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Abstract

A procedure to achieve the semi-automatic relative image normalization of multitemporal remote images of an agricultural
scene called ARIN was developed using the following procedures: 1) defining the same parcel of selected vegetative
pseudo-invariant features (VPIFs) in each multitemporal image; 2) extracting data concerning the VPIF spectral bands from
each image; 3) calculating the correction factors (CFs) for each image band to fit each image band to the average value of
the image series; and 4) obtaining the normalized images by linear transformation of each original image band through the
corresponding CF. ARIN software was developed to semi-automatically perform the ARIN procedure. We have validated
ARIN using seven GeoEye-1 satellite images taken over the same location in Southern Spain from early April to October 2010
at an interval of approximately 3 to 4 weeks. The following three VPIFs were chosen: citrus orchards (CIT), olive orchards
(OLI) and poplar groves (POP). In the ARIN-normalized images, the range, standard deviation (s. d.) and root mean square
error (RMSE) of the spectral bands and vegetation indices were considerably reduced compared to the original images,
regardless of the VPIF or the combination of VPIFs selected for normalization, which demonstrates the method’s efficacy.
The correlation coefficients between the CFs among VPIFs for any spectral band (and all bands overall) were calculated to
be at least 0.85 and were significant at P = 0.95, indicating that the normalization procedure was comparably performed
regardless of the VPIF chosen. ARIN method was designed only for agricultural and forestry landscapes where VPIFs can be
identified.
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Introduction

Remote sensing observations are usually instantaneous and are

affected by many factors, such as atmospheric conditions, sun

angle, viewing angle, dynamic changes in the soil and plant–

atmosphere system, and changes in the sensor calibration over

time [1,2]. The goal of radiometric corrections is to remove or

compensate for all of the above effects. Exceptions to this

procedure include corrections for actual changes in the ground

target to retrieve surface reflectance (absolute correction) or to

normalize the digital counts obtained under the different

conditions and to establish them on a common scale (relative

correction) [2].

Absolute radiometric corrections (ARC) make it possible to

relate the digital counts in satellite image data to radiance at the

surface of the Earth. This relation requires sensor calibration

coefficients, an atmospheric correction algorithm and related input

data among other corrections [2]. A considerable amount of

research has been performed to address the problem of correcting

images for atmospheric effects. Radiometric normalization of

remote imagery requires all of the previously mentioned informa-

tion at the time of image acquisition. For most historically remote

scenes, these data are not available, and for planned acquisitions,

the data may be difficult to obtain [3]. Consequently, absolute

surface reflectance retrieval may not always be practical [2].

Relative radiometric normalization (RRN) based on the

radiometric information intrinsic to the images themselves is an

alternative whenever absolute surface radiances are not required.

RRN of imagery is important for many applications, such as land

cover change detection, mosaicking and tracking vegetation

indices over time, and supervised and unsupervised land cover

classification [2,3,4,5]. Several methods have been proposed for

the RRN of multitemporal images collected under different

conditions at different times [2,4]. All methods operate under

the assumption that the relationship between the at-sensor

radiances recorded at two different times from regions of constant

reflectance is spatially homogeneous and can be approximated by

linear functions. The most difficult and time-consuming aspect of

these methods is the determination of suitable time-invariant

features that will serve as the basis for normalization [3]. Ya’allah

and Saradjian [5] developed an automatic normalization method

based on regression applied to unchanged pixels in urban areas.

The proposed method is based on efficient selection of unchanged

pixels through image difference histogram modeling using

available spectral bands and calculation of relevant coefficients
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for dark, gray and bright pixels in each band. Yang and Lo [6]

studied five methods of RRN applied to Landsat images. This

method includes pseudo-invariant features, radiometric control

set, image regression, no-change set determined from scatter-

grams, and histogram matching, all of which require the use of a

reference-subject image pair. Factors that affect the performance

of RRN include land-use/land-cover distribution, water-land

proportion and topographic relief [6]. Ground reference data

are expensive and difficult to acquire for most remotely sensed

(satellite) images, and the selection of PIF is generally subjective

[2]. In practice, vegetative targets of absolutely constant reflec-

tance do not exist. Therefore, the concept of PIF is adopted with

the assumption that the reflectance is constant over time [2].

