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Abstract

We developed independent predictive disturbance models for a full regional data set and four individual ecoregions (Full
Region vs. Individual Ecoregion models) to evaluate effects of spatial scale on the assessment of human landscape
modification, on predicted response of stream biota, and the effect of other possible confounding factors, such as
watershed size and elevation, on model performance. We selected macroinvertebrate sampling sites for model
development (n = 591) and validation (n = 467) that met strict screening criteria from four proximal ecoregions in the
northeastern U.S.: North Central Appalachians, Ridge and Valley, Northeastern Highlands, and Northern Piedmont. Models
were developed using boosted regression tree (BRT) techniques for four macroinvertebrate metrics; results were compared
among ecoregions and metrics. Comparing within a region but across the four macroinvertebrate metrics, the average
richness of tolerant taxa (RichTOL) had the highest R2 for BRT models. Across the four metrics, final BRT models had
between four and seven explanatory variables and always included a variable related to urbanization (e.g., population
density, percent urban, or percent manmade channels), and either a measure of hydrologic runoff (e.g., minimum April,
average December, or maximum monthly runoff) and(or) a natural landscape factor (e.g., riparian slope, precipitation, and
elevation), or a measure of riparian disturbance. Contrary to our expectations, Full Region models explained nearly as much
variance in the macroinvertebrate data as Individual Ecoregion models, and taking into account watershed size or elevation
did not appear to improve model performance. As a result, it may be advantageous for bioassessment programs to develop
large regional models as a preliminary assessment of overall disturbance conditions as long as the range in natural
landscape variability is not excessive.
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Introduction

Understanding the effects of human land use modification on

stream biota, the processes that cause these effects, and the various

spatial and temporal scales at which these effects and processes

operate are fundamental goals of bioassessment in stream ecology.

The use of models has increased markedly in the past decade in all

areas of ecology partly to address the issues stated above. In

addition, major advances have been made in conceptual models

and statistical techniques [1–7], which, in turn, help practitioners

derive response models that better support the needs of

bioassessment programs. Models provide a useful framework for

testing hypotheses, determining potential direct and indirect

linkages, and directing where further research is needed. The

expansion and application of multivariate models in stream

ecology are helping to address these issues and hopefully will lead

to a broader understanding of ecological and anthropogenic

pathways and responses [3],[4],[8].

Spatial scale is important in understanding ecosystem processes

and species distributions; as such, scale is an important consider-

ation in ecological research [9–11]. At the same time, managers

often need decision-making tools that can be applied to as large a

region as possible. Cuffney et al. [6] showed that responses of algal

and macroinvertebrate metrics to urbanization varied by taxon,

geographic region, and antecedent land use. Stevenson et al. [12]

modeled algal biomass and found a positive correlation with

nutrients in two distinct regions, yet the amount of variation

explained differed by nutrient concentration and region. Potapova

and Charles [13] suggested that algal indicators and optima were

improved if developed regionally rather than nationally. Ode et al.

[14] found that macroinvertebrate indices developed at large

regional scales, such as the western U.S., had lower precision in

California than California-based indices. They found that the

larger scale indices were influenced by two natural gradients that

did not affect the statewide indices. Seelbach et al. [15], on the
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other hand, found that regions too large can sometimes give

misleading results when strong natural gradients at larger scales

are mismatched with ecological-scale responses. For example, their

streamflow models across three states in the midwestern U.S.

showed that more rainfall in the southern portion of their region

created lower stream baseflows (a nonsensical relationship) and

that higher northern baseflows were the result of very permeable

glacial deposits that are variable across smaller scales that were not

accounted for by the large scale models [15]. Overall, national or

regional scale models are likely to focus on large scale natural

landscape effects such as climate, typography, elevation, and

geology as the primary discriminating variables, with disturbance

variables such as land use, nutrients, sediments, and contaminants

as secondary variables. However, current ecosystem theory

indicates that models at smaller scales should allow for more

insight and interpretation of disturbance related processes or

mechanisms that are likely to operate at smaller watershed and site

specific scales [5],[6],[16],[17].

Research documenting the effects of land-use change on stream

biota indicates that as the amount of urban and(or) agricultural

land use in the watershed increases, individual biological metrics

and multimetric indices (e.g., Index of Biotic Integrity – IBI) that

reflect compositional changes in sensitive species generally

decrease [10],[11],[18],[19],[20]. However, a better understand-

ing of the effect of spatial scale on disturbance processes and the

subsequent effect on modeling performance is paramount for

developing models that better support bioassessment efforts and

regulatory application [21]. Waite et al. [11] developed macro-

invertebrate response models for three regions in the western U.S.

The best multiple linear regression (MLR) models from each

individual region required only two or three explanatory variables

to model macroinvertebrate metrics. In each region, their best

model contained some measure of urban and(or) agricultural land

use, yet often the model was improved by including a natural

landscape factor such as mean annual precipitation or mean

watershed slope. Brown et al. [22] were also able to develop strong

models using modeling techniques such as MLR and boosted

regression trees (BRT). They modeled a macroinvertebrate index

of biotic integrity (BIBI) across a gradient of urbanized streams in

southern California using MLR models; however, overall model

prediction and performance was generally improved by using

BRT.

