIN procedure and implement it in the GeoEye-1
multitemporal image series; 2) to comparatively study the selected
VPIFs in relation to the ARIN method efficacy; 3) to compare
ARIN-transformed multitemporal images to the original (ORI)
and to the FLAASH and QUAC calibrated images; and 4) to
develop semi-automatic software to normalize any set of multi-
temporal remote imagery by identifying VPIFs.
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Figure 3. ARIN_output: normalized images (“transf’’) using CIT VPIF.
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Materials and Methods
1. ARIN Procedure and Software

The procedure developed for the relative normalization of
multitemporal images consists of the following steps: 1) selecting
one or several VPIFs; 2) defining the same parcel or parcels for
each selected VPIF in each multitemporal image; 3) extracting the
VPIF spectral band data for each image; 4) calculating the
correction factors (CFs) for each image band to fit each band value
to the average value of the image series; and 5) obtaining the
normalized images by transforming each band through CF linear
functions. Further information of VPIF and of vegetative variant
features (VVF) will be given later in this article. Basically they
coincide with permanent orchards/mature tree plantations and
annual/herbaceous crops, respectively. We select the VPIF parcels
at random, among many parcels of very similar characteristics
available in our agricultural scene. Main steps of ARIN procedure
can be achieved by conventional image processing menus
including the parcel definition, the spectral band data extraction,
and the image liner transformation through the estimated
correction factors (CF), as will be later defined. The CF can be
calculate manually or in a excel sheet once the VPIF spectral band
values has been extracted.

Environment for Visualizing Images (ENVI 4.8 and ENVI 5.0,
Exelis-Visual Information Solutions) software was used to visualize
and process the images. Generally, mature non-deciduous tree
orchards and permanent lawn green cover are eligible to be
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VPIFs, and at least one must be present in the scene for
normalization. A parcel of the selected VPIF needs to be drawn
through the ROI/SHAPE menu in one image and then moved to
the rest of the image series through the VECTOR/SHAPE menu
(convert the ROI to a DXF vector). The B, G, R and NIR spectral
bands of the selected VPIF can be extracted for each image
through the ROI/SHAPE Tool Statistical menu.

The CFs of any VPIF spectral band, for example, the G band of
the image i1 (CFg;), are defined as the ratio G,,/G;, where G, is
the average original value of the G band in the original image
(ORI), and G; is the band value of image i. Then, each band of
each ORI will be transformed by applying the corresponding
linear CF through the Basic Tool-Band Math menu. The
normalized image will be composed of the transformed bands
through the Layer Stacking menu. To semi-automatically perform
the previously described steps (steps 2 through 5), the so-called
ARIN software and procedure were developed [22,23]. The
ARIN flowchart is shown in Figure 1. The main ARIN software
screens are shown in Figures 2, 3, and 4. A partial view of the
vegetative pseudo-invariant features (VPIFs) used in this study is
shown in Figure 5.

2. ARIN Procedure Validation

2.1 Study location and GeoEye-1 images series. Seven
multi-spectral and panchromatic GeoEye-1 satellite images
(GeoEye-1, 2012), each covering approximately 100 km®, were
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¥4

Figure 5. Partial view of the vegetative pseudo-invariant features (VPIFs) used in this study. a) CIT-citrus, b) OLI-olives, and c) POP-poplar
groves. The VPIF SHP files are transposed to other multi-temporal images during the ARIN process.
doi:10.1371/journal.pone.0091275.g005
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Figure 6. a) and b) Spectral band evolution in pseudo-invariant (OLI, olive) and variant (wheat) features; c) and d) NDVI evolution in
pseudo-invariant features (CIT, citrus; OLI, olives, and POP, poplar groves); and d) winter wheat and corn as representative
cropping systems that have variant vegetative features. The abscissa is the remote image timing (V1- early April to V7 - early October, interval
of approximately one month; data are presented as the means, and vertical bars represent the standard deviation (s. d.) of six parcels of
approximately 3 ha each).

doi:10.1371/journal.pone.0091275.9006
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Figure 7. Wheat crop evolution. A: early April, grain filling growth stage, showing intense green color and therefore high NDVI values; B: early
May, mid-senescence, green-yellowish color, and mid-NDVI values; C: late May/early June, late senescence, predominant yellow color, low NDVI
values; D: stubble, typical of mid-June throughout the summer. These growth stages roughly coincide with the V1, V2, V3 and V5 satellite images
taken, respectively, and with the wheat NDVI data evolution shown in Figure 6d.