Several authors have developed powerful statistical approaches

to determine invariant features for the atmospheric normalization

of image pairs. Hall et al. (1991) [7] and Coppin and Bauwer

(2004) [8] developed radiometric rectification techniques for land

cover change detection through the use of landscape elements

whose reflectance values are nearly constant over time. Hall et al.

(1991) [7] selected PIFs with two sets of data, bright and dark. The

two sets were selected in different images by visual inspection. Du

et al. (2002) [2] developed a new procedure for radiometric

normalization between multitemporal images of the same area. In

this method, the selection of PIF is performed statistically, and

quality control and principal component analysis (PCA) are used

to find linear relationships between temporal images of the same

area. Several authors have proposed a change-detection technique

called multivariate alteration detection (MAD), which is invariant

to linear and affine scaling [3,9]. Thus, if MAD was used for

change detection applications, pre-processing by linear radiomet-

ric normalization is superfluous. An iteratively re-weighted

Figure 1. ARIN flowchart.
doi:10.1371/journal.pone.0091275.g001

Figure 2. View of radiometric correction available in ENVI5.0
and ARIN software as an extension.
doi:10.1371/journal.pone.0091275.g002
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modification of the MAD transformation (IR-MAD) established a

better background of no change upon which significant changes

can be examined [10–11]. Some authors have used the IR-MAD

transformation for relative radiometric normalization of multi-

temporal images and MAD transformation for change detection

[12]. Others converted digital number values to reflectance

directly by relative radiometric normalization using IR-MAD

[13]. Baisantry et al. (2012; [14]) performed RRN using MAD

transformation and selected PIFs automatically through the Bin-

Division Method. Kim et al. (2012; [15]) developed a method

designed to automatically extract pseudo-invariant features for the

RRN of hyperion hyperspectral images and used band-to-band

linear regression. Philpot and Ansty (2013; [16]) developed an

analytical formula that relates pseudo-invariant features (PIFs) to

the radiometric properties of the scenes. The formula is then

inverted to yield an estimate of the ratio of the transmission spectra

of the two images given the path radiance for each scene and a set

of invariant features. Sadeghi et al. (2013) [17] proposed an

automated RRN to adjust a non-linear based on artificial neural

network and unchanged pixels.

QUAC (quick atmospheric correction) and FLAASH (fast line-

of-sight atmospheric analysis of spectral hypercubes) are atmo-

spheric correction modules used in ENVI image processing

software (Exelis-Visual Information Solutions, Inc. 4990 Pearl

East Circle Boulder, CO 80301 USA, http://www.exelisvis.com).

QUAC is an on-the-fly method for use in real-time data processing

that determines parameters directly from the information

contained in the scene using the observed pixel spectra [18].

FLAASH is a physics-based correction method built on MOD-

TRAN4 atmospheric correction software [19]. FLAASH allows

the user to define all parameters that influence atmospheric

absorption and scattering, such as relative solar position,

atmospheric, aerosol, and scattering models, and visibility

parameters, among others. The advantage of QUAC is that an

in-scene approach is easily implemented, while FLAASH uses a

very diverse atmospheric ancillary parameter, and the data are

therefore highly tunable by the image expert. Hu et al. (2011, [20])

compared the FLAASH and MAD normalization methods on

Landsat time-series images. Other authors applied FLAASH to

change detection applications [21].

To our knowledge, no information is available on relative image

normalization (ARIN) of multitemporal agricultural scenes based

on VPIFs or on the development of software to achieve this semi-

automatically. Our specific objectives were as follows: 1) to

describe the ARIN procedure and implement it in the GeoEye-1

multitemporal image series; 2) to comparatively study the selected

VPIFs in relation to the ARIN method efficacy; 3) to compare

ARIN-transformed multitemporal images to the original (ORI)

and to the FLAASH and QUAC calibrated images; and 4) to

develop semi-automatic software to normalize any set of multi-

temporal remote imagery by identifying VPIFs.