Regression trees are one type of modeling technique within the

commonly used classification and regression tree (CART) or

decision tree family (e.g., [23–25]). These modeling techniques

have some highly desirable properties, including the ability to

handle categorical and censored data and non-normal distribu-

tions, and they can model complex interactions simply [26].

De’ath [26] and Elith et al. [27] showed that the more flexible

BRT models outperform general linear models (GLM) and general

additive models (GAM) in variable selection and predictive ability

(higher R2 and lower error) and can handle sharp discontinuities in

data that are difficult for the other methods. Aertsen et al. [28] also

showed that BRT outperformed most modeling techniques (MLR,

GLM, GAM, and CART), with the exception of artificial neural

networks, which the authors penalized for being complex and non-

transparent.

The primary goal of this paper is to evaluate the influence of

scale on predictive macroinvertebrate response models developed

across four proximal ecoregions. We compare the overall

performance (i.e., R2 and cross-validation R2) of models for

predicting the responses of common macroinvertebrate metrics

(e.g., EPT Richness, Tolerance, and Non-Insects) developed using

BRT techniques. Potential explanatory variables in the models

include common landscape-based disturbance variables such as

land use, road and population density, riparian canopy, infra-

structure, and hydrologic runoff as well as natural landscape

factors such as climate, slope, elevation, and soil infiltration. Our

objectives are to test whether (1) the small more region specific

scales (individual ecoregions) will allow for better performing

models compared to the larger full regional scale models and (2)

the ecoregion scaled models will highlight more region-specific

disturbance-related explanatory variables (e.g., hydrologic runoff

and region specific landscape disturbance variables) compared to

higher inclusion of more large scale natural setting variables in the

full region models.

In addition, we evaluate whether elevation and watershed size

classes are better predictors of common macroinvertebrate metrics

than the Full Region model and hypothesize that BRT models

developed for each of three a-priori watershed size classes will

produce stronger predictive models than that for the full region

because stream size and location along the gradient from

headwaters to the mouth influences the type and distribution of

aquatic fauna [29], a similar logic for the elevation classes. In this

context, hydrologic variability and, subsequently, stream biota are

highly dependent on their longitudinal location along the

continuum; therefore, we would expect that models with greater

predictive power would be developed, for example, in small low

order streams (streams ,27 km2) compared to models of large

watershed streams or models developed for the Full Region that

blends all stream sizes.

Methods

Description of modeling regions
Macroinvertebrate data aggregated across four proximal level

III ecoregions—the North Central Appalachians, Ridge and

Valley, Northeastern Highlands, and Northern Piedmont, located

in the northeastern U.S.—were used in our analysis. These four

ecoregions have broad similarities in some features such as climate

and forest land cover, yet there are stark differences among some

of these regions in basic physiography, climate, and agriculture

and urban land use. Mean and range of select environmental

variables for each region are provided (variable list and definitions:

Table 1, mean and ranges: Table 2).

The North Central Appalachians ecoregion is a partially

glaciated and forested plateau of horizontally bedded shale,

siltstone, sandstone, coal, and conglomerate that is punctuated

by high hills and low mountains [30]. The climate can be

characterized as continental, with cool summers and cold winters.

The average annual precipitation ranges from 900 to 1,450 mm

per year. The Ridge and Valley ecoregion is a series of alternating

elongated forested ridges and narrow agricultural valleys created

by tightly folded and intensely faulted bedrock composed chiefly of

shale, limestone, sandstone, and dolomite under a veneer of

unconsolidated materials [31], [32]. Elevations typically range

from 91 to 1,220 m and precipitation ranges from 1,010 to

1,330 mm, with 20 to 30 percent of the annual precipitation

falling as snow. Stream patterns are generally trellis-shaped and

reflect the regular folding of the geomorphology with high-

gradient streams along ridge slopes, and gentle gradient,

meandering streams in the valleys. Land cover is predominantly

forests (about 56 percent) with a mixture of agricultural,

developed, and managed lands (e.g., state parks and wild and

scenic rivers).

The Northeastern Highlands is a rugged, high elevation forested

region characterized by a series of northeast-trending ridges and

valleys with elevations ranging from about 43 m to over 425 m on

Stream Invertebrate Predictive Model: Spatial Scale
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Table 1. Description, variable code and definition of explanatory environmental (landscape, riparian and habitat) and response
(invertebrate metrics) variables used for model development.