doi:10.1371/journal.pone.0091275.g007

taken over the same area of LaVentilla village (a province of
Cordoba, southern Spain) from April to October 2010. The
geographic coordinates (Universe Transverse Mercator System,
Zone 30 North) in the upper-left corner of the images were
X=315206 m/Y =4186133 m. The images were taken on April
9, May 1, May 23, June 20, July 9, August 22 and October 2 and
are named V1 to V7, respectively. The panchromatic image was
0.50 m pixels”!, and the multi-spectral-image spatial resolution
was 2.00 m pixels ', providing information on blue (B, 450
510 nm), green (G, 510-580 nm), red (R, 655-690 nm) and near-
infrared (NIR, 780-920 nm) spectral bands. The swath width was
15.2 km. The ground was predominantly flat, with an average
slope grade of 2.12%. The georeferencing accuracy of the
GeoLye-1 images was improved by using ground control points
(GCPs) and image-to-image co-registration [24].

2.2 Land uses and selected variant and invariant
vegetative features. The LaVentilla area was surveyed ap-
proximately every 3 weeks from April to October 2010 to identify
the crop of each parcel, its stage of development, and any key
agricultural features. A total of 23 land uses were identified in the
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Geo-Eyes-1 scenes. Vegetative systems, such as alfalfa, avena,
broad beans, citrus orchards, chickpeas, corn, cotton, Mediterra-
nean forest, olive orchards, potatoes, sunflower, rapeseed, poplar
groves and winter wheat, among others, were identified. Addi-
tionally, non-vegetative land uses, such as rivers, water reservoirs,
paved roads, bare soil roads, and civil buildings, were also found.
The phenotypes of some herbaceous vegetation parcels, such as
wheat, sunflower, corn and cotton, varied considerably throughout
the growing season and can thus be designated variant vegetative
features (VVFs). The phenotypes of high density adult tree
plantation parcels, such as citrus orchards (CIT), olive orchards
(OLI), and poplar groves (POP), demonstrate much less vegetation
change throughout the cropping season. Thus, they can be
designated pseudo-invariant vegetative features (VPIFs). To show
the differences between VVF and VPIF parcels, the spectral bands
and NDVI vegetative index evolution were determined in four
parcels of approximately 0.3-0.5 ha for each selected VPIF (CIT,
OLI and POP) and for wheat (WHT) and corn (CRN), as
representatives of the winter (autumn-sown) and summer (spring-

sown) VVEs.
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Figure 8. Corn crop evolution. A: late May and early June, corn at the vegetative growing phase, characterize with increasing NDVI values, and
coinciding with the V3-V4 satellite images of this stage; B: flowering stage, July, V5 image; C: senescence period, which take place in the second part
of August (NDVI values decrease; satellite image V6); and D: corn stubble, beyond mid-September (satellite image V7). Corn NDVI data evolution

shown in Figure 6d.
doi:10.1371/journal.pone.0091275.g008

2.3 Implementation of the ARIN procedure. CIT, OLI
and POP were used as VPIIs. Four parcels of approximately 0.3—
0.5 ha were drawn for each VPIF using the regions of interest
(ROI-VECTOR)/SHAPE menu of ENVI. The ARIN procedure
provided the B, G, R and NIR spectral bands, the NDVI and the
G/B vegetative indices for the original and transformed/normal-
ized images. Normalization was achieved using a single VPIF and
by validating the other two VPIFs or by using two VPIFs
consecutively and validating with the other.

2.4. Absolute corrections using QUAC and FLAASH. To
allow comparison with ARIN, the original V1 to V7 images were
transformed using QUAC and FLAASH software. QUAC
software requires the presence of dark and bright pixels in the
images to serve as a basis for the implemented corrections.
FLAASH was implemented by fitting to GeoEye-1 sensor
specifications and to the atmospheric mid-latitude summer
geographic area where the satellite images were taken. This area
was aerosol rural, the highest image ground elevation was 150 m,
the water column retrieval parameter was 2.92, and the scene
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visibility parameter was 100 km for all images except for the V7
image (140 km).