Figure 3. ARIN_output: normalized images (‘‘transf’’) using CIT VPIF.
doi:10.1371/journal.pone.0091275.g003
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Materials and Methods

1. ARIN Procedure and Software
The procedure developed for the relative normalization of

multitemporal images consists of the following steps: 1) selecting

one or several VPIFs; 2) defining the same parcel or parcels for

each selected VPIF in each multitemporal image; 3) extracting the

VPIF spectral band data for each image; 4) calculating the

correction factors (CFs) for each image band to fit each band value

to the average value of the image series; and 5) obtaining the

normalized images by transforming each band through CF linear

functions. Further information of VPIF and of vegetative variant

features (VVF) will be given later in this article. Basically they

coincide with permanent orchards/mature tree plantations and

annual/herbaceous crops, respectively. We select the VPIF parcels

at random, among many parcels of very similar characteristics

available in our agricultural scene. Main steps of ARIN procedure

can be achieved by conventional image processing menus

including the parcel definition, the spectral band data extraction,

and the image liner transformation through the estimated

correction factors (CF), as will be later defined. The CF can be

calculate manually or in a excel sheet once the VPIF spectral band

values has been extracted.

Environment for Visualizing Images (ENVI 4.8 and ENVI 5.0,

Exelis-Visual Information Solutions) software was used to visualize

and process the images. Generally, mature non-deciduous tree

orchards and permanent lawn green cover are eligible to be

VPIFs, and at least one must be present in the scene for

normalization. A parcel of the selected VPIF needs to be drawn

through the ROI/SHAPE menu in one image and then moved to

the rest of the image series through the VECTOR/SHAPE menu

(convert the ROI to a DXF vector). The B, G, R and NIR spectral

bands of the selected VPIF can be extracted for each image

through the ROI/SHAPE Tool Statistical menu.

The CFs of any VPIF spectral band, for example, the G band of

the image i (CFGi), are defined as the ratio Gm/Gi, where Gm is

the average original value of the G band in the original image

(ORI), and Gi is the band value of image i. Then, each band of

each ORI will be transformed by applying the corresponding

linear CF through the Basic Tool-Band Math menu. The

normalized image will be composed of the transformed bands

through the Layer Stacking menu. To semi-automatically perform

the previously described steps (steps 2 through 5), the so-called

ARIN software and procedure were developed [22,23]. The

ARIN flowchart is shown in Figure 1. The main ARIN software

screens are shown in Figures 2, 3, and 4. A partial view of the

vegetative pseudo-invariant features (VPIFs) used in this study is

shown in Figure 5.

2. ARIN Procedure Validation
2.1 Study location and GeoEye-1 images series. Seven

multi-spectral and panchromatic GeoEye-1 satellite images

(GeoEye-1, 2012), each covering approximately 100 km2, were

Figure 4. ARIN_results: transposed.txt and Excel files. The VPIF spectral bands of the original images and the corresponding band correction
factors are shown.
doi:10.1371/journal.pone.0091275.g004
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Figure 5. Partial view of the vegetative pseudo-invariant features (VPIFs) used in this study. a) CIT-citrus, b) OLI-olives, and c) POP-poplar
groves. The VPIF SHP files are transposed to other multi-temporal images during the ARIN process.
doi:10.1371/journal.pone.0091275.g005

Figure 6. a) and b) Spectral band evolution in pseudo-invariant (OLI, olive) and variant (wheat) features; c) and d) NDVI evolution in
pseudo-invariant features (CIT, citrus; OLI, olives, and POP, poplar groves); and d) winter wheat and corn as representative
cropping systems that have variant vegetative features. The abscissa is the remote image timing (V1- early April to V7 - early October, interval
of approximately one month; data are presented as the means, and vertical bars represent the standard deviation (s. d.) of six parcels of
approximately 3 ha each).
doi:10.1371/journal.pone.0091275.g006
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taken over the same area of LaVentilla village (a province of

Cordoba, southern Spain) from April to October 2010. The

geographic coordinates (Universe Transverse Mercator System,

Zone 30 North) in the upper-left corner of the images were

X = 315206 m/Y = 4186133 m. The images were taken on April

9, May 1, May 23, June 20, July 9, August 22 and October 2 and

are named V1 to V7, respectively. The panchromatic image was

0.50 m pixels21, and the multi-spectral-image spatial resolution

was 2.00 m pixels21, providing information on blue (B, 450–

510 nm), green (G, 510–580 nm), red (R, 655–690 nm) and near-

infrared (NIR, 780–920 nm) spectral bands. The swath width was

15.2 km. The ground was predominantly flat, with an average

slope grade of 2.12%. The georeferencing accuracy of the

GeoEye-1 images was improved by using ground control points

(GCPs) and image-to-image co-registration [24].