Description Variable Code Definition

Explanatory Variables

Watershed Variables

Percent Agricultural Landuse Ag Percent watershed area in agricultural landuse (NLCD 2001 category 81, 82)

Percent Urban Landuse Urban Percent watershed area in urban landuse (NLCD 2001 categories 21, 22, 23, and 24)

Sum of Percent Ag + Urban Ag+Urb Sum of percent watershed area in urban (NLCD 2001 categories 21, 22, 23, and 24)
and agricultural (NLCD 81, 82) landuse

Percent Forest Forest Percent watershed area in forest landuse (NLCD 2001 categories 41, 42, 43)

Percent Wetland Wetland Percent watershed area in wetland land cover (NLCD 2001 category 90 and 95)

Road Density Rd.Density Road density in watershed = Road length (km)/watershed area (km2)

Mean Population Density Pop.Density Watershed mean population density based on 2000 census (#/km2)

Dam Density Dam Density Density of dams in watershed = Number of dams/watershed area (km2)

Percent Manmade Channel ManMadeChan Percentage of linear water features in stream buffer which are manmade

Riparian Variables

Percent Agricultural Landuse Rip.AG Percent buffer area in agricultural landuse (NLCD 2001 category 81, 82) in riparian
buffer

Percent Urban Landuse Rip.Urban Percent buffer area in urban landuse (NLCD 2001 categories 21, 22, 23, and 24) in
riparian buffer

Sum of Percent Ag + Urban Rip.Ag+Urb Sum of percent buffer area in urban (NLCD 2001 categories 21, 22, 23, and 24) and
agricultural (NLCD 81, 82) landuse in riparian buffer

Percent Forest Rip.Forest Percent buffer area in forest landuse (NLCD 2001 categories 41, 42, 43) in riparian
buffer

Mean Tree Canopy Cover Rip.Canopy Percent canopy cover (NLCD 2001 Percent Tree Canopy dataset; 30 m pixel) in
riparian buffer

Road Density Rip.Rd.Dens Road density in buffer = Road length (km)/riparian buffer area (km2) in

Mean Population Density Rip.Pop.Dens Buffer area mean population density based on 2000 census (#/km2)

Natural Landscape Variables

Watershed Mean Elevation Mn.Elev Mean watershed elevation (m)

Watershed Mean Slope Percent Slope Mean percent watershed slope (%)

Mean Annual Precipitation Mn.Ann.Precip Mean annual precipitation (mm)

Riparian Mean Slope Percent Rip.Slope Mean percent riparian buffer slope (%)

Riparian Maximum Elevation Rip.Max.Elev Maximum riparian buffer elevation (m)

Soil Infiltration Rate B Soil Infiltration B Area of stream buffer having soils with moderate infiltration rates (From NRCS,
STATSGO database) (km2)

Soil Infiltration Rate C Soil Infiltration C Area of stream buffer having soils with slow infiltration rates (From NRCS, STATSGO
database) (km2)

Soil Infiltration Rate D Soil Infiltration D Area of stream buffer having soils with very slow infiltration rates (From NRCS,
STATSGO database) (km2)

Hydrologic Runoff Variables

Average Monthly Coefficient of Variation Ave_MonthCV Coefficient of variation of average monthly runoff values for 2001

Maximum Monthly Runoff Max_Monthly Maximum monthly runoff for 2001 (mm)

Maximum Monthly Coefficient of Variation Max_MonthCV Coefficient of variation of maximum monthly runoff values for 2001

Maximum Runoff for January Months Max_January Maximum runoff for January 2001 (mm)

Average March Runoff Ave_March Average runoff for March 2001 (mm)

Maximum March Runoff Max_March Maximum runoff for March 2001 (mm)

Minimum Runoff for April Min_April Minimum runoff for April 2001 (mm)

Maximum Runoff for April Max_April Maxmum runoff for April 2001 (mm)

Average Spring Runoff Ave_Spring Average runoff for April and May 2001 (mm)

Maximum Runoff for May Max_May Maximum runoff for May2001 (mm)

Maximum Runoff for July Ave_July Maximum runoff for July 2001 (mm)

Maximum Runoff for November Max_Nov Maximum runoff for November 2001 (mm)

Average December Runoff Ave_Dec Average runoff for December 2001 (mm)

Response Variables: Invertebrate Metrics

Stream Invertebrate Predictive Model: Spatial Scale
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the highest ridges. The entire physiographic area is noteworthy as

a sparsely populated corridor of forests, wetlands, and grasslands

of regional importance to migratory birds and many other plant

and animal communities all within close proximity of the greater

New York City metropolitan area of over 20 million people [33].

The forest is dominated by upland hardwood forest types on the

ridges and valley slopes, and forested wetlands in the valleys.

Annual average rainfall varies from 990 to 1,610 mm, with

significantly higher amounts in mountainous areas. The Northern

Piedmont ecoregion trends northeast to southwest covering parts

of northeastern New Jersey and southeastern Pennsylvania and

consists of northwestward-dipping sedimentary rocks that form

rounded hills, irregular plains, and open valleys [3]. Elevations

range from about 99 m on limestone to 396 m on more resistant

metamorphic rock, with some isolated, rocky and higher hills or

ridges. The climate includes moderate winters and warm, humid

summers (i.e., humid continental) with more than 1,000 mm of

precipitation falling in an average year. Land use varies, ranging

from busy urban and suburban areas, to intensely farmed and

densely settled locales, to relatively quiet pastoral places, which

forms a mosaic of agricultural, forest, and developed lands, but the

mixture varies, depending on local conditions.