2.5. Statistical parameters. VPII" and VVT parcels spectral
band and vegetation index data were subjected to analysis of
variance and means were separated at the 5% level of significance
by the least significance difference (LSD) test with the use of SPSS
Statistical-21 software (IBM North America, New York, NY,
United States). For any original or transformed image, the VPIF
mean, range, standard deviation (s. d.) and root mean standard
error (RMSE) ofthe band spectral values, NDVI and B/G
vegetation indices were determined. The root mean square error
(RMSE) of the series of images was calculated by the following
equation [25]:

RMSE=

i=1

A
> [-x.) /n} ,

Where n is the number of images, X; is the values of each image
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Figure 9. Canopy structure of citrus (A and B) and olive (C and D) orchards vary very little throughout the year and particularly in
the main growing season (April to October). Photographs A and C were taken early May and B and D late September, roughly coinciding with
the V2 and V7 satellite images of this study. In photograph D can be appreciated the orange fruit but not the olives in photograph D at the distance
where the photograph was taken. Due to the little changes in the trees canopy and soil surface covered the NDVI values of citrus and olive are very
similar throughout the growing season (Figure 6d), and can be used as pseudo-invariant features for radiometric normalization as shown in this

study.
doi:10.1371/journal.pone.0091275.g009

and X,,, is the average of all images. The smaller range, s. d. and
RMSE of data in a given series of images indicated more
uniformity among images than in the others.

The correlation coefficients and the level of significance
between CFs were determined across VPIFs for each image band
and for all images.

Results and Comments

1. Evolution of Vegetative Variant and Pseudo-invariant
Features

Generally, the evolution of the spectral bands and the NDVI
throughout the growing season varied to a greater extent in VVFs
than in VPIFs (Figures 6, 7, 8, and 9). For example, the NIR band
average, range and s. d. for OLI were 466, 240, and 81 (Figure 6a),
respectively, whereas for WHT, these values were 3494, 2683 and
936, respectively (Figure 6b), for the images series. Similarly, the
NDVI evolution varied significantly in VVFs, while it was

PLOS ONE | www.plosone.org

relatively stable in VPIFs. For example, the NDVI mean, range
and s. d. were 0.63, 0.064 and 0.024 for CIT and 0.34, 0.70 and
0.26 for WHT, respectively (Figure 6¢ & d). These data confirmed
that the phenotype, morphology, development, and observable
physical characteristics of perennial plantation are very stable
throughout the agricultural season for VPIFs (Figure 9), while the
opposite is true for the herbaceous cropping systems (VVFs,
Figures 7 and 8). This observation has been obvious to field
workers and agronomists for many years. This simple, evident
finding is very important for land use classification of agricultural
scenes through remote sensing.

2. Relative Radiometric Normalization

2.1 Using a single VPIF. The spectral band values of the
original GeoEye-1 image series for the given VPIFs varied
considerably among the images (Table 1). For example, the CIT
B band digital values for the images V2 and V6 were 241 and 322,
respectively, and the POP NIR values for the same images were
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RMSE
94
74i

s.d.2
100 g
80 g

Range
245 g
234 g

Statistical
Mean
889 g
8799

v7
890a
758a

Vé6
1013b
992b

V5
913ab
869ab

va
1015b
918b

V3
770a
797a

V2
838a
893ab

Series of images’

1
782a
928b

CIT-transf.
OLI-transf.

Spectral Band ImagesType

'Series of images: from V1, early April, to V7, October.

Table 1. Cont.

VPIF

2Abbreviations: ORI; original images; CIT, citrus orchards; OLI, Olive orchards; POP, poplars grove; -transf., transformed images; B, blue; G, Green; R, red; NIR, near infra-red; S. d., standard deviation; RMSE, Root Mean Square Error.

3For each VPIF, spectral band and image type the data of the multitemporal images followed by the same letter are not significantly different at P=0.05.

“For each VPIF and spectral band statistical data of image types followed by a different letter are significantly different at P=0.05.

doi:10.1371/journal.pone.0091275.t001
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995 and 785, respectively (Table 1). Consequently, the vegetation
indices varied considerably among the original images at any given
VPIF (Table 2). For example, the CIT NDVI values varied from
0.64 at V3 to 0.81 at V7, and the POP NDVI values ranged from
0.62 at V3 to 0.81 at V2. This wide variation in the VPIF band
digital counts and vegetation indices among images indicates that
the radiometric normalization process is highly recommended for
a comparative follow-up of cropping systems and other environ-
mental features in any multitemporal image series.

Generally, the range and s. d. of the spectral bands and
vegetation indices in the ARIN-transformed images were
considerably reduced compared to those of the original images
(Table 1 and 2), regardless the VPIF considered. First, it should
be noted that for a single transformation (using just one VPIF),
the spectral bands and vegetation indices of the VPIF taken as
reference produce exactly the same value for any transformed
image. This value is the average of the image series, for example,
329 and 1051 for the CIT B and NIR spectral bands,
respectively. Additionally, the corresponding range and s. d.
are negligible.