2.2 Land uses and selected variant and invariant

vegetative features. The LaVentilla area was surveyed ap-

proximately every 3 weeks from April to October 2010 to identify

the crop of each parcel, its stage of development, and any key

agricultural features. A total of 23 land uses were identified in the

Geo-Eyes-1 scenes. Vegetative systems, such as alfalfa, avena,

broad beans, citrus orchards, chickpeas, corn, cotton, Mediterra-

nean forest, olive orchards, potatoes, sunflower, rapeseed, poplar

groves and winter wheat, among others, were identified. Addi-

tionally, non-vegetative land uses, such as rivers, water reservoirs,

paved roads, bare soil roads, and civil buildings, were also found.

The phenotypes of some herbaceous vegetation parcels, such as

wheat, sunflower, corn and cotton, varied considerably throughout

the growing season and can thus be designated variant vegetative

features (VVFs). The phenotypes of high density adult tree

plantation parcels, such as citrus orchards (CIT), olive orchards

(OLI), and poplar groves (POP), demonstrate much less vegetation

change throughout the cropping season. Thus, they can be

designated pseudo-invariant vegetative features (VPIFs). To show

the differences between VVF and VPIF parcels, the spectral bands

and NDVI vegetative index evolution were determined in four

parcels of approximately 0.3–0.5 ha for each selected VPIF (CIT,

OLI and POP) and for wheat (WHT) and corn (CRN), as

representatives of the winter (autumn-sown) and summer (spring-

sown) VVFs.

Figure 7. Wheat crop evolution. A: early April, grain filling growth stage, showing intense green color and therefore high NDVI values; B: early
May, mid-senescence, green-yellowish color, and mid-NDVI values; C: late May/early June, late senescence, predominant yellow color, low NDVI
values; D: stubble, typical of mid-June throughout the summer. These growth stages roughly coincide with the V1, V2, V3 and V5 satellite images
taken, respectively, and with the wheat NDVI data evolution shown in Figure 6d.
doi:10.1371/journal.pone.0091275.g007
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2.3 Implementation of the ARIN procedure. CIT, OLI

and POP were used as VPIFs. Four parcels of approximately 0.3–

0.5 ha were drawn for each VPIF using the regions of interest

(ROI-VECTOR)/SHAPE menu of ENVI. The ARIN procedure

provided the B, G, R and NIR spectral bands, the NDVI and the

G/B vegetative indices for the original and transformed/normal-

ized images. Normalization was achieved using a single VPIF and

by validating the other two VPIFs or by using two VPIFs

consecutively and validating with the other.

2.4. Absolute corrections using QUAC and FLAASH. To

allow comparison with ARIN, the original V1 to V7 images were

transformed using QUAC and FLAASH software. QUAC

software requires the presence of dark and bright pixels in the

images to serve as a basis for the implemented corrections.

FLAASH was implemented by fitting to GeoEye-1 sensor

specifications and to the atmospheric mid-latitude summer

geographic area where the satellite images were taken. This area

was aerosol rural, the highest image ground elevation was 150 m,

the water column retrieval parameter was 2.92, and the scene

visibility parameter was 100 km for all images except for the V7

image (140 km).

2.5. Statistical parameters. VPIF and VVF parcels spectral

band and vegetation index data were subjected to analysis of

variance and means were separated at the 5% level of significance

by the least significance difference (LSD) test with the use of SPSS

Statistical-21 software (IBM North America, New York, NY,

United States). For any original or transformed image, the VPIF

mean, range, standard deviation (s. d.) and root mean standard

error (RMSE) ofthe band spectral values, NDVI and B/G

vegetation indices were determined. The root mean square error

(RMSE) of the series of images was calculated by the following

equation [25]:

RMSE~
Xn

i~1

Xi{Xmð Þ2
h i

=n

" #1=2

,

Where n is the number of images, Xi is the values of each image

Figure 8. Corn crop evolution. A: late May and early June, corn at the vegetative growing phase, characterize with increasing NDVI values, and
coinciding with the V3–V4 satellite images of this stage; B: flowering stage, July, V5 image; C: senescence period, which take place in the second part
of August (NDVI values decrease; satellite image V6); and D: corn stubble, beyond mid-September (satellite image V7). Corn NDVI data evolution
shown in Figure 6d.
doi:10.1371/journal.pone.0091275.g008
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and Xm is the average of all images. The smaller range, s. d. and

RMSE of data in a given series of images indicated more

uniformity among images than in the others.