The Northern Piedmont (N_Pied) has the highest mean percent

urban and agriculture (29 and 34%, respectively) among the four

ecoregions, the Ridge and Valley (R&V) has the second highest (11

and 29%, respectively) (Table 2). The North Central Appalachians

(NC_App) has the lowest percentage of urban and agriculture (4

and 7%, respectively), however, the proportion of urban and

agriculture in the Northeastern Highlands (NE_High) is only

slightly higher (10 and 12%, respectively). In general, these two

ecoregions tend to be slightly less developed than the N_Pied and

R&V. The N_Pied also has slightly more than five times the

average population density than the next highest ecoregion (i.e.,

NE_High) and has the highest percent manmade channels, yet the

lowest average spring runoff and mean watershed slope (Table 2).

Mean annual precipitation across all ecoregions is generally similar

and ranges from 1140 to 1240 mm (Table 2). Percent slope is

highest for NC_App and lowest for N_Pied.

Data Aggregation and Landscape Analysis
ArcGIS, ArcMap 9.2 (Environmental Systems Research Insti-

tute, Redlands, CA), was used to create, interpret, and analyze

spatial data sets representing sampling site locations, watershed

area and size class, riparian zones, and potential sources of

anthropogenic disturbance for all watersheds located throughout

the study area (Supplemental File: Appendix S1). Site location

data sets were obtained from federal and state agencies and

partners, including the U.S. Geological Survey, Connecticut

Department of Environmental Protection (CTDEP), New Jersey

Department of Environmental Protection (NJDEP), New York

Department of Environmental Conservation (NYDEC), and

Pennsylvania Department of Environment Protection (PADEP).

These data sets were combined and standardized to create one

seamless data set with over 10,000 sample sites. The data were

then screened and censored according to the following criteria: (1)

sampling methodology, (2) sampling season and year (we retained

only samples taken between May and October from 1996 to 2009

that best coincide with the 2001 land use data), (3) upstream

watershed area of . 8.0 and ,777.0 km2, and (4) watersheds not

nested (i.e., not linked by downstream flow). In addition, sites that

represented multiple sampling events in the same location were

removed. In total, 1058 sites met the criteria and were used either

as model development (n = 591) or validation (n = 467) sites

(Figure 1). The development data set included sites within the

four contiguous ecoregions: North Central Appalachians (n = 167),

Ridge and Valley (n = 152), Northeastern Highlands (n = 139), and

Northern Piedmont (n = 133) (Figure 1). Sites in the validation

data set represent a randomly selected subset of the larger data set

and, for the most part, are distributed across the four ecoregions

comparably to the development data set (Figure 1). To generate

the best possible data set for model development, nested sites were

removed but then used in the validation data set to provide the

highest number and best distribution of sites for model validation.

For consistency, all watersheds were delineated for the selected

sampling sites using USGS 7.5-minute quadrangle digital raster

graphics (DRG) as base layers. The DRGs were overlayed with

National Hydrography Data set (NHD) high resolution stream

lines for each region [34]. Watershed boundaries were digitized at

a scale of 1:10,000 or larger. Adjacent watershed polygons were

edge matched to eliminate all overlaps and gaps resulting in a

consistent geospatial data set containing all study watersheds.

Riparian buffer zone polygons were created within each water-

shed, extending 2 km upstream from the outlet of each watershed

(i.e., point where the macroinvertebrate data was collected) along

the main stem and all tributaries and 90 m on either side of the

stream, similar to previous buffering approaches by Brenden et al.

[35]. The selected reaches and associated buffer zone polygons

were then saved as a new geospatial data set. To ensure that the

riparian buffer zone polygons matched the watershed boundary

polygons at the outlet, the buffered riparian polygons were

overlayed on the watershed polygons and any areas extending

beyond the existing watershed polygons were clipped and deleted.

Landscape metrics derived from the spatial data sets were created

for each watershed and riparian zone buffer and included

ecoregion, elevation, slope, land cover (2001), road networks, soil

infiltration capacity, hydrography, dams, pollution point sources,

precipitation, population density, and canopy cover (Supplemental

File: Appendix S1). All abbreviations for riparian based explan-

atory variables begin with the letters ‘‘Rip’’; otherwise, variables

are watershed based (Table 1).

Table 1. Cont.

Description Variable Code Definition

Ephemeroptera, Plecoptera, and Trichoptera Richness EPTR Richness composed of Mayflies, Stoneflies and Caddisflies for a sample

Average Tolerance of Taxa in a Sample RichTOL Average USEPA tolerance values for sample based on richness

Intolerant Richness INTOL_RICH Number of USEPA intolerance (0 – 4 values) taxa

Noninsect Richness NonInsectR Total richness composed on noninsects

All variables listed were initially considered for inclusion in boosted regression tree (BRT) models. NLCD–National Land Cover Dataset, NRCS–National Resource
Conservation Service, STATSGO–State Soil Geographic data base.
doi:10.1371/journal.pone.0090944.t001