The ARIN process was an efficient normalization process
regardless of the single VPIF or the combination of VPIFs chosen.
The selection of the single VPIF used for the ARIN normalization
process only slightly affected the normalization results of other
VPIFs. For example, the range, s. d. and RMSE of the CIT VPIF
B and NIR bands at the POP transformed images series were 40,
15 and 14 and 288, 117 and 108, respectively, whereas these
values were 304, 111 and 103 and 546, 218 and 202 in the original
images (Table 1). Similarly, the range, s. d. and RMSE values for
the R band of the CIT VPIF in the OLI transformed images were
55,20 and 19, compared to 208, 70 and 65 for the original images,
respectively (Table 1).

2.2 Using two VPIFs consecutively. For each selected
VPIF, the normalization effect caused by the ARIN procedure was
also determined using two VPIFs consecutively; thus, the potential
slight stationary phenotypic variation could be balanced for each
VPIF. Applying the ARIN process using two VPIFs consecutively
is also an effective method to normalize the multitemporal series of
images. For example, after normalization with the pseudo-
mvariants OLI+POP, the CIT NDVI range, s. d. and RMSE of
the image series were 0.08, 0.03 and 0.02, respectively, in
comparison to 0.20, 0.07 and 0.07for the original images (Table 2).
Similarly, the consecutive implementation of ARIN CIT+POP
resulted in OLI NDVI range, s. d. and RMSE values of 0.14, 0.05
and 0.04 in comparison to 0.21, 0.10 and 0.09 for the original
images, respectively.

2.3 VPIF correlation factors. The VPIF spectral band CFs
used to implement the ARIN linear normalization procedure
varied greatly among the spectral bands for any given image
(Figure 4) and among images for any given spectral band.
Furthermore, the correlation coeflicients between the CFs among
the VPIFs for any spectral band and for all bands were found to be
at least 0.85 and were significant at P=0.95 or higher (Table 3).
This finding also demonstrates that the ARIN normalization
process is efficient regardless of the VPIF selected.

3. ARIN vs. QUAC and FLAASH

Generally, for the series of GeoEye-1 images studied, ARIN was
more efficient than QUAC and as efficient as FLAASH, varying
slightly with the VPIF selected. For example, if we consider the
VPIF CIT, the NDVI s. d. of the original, OLI+POP-transt.,
QUAC and FLAASH images were 0.07, 0.03, 0.05 and 0.08,
respectively, and the same statistics for the B/G index were 0.29,
0.06, 0.11 and 0.07 (Table 2). Considering the VPIF POP and the

March 2014 | Volume 9 | Issue 3 | e91275



s. d. and RMSE statistical, the results are better for ARIN CIT+
OLI-transf. (0.03 and 0.03) and FLAASH (0.03 and 0.03),
followed by QUAC (0.05 and 0.04) compared to the original
images (0.08 and 0.07) (Table 2). Considering the B/G index, the
ARIN-transf. procedure was also more effective than QUAC and
FLAASH in any VPIF studied.

Discussion

In our study, the VPIF spectral band and vegetation index
values of the original GeoEye-1 images varied considerably among
the images, indicating that the calibration or radiometric
normalization process is highly recommended for comparative
follow-up of cropping systems. In fact, the calibration and
normalization of multitemporal images has been a challenge in
remote sensing for decades [1-16].

ARC relates image digital counts to radiance at the surface of
the Earth and requires sensor calibration coefficients, an
atmospheric correction algorithm and related input data, among
other corrections [2]. For most historical images, such data are
not available, and for planned acquisitions, they may be difficult
to obtain [3]. Consequently, ARC retrieval is not often a
practical method [2]. RRN is based on the radiometric
information intrinsic to the images themselves and is an
alternative whenever absolute surface radiances are not required,
as in change detection applications or for supervised land cover
classification [3,4].

To our knowledge, no RRN methods for multitemporal
remote images using VPIF as a reference have previously been
developed. The concept of PIF is adopted with the assumption
that the reflectance is constant over time [2]. Moreover, any
individual plant, cropping system, or vegetative feature varies
with time, and therefore, there is a unanimous agreement that
the reflectance is not an absolute invariant. As we have shown,
most agricultural areas have vegetative parcels that change
drastically throughout the growing season, such as annual
herbaceous crops (VVFs), while others features, such as dense
forest, permanent lawn or dense non-deciduous orchard
plantations, remain comparatively invariant throughout the
growing season (VPIFs). We have shown drastic differences
between the selected VVFs and VPIFs in the spectral bands and
vegetation index evolution. The phenotypic or morphological
aspects of VPIFs are well known, and therefore, the light
reflectance changes very little throughout the annual growing
season, which is a key factor for the land use classification of
agricultural scenes through remote sensing. Additionally, the
pseudo-invariability of VPIF is the characteristic used in the
ARIN procedure to normalize a set of images of a common
scene.