The correlation coefficients and the level of significance

between CFs were determined across VPIFs for each image band

and for all images.

Results and Comments

1. Evolution of Vegetative Variant and Pseudo-invariant
Features

Generally, the evolution of the spectral bands and the NDVI

throughout the growing season varied to a greater extent in VVFs

than in VPIFs (Figures 6, 7, 8, and 9). For example, the NIR band

average, range and s. d. for OLI were 466, 240, and 81 (Figure 6a),

respectively, whereas for WHT, these values were 3494, 2683 and

936, respectively (Figure 6b), for the images series. Similarly, the

NDVI evolution varied significantly in VVFs, while it was

relatively stable in VPIFs. For example, the NDVI mean, range

and s. d. were 0.63, 0.064 and 0.024 for CIT and 0.34, 0.70 and

0.26 for WHT, respectively (Figure 6c & d). These data confirmed

that the phenotype, morphology, development, and observable

physical characteristics of perennial plantation are very stable

throughout the agricultural season for VPIFs (Figure 9), while the

opposite is true for the herbaceous cropping systems (VVFs,

Figures 7 and 8). This observation has been obvious to field

workers and agronomists for many years. This simple, evident

finding is very important for land use classification of agricultural

scenes through remote sensing.

2. Relative Radiometric Normalization
2.1 Using a single VPIF. The spectral band values of the

original GeoEye-1 image series for the given VPIFs varied

considerably among the images (Table 1). For example, the CIT

B band digital values for the images V2 and V6 were 241 and 322,

respectively, and the POP NIR values for the same images were

Figure 9. Canopy structure of citrus (A and B) and olive (C and D) orchards vary very little throughout the year and particularly in
the main growing season (April to October). Photographs A and C were taken early May and B and D late September, roughly coinciding with
the V2 and V7 satellite images of this study. In photograph D can be appreciated the orange fruit but not the olives in photograph D at the distance
where the photograph was taken. Due to the little changes in the trees canopy and soil surface covered the NDVI values of citrus and olive are very
similar throughout the growing season (Figure 6d), and can be used as pseudo-invariant features for radiometric normalization as shown in this
study.
doi:10.1371/journal.pone.0091275.g009
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995 and 785, respectively (Table 1). Consequently, the vegetation

indices varied considerably among the original images at any given

VPIF (Table 2). For example, the CIT NDVI values varied from

0.64 at V3 to 0.81 at V7, and the POP NDVI values ranged from

0.62 at V3 to 0.81 at V2. This wide variation in the VPIF band

digital counts and vegetation indices among images indicates that

the radiometric normalization process is highly recommended for

a comparative follow-up of cropping systems and other environ-

mental features in any multitemporal image series.

Generally, the range and s. d. of the spectral bands and

vegetation indices in the ARIN-transformed images were

considerably reduced compared to those of the original images

(Table 1 and 2), regardless the VPIF considered. First, it should

be noted that for a single transformation (using just one VPIF),

the spectral bands and vegetation indices of the VPIF taken as

reference produce exactly the same value for any transformed

image. This value is the average of the image series, for example,

329 and 1051 for the CIT B and NIR spectral bands,

respectively. Additionally, the corresponding range and s. d.

are negligible.

The ARIN process was an efficient normalization process

regardless of the single VPIF or the combination of VPIFs chosen.

The selection of the single VPIF used for the ARIN normalization

process only slightly affected the normalization results of other

VPIFs. For example, the range, s. d. and RMSE of the CIT VPIF

B and NIR bands at the POP transformed images series were 40,

15 and 14 and 288, 117 and 108, respectively, whereas these

values were 304, 111 and 103 and 546, 218 and 202 in the original

images (Table 1). Similarly, the range, s. d. and RMSE values for

the R band of the CIT VPIF in the OLI transformed images were

55, 20 and 19, compared to 208, 70 and 65 for the original images,

respectively (Table 1).