Stream Invertebrate Predictive Model: Spatial Scale
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Hydrologic Runoff Metrics
Runoff is defined here as the total flow delivered to streams and

rivers expressed on a per unit area basis. Runoff has the units of

length divided by time and, when multiplied by upstream basin

area, has the units of volume divided by time. The estimated

runoff does not differentiate various sources of streamflow; it

includes all sources of flow (groundwater discharge, rapid

subsurface flow, and overland flow) delivered to streams (David

Wolock pers. comm.), [36]. Estimates of hydrologic-unit runoff for

all flow variables (Table 1) used for developing ecological models

were derived using an area-weighted flow modeling approach that

combines historical daily flow data collected at U.S. Geological

Survey (USGS) streamgages, the respective drainage basin

boundaries of the streamgaging stations, and the boundaries of

the individual eight digit hydrologic cataloging units (HUC-8s) to

develop a hydrologic unit runoff grid [36]. HUC-8 runoff values

were used to estimate flow metrics for ungaged streams. This

geospatial grid was used as the base layer to develop streamflow

runoff estimates for the study basins. To derive these estimates, all

1058 of the previously delineated study basins were overlain onto

the grid and run-off values in millimeters were computed. A total

of 51 hydrologic runoff metrics were computed, which included

the yearly average, minimum, and maximum runoff and

coefficient of variation of runoff; the average, minimum, and

maximum runoff for summer (Jul–Aug), winter (Jan–Feb), and

spring (Apr–May); and the monthly average, minimum, and

maximum for January–December. Refer to Brakebill et al. [36] for

full description of how the hydrologic-unit runoff grid was

developed for the coterminous U.S.

Macroinvertebrate Data
Macroinvertebrate data from 1996 to 2009 assembled for this

study were comparable in terms of sampling protocols (sampled

habitat, number of composite samples, and total sampled area)

and laboratory procedures, including sorting, subsample count

level, and taxonomic resolution. In general, all macroinvertebrate

samples were collected in wadeable riffle/run habitats using

quantitative collection techniques (e.g., kick, Slack, or d-frame

nets) from designated stream areas (typically five to eight separate

collections combined to form a composite sample or a single

running kick sample from a 5 m area) [37–42]. These data were

extensively reviewed to ensure that the aggregated data included

the same taxonomic groups, followed the same nomenclature, and

had appropriate taxonomic resolution before data analysis was

initiated. The Invertebrate Data Analysis System (IDAS) software

[43] was used to resolve all taxonomic issues (taxonomic

identification level and nomenclature, i.e., taxonomic harmoniza-

tion), to remove ambiguous taxa [44] and to randomly subsample

raw counts to an equal 100 specimen count (the highest possible

subset for maintaining consistency across all ecoregions and

programs). In general, data for dominant aquatic insect orders

were resolved at genus level. Less common orders were often

aggregated to family level. Rare organisms or those with difficult

taxonomy were sometimes aggregated to order or higher. The

dipteran family Chironomidae, for example, is considered an

important bioindicator group, but historically a difficult group to

identify to genus or species. Because of differences among the

various state data sets, this group had to be aggregated to the

family level. IDAS was used to generate approximately 120

macroinvertebrate richness and abundance metrics, including

tolerance and functional group metrics, which were calculated

using values from Barbour et al. [45]. A reduced set of metrics for

analysis was obtained using a variety of exploratory analysis

techniques including evaluating scatter plots for outliers, correla-
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tion of metrics to core watershed disturbance variables, correlation

among macroinvertebrate metrics and results of previous analyses

in different regions of the U.S. [7],[11],[22],[46]. From the

reduced set, we selected four macroinvertebrate metrics as

response variables for model development and validation: EPT

Richness (richness of the orders Ephemeroptera, Plecoptera, and

Trichoptera; EPTR), average tolerance of all taxa (RichTOL)

based on supplemented EPA tolerance values, Richness of

Intolerant Taxa (INTOL_RICH), and Non-Insect Richness

(NonInsectR) (Table 1).

Ethics
This paper uses only data already collected in previous studies;

there are no ethical conflicts with animal use. All data were

collected by either by the USGS or state agencies following

appropriate state protocols for field sampling and permission

access. No permits were required for sampling of macroinverte-

brates and no protected species were sampled.

Model Development
We developed BRT models for four macroinvertebrate metrics

for the full region and for each of the four ecoregions separately.

Regression trees fall within the commonly used classification and

regression tree (CART) or decision tree family, and their use and

technical details have been described (e.g., [23],[24],[25]) and

extensively applied [5],[11],[17],[22],[27],[28],[47] in the litera-

ture; therefore, we will provide only a brief description. Boosted

regression trees (BRT) are among a family of techniques used to

advance single classification or regression trees by averaging the

results for each binary split from numerous trees or forests, thus

reducing the predictive error and improving overall performance

[26],[27]. In BRT, after the initial tree has been generated,

successive trees are grown on reweighted versions of the data,

giving more weight to cases that are incorrectly classified than

those that are correctly classified within each growth sequence.