ARIN method was developed for the radiometric normalization
of multitemporal images of agricultural and forestry scenes where
vegetative pseudo-invariant features (VPIFs) can be identified. In
our work, we have shown that selected mature CIT (citrus
orchards), OLI (olive orchards) and POP (poplar groves) in a
Mediterranean landscape can be chosen efficiently as VPIFs
throughout spring and summer. Generally, the ARIN normaliza-
tion process efficiently produced relatively uniform data for all
images, regardless of the single VPIF or the combination of VPIFs
chosen. This result is likely because the range and s. d. of the
spectral bands and vegetation indices in the transformed images
are considerably reduced compared to those of the original
images.

Regardless of the single VPIF used to estimate the band CFs for
the image series transformation, the results were relatively
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normalized when compared to those of the original images. The
VPIF spectral band correction factors (CFs) used to implement the
ARIN linear normalization procedure varied greatly among
spectral bands for any given image and among images for any
given spectral band. Furthermore, the high and statistically
significant correlation coefficients between the CFs among the
VPIIs for any spectral band and for all bands suggest that the
ARIN normalization process was efficient regardless of the VPIF
selected.

Implementing the ARIN procedure consecutively using two
VPIF was also an efficient method of normalizing the multi-
temporal images series. Generally, for the multitemporal series of
GeoEye-1 images studied, ARIN was more efficient than QUAC
and as efficient as the FLAASH absolute calibration method. The
advantage of the ARIN method is that weather calibration
parameters are not necessary, whereas they are required for the
highly tunable FLAASH methods.

VPIF size is clearly related to the image spatial resolution and
should have a sufficient number of pixels to provide a solid average
of the selected vegetative feature. With medium to high spatial
resolution images from the satellite GeoEye-1 (i.e., <5 m pixel),
VPIF size normally coincides with uniform parcels of approxi-
mately 0.3 to 0.5 ha or larger. Moreover, ARIN can also be used
with very high spatial resolution images (i. ¢. 3 to 5 cm pixel) such
as those provided by unmanned aerial vehicles (UAV) [26]. In
UAYV images a VPIF size of 2 to 4 m? will cover a high number of
pixels to provide a solid pseudo-invariant vegetative feature
sample, and in practice, it may coincide with a non-deciduous
tree of 2 to 4 m”>. UAV images can be normalized through the
ARIN procedure avoiding the use of the barium sulfate standard
spectralon panel, which is placed in the middle of the field to
calibrate data [26].

Step-by-step implementation of the VPIF-based ARIN nor-
malization procedure through the available ENVI image-
processing tools is time consuming, and therefore, it is not
economically feasible. ARIN software [22] quickly and easily
executes ARIN and generates the transformed images; conse-
quently, its development is essential for the practical application
of the ARIN method. However ARIN method can be applied
only in any agricultural and forestry landscapes where a VPIF
can be identified.

Conclusions

A novel method for the radiometric normalization of multi-
temporal images, named ARIN, was developed to be used in
agricultural and forestry scenes where a vegetative pseudo-
invariant features (VPIFs) can be identified. This new procedure
identifies one common VPIF parcel in all scenes, extracts the
spectral band values of each image and transforms them to
common band values through linear transformation. We validated
ARIN using a series of GeoEye-1 satellite images of one scene.
ARIN worked correctly, regardless of the three VPIFs considered
(citrus orchards, olive orchards and poplar groves). The ARIN
method was slightly more efficient than the absolute calibration
QUAC method and as efficient as the highly tunable FLAASH
method, which uses solar position and weather calibration
parameters. Implementing the ARIN procedure through conven-
tional image processing is time consuming. The software ARIN
executes ARIN semi-automatically in an economically feasible
manner.
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Table 3. Correlation coefficients between the spectral band CFs of VPIF CIT, OLI and POP.

Spectral band

VPIF' B G R NIR Overall
CIT vs. OL 0.97%* 1.0%* 0.97%* 0.85* 0.96**
CIT vs. POP 0.98** 0.91* 0.92* 0.89* 0.93**
OLI vs. POP 0.99%* 0.92* 0.93%* 0.85* 0.92%*
Overall 0.97%* 0.93** 0.92%* 0.87** 0.93**
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