2.2 Using two VPIFs consecutively. For each selected

VPIF, the normalization effect caused by the ARIN procedure was

also determined using two VPIFs consecutively; thus, the potential

slight stationary phenotypic variation could be balanced for each

VPIF. Applying the ARIN process using two VPIFs consecutively

is also an effective method to normalize the multitemporal series of

images. For example, after normalization with the pseudo-

invariants OLI+POP, the CIT NDVI range, s. d. and RMSE of

the image series were 0.08, 0.03 and 0.02, respectively, in

comparison to 0.20, 0.07 and 0.07for the original images (Table 2).

Similarly, the consecutive implementation of ARIN CIT+POP

resulted in OLI NDVI range, s. d. and RMSE values of 0.14, 0.05

and 0.04 in comparison to 0.21, 0.10 and 0.09 for the original

images, respectively.

2.3 VPIF correlation factors. The VPIF spectral band CFs

used to implement the ARIN linear normalization procedure

varied greatly among the spectral bands for any given image

(Figure 4) and among images for any given spectral band.

Furthermore, the correlation coefficients between the CFs among

the VPIFs for any spectral band and for all bands were found to be

at least 0.85 and were significant at P = 0.95 or higher (Table 3).

This finding also demonstrates that the ARIN normalization

process is efficient regardless of the VPIF selected.

3. ARIN vs. QUAC and FLAASH
Generally, for the series of GeoEye-1 images studied, ARIN was

more efficient than QUAC and as efficient as FLAASH, varying

slightly with the VPIF selected. For example, if we consider the

VPIF CIT, the NDVI s. d. of the original, OLI+POP-transf.,

QUAC and FLAASH images were 0.07, 0.03, 0.05 and 0.08,

respectively, and the same statistics for the B/G index were 0.29,

0.06, 0.11 and 0.07 (Table 2). Considering the VPIF POP and the
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s. d. and RMSE statistical, the results are better for ARIN CIT+
OLI-transf. (0.03 and 0.03) and FLAASH (0.03 and 0.03),

followed by QUAC (0.05 and 0.04) compared to the original

images (0.08 and 0.07) (Table 2). Considering the B/G index, the

ARIN-transf. procedure was also more effective than QUAC and

FLAASH in any VPIF studied.

Discussion

In our study, the VPIF spectral band and vegetation index

values of the original GeoEye-1 images varied considerably among

the images, indicating that the calibration or radiometric

normalization process is highly recommended for comparative

follow-up of cropping systems. In fact, the calibration and

normalization of multitemporal images has been a challenge in

remote sensing for decades [1–16].

ARC relates image digital counts to radiance at the surface of

the Earth and requires sensor calibration coefficients, an

atmospheric correction algorithm and related input data, among

other corrections [2]. For most historical images, such data are

not available, and for planned acquisitions, they may be difficult

to obtain [3]. Consequently, ARC retrieval is not often a

practical method [2]. RRN is based on the radiometric

information intrinsic to the images themselves and is an

alternative whenever absolute surface radiances are not required,

as in change detection applications or for supervised land cover

classification [3,4].

To our knowledge, no RRN methods for multitemporal

remote images using VPIF as a reference have previously been

developed. The concept of PIF is adopted with the assumption

that the reflectance is constant over time [2]. Moreover, any

individual plant, cropping system, or vegetative feature varies

with time, and therefore, there is a unanimous agreement that

the reflectance is not an absolute invariant. As we have shown,

most agricultural areas have vegetative parcels that change

drastically throughout the growing season, such as annual

herbaceous crops (VVFs), while others features, such as dense

forest, permanent lawn or dense non-deciduous orchard

plantations, remain comparatively invariant throughout the

growing season (VPIFs). We have shown drastic differences

between the selected VVFs and VPIFs in the spectral bands and

vegetation index evolution. The phenotypic or morphological

aspects of VPIFs are well known, and therefore, the light

reflectance changes very little throughout the annual growing

season, which is a key factor for the land use classification of

agricultural scenes through remote sensing. Additionally, the

pseudo-invariability of VPIF is the characteristic used in the

ARIN procedure to normalize a set of images of a common

scene.