Thus, as more and more trees are grown in BRT, the large

number of trees increases the chance that cases that are difficult to

classify initially are correctly classified, thus representing an

improvement to the basic averaging algorithm used in random

forest [26]. Boosted trees and random forest models retain the

positive aspects of single trees seen in CART models, yet have

improved predictive performance, nonlinearities and interactions

are easily assessed, and they can provide an ordered list of the

importance of the explanatory variables [26],[47].

Figure 1. Map showing the stream sites used for model development (stars) and model validation (triangles). Sites used for model
development (stars) (n = 591) and model validation (triangles) (n = 467) are evenly spread across the four ecoregions used in this study (N.C.
Appalachian, Ridge and Valley, N.E. Highlands and N. Piedmont).
doi:10.1371/journal.pone.0090944.g001
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Although BRT offers improved modeling performance over

CART, the simple single tree obtained from CART is lost, making

it more difficult to visualize the results. Partial dependency plots

(PDPs) provide a way to visualize the effect of a specific

explanatory variable on the response variable after accounting

for the average effects of all other explanatory variables [26],[27];

PDPs for selected variables important in models appear as

examples in the results. BRT models were run using the gbm

library in R and specific code from Elith et al. [27]. We used R2

and cross-validation R2 (CV R2) values to compare BRT models

because they are well understood measures of the amount of

variation explained by the models.

BRT models were developed using four macroinvertebrate

response metrics (EPTR, RichTOL, INTOL_RICH, and Non-

InsectR) and a set of explanatory variables (watershed, riparian,

hydrologic, and natural landscape; Table 1) that were evaluated

using a variety of exploratory analysis techniques, including

examining scatter plots for outliers and assessing intercorrelation

among variables. In addition, all explanatory variables were

screened and only those that had . 50% non-zero values were

retained for further analysis. The BRT model was first developed

using the model development data set. We used a bag fraction of

0.75, a learning rate of 0.001 to 0.0005 for developing our models,

and a tree complexity of 5; a bag fraction of 0.75 means that each

tree is developed using a random selection of 75% of the data. The

learning rate influences the total number of trees evaluated for the

model, while tree complexity controls whether interactions are

fitted, a value of 5 allows the assessment of up to 5-way

interactions. Variable relative importance (VRI) was calculated

using formulae developed by Friedman [48] and implemented in

the R gbm library to estimate the relative influence of predictor

variables. Calculations of VRI are based on the number of times a

variable is selected for splitting, weighted by the squared

improvement to the models as a result of each split, averaged

over all trees. The relative importance of each variable is scaled so

that the sum adds to 100, with higher numbers indicating stronger

influence on the modeled response. We developed our BRT

models using a multi-stage process: (1) BRT models were first run

with all watershed, riparian, and natural landscape variables only,

with the top 10 variables in the variable relative importance list

retained for further analysis, (2) BRT models were run with all

hydrologic runoff based variables only, with the top 10 variables in

the variable importance list retained for further analysis, and (3)

BRT models were run combining the top 10 variables from steps 1

and 2. Finally, explanatory variables in the final BRT models were

pruned by using a combination of VRI scores, evaluation of

interactions and partial dependency responses and gbm simplify

scores following the approach outlined by Elith et al. [27] to

minimize overfitting. In brief, we deleted all variables with relative

importance values less than 7. The remaining variables were then

used to develop the final BRT model. The final model was selected

by sequentially deleting variables and evaluating the effects on R2

and examining partial dependency plots; this was done indepen-

dently for each invertebrate metric for each region. We then used

the final BRT model to predict EPTR, RichTOL, INTOL_-

RICH, and NonInsectR values for the validation data set of 467

sites and calculate model performance measures. Finally, we

regressed observed values against predicted values for both

development and validation models as a visual measure of model

precision and bias [49]. The sites in validation data set were not

randomly selected from the full data set as would be ideal, but

instead were extra nested sites that had been removed from the

final full region data set. Nevertheless, the validation data

encompassed a large number of sites equally distributed across

all regions.

In order to get a large enough sample size, the data set analyzed

had a large range in watershed size (8–780 km2) and mean

elevation (23–870 m); so, in addition to the tests above regarding

spatial scale, we wanted to determine whether breaking the data

set into watershed and elevation classes would improve model

performance. Stream size, that is, location along the continuum or

gradient from the headwaters to the mouth, influences the type

and distribution of the aquatic fauna [29]. Therefore, three

watershed size and elevation classes were developed to evaluate

whether improved model performance over the Full Region model

could be achieved. We divided the Full Region model data set into

three watershed size (8–27.0; .27.0,66.0; and .66.0,

777.0 km2) and mean elevation classes (23–225, 225–450, and .

450 m). This division created relatively even sample sizes among

the three classes, but also followed a recognized common regional

break for small watershed sizes (6 26 km2). All BRT modeling was

completed in R ([50], version 2.13.1).

Results

Comparing within a region but across metrics, the average

tolerance of all taxa (RichTOL) consistently had the highest R2

and CV R2 for BRT models among the four metrics for all the

regions studied (Table 3). Given the use of the EPT Richness

(EPTR) metric as a component of many multimetric indices in the

northeast, it was unexpected that it would have the lowest R2

across all regions for BRT models when compared to the other

metrics, except in the NE_High, where it had the second lowest

value. The other two metrics, Richness of Intolerant Taxa

(INTOL_RICH) and Non-insect Richness (NonInsectR), were,

in general, intermediate in model R2 value to RichTOL and

EPTR (Table 3).

Spatial scale results showed that relatively strong explanatory

models with R2 values ranging from 0.63 to 0.77 were developed

using BRT techniques for the Full Region models (Table 3). In all

cases, however, the N_Pied produced stronger models and the

NC_App produced weaker models than those produced in the Full

Region models. In the other regions (R&V and NE_High) the

results were mixed and in some cases the Individual Ecoregion

models explained slightly more variation than the Full Region

models. The cross-validation R2 values, which are much more

conservative than adjusted R2, decreased significantly across all

metrics and regions compared to R2, the decrease ranging from 12

to 33 points per model (Table 3). NC_App, which had the smallest

range or gradient in land use disturbance (e.g., urbanization,

manmade channels, dam density, and agricultural land use) had

the lowest R2 for each metric across the regions and the largest

average decrease in CV R2.

Across the four metrics, the final Full Region BRT models had

between four and six explanatory variables (Table 4): a variable

related to urbanization (population density, percent urban, or

percent manmade channels), a measure of hydrologic runoff

(average December or maximum monthly runoff) and a natural

landscape variable (slope and elevation) were in every model.

Other explanatory variables in the Full Region models were

percent riparian forest, riparian canopy, and percent forest in the

watershed. Models developed across the four ecoregions showed

the same pattern related to urbanization as the Full Region

models. Every model had at least one, and in some cases, more

than one, urbanization-related variable. Similar to the Full Region

models, many of the Individual Ecoregion BRT models had forest

or riparian canopy-related variables and over half of the models

Stream Invertebrate Predictive Model: Spatial Scale
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had some form of natural landscape factors. In addition, 9 of the

16 Individual Ecoregion models (56.2%) had a hydrologic runoff

variable, and in some cases 2 hydrologic variables (e.g., the

NonInsectR models for R&V and NE_High). In six out of the nine

(66%) cases where a hydrologic variable entered the BRT model

for the Individual Ecoregions, it was ranked either first or second

in importance. Urbanization-related, riparian forest, and hydro-

logic runoff variables were consistently selected as the top variable

with almost equal frequency across all 20 BRT models; however,

only in one (the RichTOL model for N_Pied) was a natural

landscape factor selected first (Table 4).

There were some common response patterns in the urbaniza-

tion-related explanatory variables related to RichTOL. For

example, the partial dependency plots for population density,

road density, percent manmade channels, and percent urban

showed a relatively abrupt threshold-type response (Figs. 2A,B;

3B,D; 4A,D; 5C,D; and 6B,C) (Note: to reduce complexity, only

the top four variables are shown in each partial dependency plot).

However, response patterns for percent riparian forest were mixed

and showed a more linear response for the Full Region (Figure 2D)

as compared to the stepped response and strong threshold seen for

the NC_App and R&V and N_Pied regions, respectively (Figs. 3A,

4B, and 6D). The responses for hydrologic runoff variables also

tended to show a threshold or stepped type response (Figure 4C

and 5A, respectively). There were also some clear interactions

among important explanatory variables, including natural land-

scape factors and disturbance variables. For example, at low

elevations in the N_Pied region there are a range of values of

manmade channels, with high values (threshold at about 15%

manmade channels) resulting in high values of tolerant taxa

(RichTOL), but at high elevations there are only low values of

manmade channels, resulting in low values of RichTOL (Figure 7).

As another example, the combination of high values of average

March runoff and high values of riparian wetlands interact in the

result of the highest values of RichTOL. At low values of March

runoff there are relatively low values of RichTOL even across a

range of values for riparian wetlands, except at the highest wetland

values, yet these values are not as high as when there is high

March runoff in combination with high wetland values (Figure 8).

For brevity, the response form as shown in the partial dependency

Figure 2. Partial dependency plots for variables in BRT model for RichTOL for the Full Region. Boosted regression tree partial
dependency plots show the response form of average taxa tolerance (y-axis = fitted function of RichTOL) based on the effect of individual
explanatory variables with the response of all other variables removed (development data set). Shown in order of model importance: (A) population
density (numbers/km2), (B) percent manmade channels, (C) riparian slope and (D) percent riparian forest, model R2 = 0.77. The relative contribution of
each explanatory variable is reported in parentheses. Refer to Table 1 for variable definitions. The top two variables for the Full Region model showed
potential threshold type responses for urbanization variables and the third variable, a natural factor, is likely acting as an urban surrogate (riparian
slope). The final variable, a measure of riparian disturbance follows a more linear response and along with urbanization variables was a common
explanatory variable in most models among the different regions.
doi:10.1371/journal.pone.0090944.g002
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plots for the other invertebrate metrics for each region are not

shown here but provided as supplemental material online (Figure

S1).