ARIN method was developed for the radiometric normalization

of multitemporal images of agricultural and forestry scenes where

vegetative pseudo-invariant features (VPIFs) can be identified. In

our work, we have shown that selected mature CIT (citrus

orchards), OLI (olive orchards) and POP (poplar groves) in a

Mediterranean landscape can be chosen efficiently as VPIFs

throughout spring and summer. Generally, the ARIN normaliza-

tion process efficiently produced relatively uniform data for all

images, regardless of the single VPIF or the combination of VPIFs

chosen. This result is likely because the range and s. d. of the

spectral bands and vegetation indices in the transformed images

are considerably reduced compared to those of the original

images.

Regardless of the single VPIF used to estimate the band CFs for

the image series transformation, the results were relatively

normalized when compared to those of the original images. The

VPIF spectral band correction factors (CFs) used to implement the

ARIN linear normalization procedure varied greatly among

spectral bands for any given image and among images for any

given spectral band. Furthermore, the high and statistically

significant correlation coefficients between the CFs among the

VPIFs for any spectral band and for all bands suggest that the

ARIN normalization process was efficient regardless of the VPIF

selected.

Implementing the ARIN procedure consecutively using two

VPIF was also an efficient method of normalizing the multi-

temporal images series. Generally, for the multitemporal series of

GeoEye-1 images studied, ARIN was more efficient than QUAC

and as efficient as the FLAASH absolute calibration method. The

advantage of the ARIN method is that weather calibration

parameters are not necessary, whereas they are required for the

highly tunable FLAASH methods.

VPIF size is clearly related to the image spatial resolution and

should have a sufficient number of pixels to provide a solid average

of the selected vegetative feature. With medium to high spatial

resolution images from the satellite GeoEye-1 (i.e., ,5 m pixel),

VPIF size normally coincides with uniform parcels of approxi-

mately 0.3 to 0.5 ha or larger. Moreover, ARIN can also be used

with very high spatial resolution images (i. e. 3 to 5 cm pixel) such

as those provided by unmanned aerial vehicles (UAV) [26]. In

UAV images a VPIF size of 2 to 4 m2 will cover a high number of

pixels to provide a solid pseudo-invariant vegetative feature

sample, and in practice, it may coincide with a non-deciduous

tree of 2 to 4 m2. UAV images can be normalized through the

ARIN procedure avoiding the use of the barium sulfate standard

spectralon panel, which is placed in the middle of the field to

calibrate data [26].

Step-by-step implementation of the VPIF-based ARIN nor-

malization procedure through the available ENVI image-

processing tools is time consuming, and therefore, it is not

economically feasible. ARIN software [22] quickly and easily

executes ARIN and generates the transformed images; conse-

quently, its development is essential for the practical application

of the ARIN method. However ARIN method can be applied

only in any agricultural and forestry landscapes where a VPIF

can be identified.

Conclusions

A novel method for the radiometric normalization of multi-

temporal images, named ARIN, was developed to be used in

agricultural and forestry scenes where a vegetative pseudo-

invariant features (VPIFs) can be identified. This new procedure

identifies one common VPIF parcel in all scenes, extracts the

spectral band values of each image and transforms them to

common band values through linear transformation. We validated

ARIN using a series of GeoEye-1 satellite images of one scene.

ARIN worked correctly, regardless of the three VPIFs considered

(citrus orchards, olive orchards and poplar groves). The ARIN

method was slightly more efficient than the absolute calibration

QUAC method and as efficient as the highly tunable FLAASH

method, which uses solar position and weather calibration

parameters. Implementing the ARIN procedure through conven-

tional image processing is time consuming. The software ARIN

executes ARIN semi-automatically in an economically feasible

manner.
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Table 3. Correlation coefficients between the spectral band CFs of VPIF CIT, OLI and POP.

Spectral band

VPIF1 B G R NIR Overall

CIT vs. OLI 0.97** 1.0** 0.97** 0.85* 0.96**

CIT vs. POP 0.98** 0.91* 0.92* 0.89* 0.93**

OLI vs. POP 0.99** 0.92* 0.93** 0.85* 0.92**

Overall 0.97** 0.93** 0.92** 0.87** 0.93**

1Abbreviations: VPIF; vegetative pseudo-invariant features; CIT, citrus orchards; OLI, olive orchards; POP, poplar groves; B, blue; G, green, R, read, NIR, near-infrared; * and
** Statistically significant at $95% and $99% probabilities.
doi:10.1371/journal.pone.0091275.t003
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