Validation model results varied across metrics and regions, 10

out of the 20 total models had R2 values for the validation models

within five points of the development models. Of the remaining 10

models, five had validation R2 values lower than the development

models (range 28 to 235) and five had higher values (range +8 to

+ 17). Models with higher performance for the development data

set tended to also have higher R2 values in the validation data, the

exception were those models where the validation values were

higher. Observed vs. predicted plots (Figure 9) are shown only for

RichTOL, primarily because it consistently represented stronger

BRT models with greater predictive power (highest R2 values)

than the other metrics assessed in this study and to avoid adding

unnecessary length to the manuscript. Observed vs. predicted plots

for all other metrics and regions are provided as supplemental

material online (Figure S2). In general, the observed-predicted

plots reveal that for all metrics and regions, the models over

predict at low values and under predict at high values for each

invertebrate metric, the extent of the bias varied with the R2 of the

models. RichTOL for the Full Region models represented the

largest range in the disturbance gradient and reflected only a slight

under prediction bias in the upper end of the values for the

development model (n = 591; Figure 9 left panel) as compared to

wider and more even distribution of points across the full range of

values for the validation model (n = 467; Figure 9 right panel). As

would be expected, the Individual Ecoregion models, which have

an overall smaller sample size, reflected a shorter disturbance

gradient that varied across regions. The NC_App ecoregion

encapsulated the shortest gradient (range in RichTOL values;

Figure 9) and reflected a distinct bias for the development and

validation models, under and over predicting tolerance values near

the high and low end of its range, respectively (n = 167). R&V and

NE_High covered a slightly longer portion of the disturbance

gradient than NC_App with values more tightly clustered along

the 1:1 line for the development models, yet also less tightly

clustered around the 1:1 line for the validation models (Figure 9).

The N_Pied region which had the strongest development model

encapsulated a relatively long portion of the disturbance gradient

and reflected only slight bias at low and high tolerance values.

However, the validation model for N_Pied showed slightly more

scatter around the 1:1 line compared to the development model,

although still less bias than all the other regional validation models

(Figure 9).

BRT models developed for watershed size classes for the same

metrics tended to show similar patterns in response as the

ecoregion models. For example, RichTOL had the highest overall

Figure 3. Partial dependency plots for variables in BRT model for RichTOL for North Central Appalachian Region. Boosted regression
tree partial dependency plots show the response form of average taxa tolerance (y-axis = fitted function of RichTOL) based on the effect of individual
explanatory variables with the response of all other variables removed (development data set). Shown in order of model importance: (A) percent
riparian forest, (B) riparian population density (#/km2), (C) percent riparian agriculture and (D) population density (#/km2). The relative contribution
of each explanatory variable is reported in parentheses. Refer to Table 1 for variable definitions. Three of the four variables can be interpreted as
disturbance variables, two directly assessing urban land use (population density) and the third, riparian forest, which measures the amount of
disturbance in the riparian zone was the top variable modeled. However, this region had the shortest disturbance gradient and the lowest modeled
R2 (0.67), though still relatively strong.
doi:10.1371/journal.pone.0090944.g003
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model performance of the four metrics across all watershed size

classes and EPTR had the lowest performance (Table 5). There

was little or no overall improvement in model performance for the

majority of the watershed size classes compared to the Full Region

models. The largest improvements in R2 occurred for RichTOL

(watershed size class 2), NonInsectR (watershed size class 1), and

EPTR (watershed size class 2) which slightly exceeded the Full

Region model results by 0.06, 0.09, and 0.06, respectively

(Table 5). We also tested model performance for three classes of

elevation (mean elevation: 23–225, 225–450, and . 450 m) and

similar to the result for models for watershed size classes, found

little or no improvement compared to the Full Region models (for

brevity, data not shown).

Discussion

The primary objective of this study was to evaluate the influence

of scale (Full Region models versus four Individual Ecoregion

models) on model performance by developing predictive benthic-

macroinvertebrate boosted regression tree (BRT) response models

using readily delineated and commonly applied watershed

variables. Our working hypothesis was that small scale Individual

Ecoregion models would outperform larger, Full Region models.

Previous research has shown that large scale assessments, in

general, do not perform as well as smaller local or regional scale

models largely due to inherent differences in biogeography and

disturbance type or extent [5],[6],[12],[14],[15],[16]. Waite [51]

and Riseng et al. [52] also found that the strength of correlations

of macroinvertebrate and algal metrics to agricultural disturbance

variables (agricultural intensity and nutrient concentrations),

varied with spatial scale and geographic region. Based on this

weight of evidence, we hypothesized that the larger scale Full

Region models would be more generic, have lower predictive

power, and would likely include more natural landscape variables

(e.g., slope and elevation, etc.) as compared to the smaller scale

Individual Ecoregion models. Our modeling results, however, did

not support this hypothesis. For example, the Full Region BRT

models were, in some cases, as strong or stronger than the

Individual Ecoregion models (e.g., they were consistently stronger

than all the North Central Appalachian models; Table 3), and

land use, hydrologic runoff, and other disturbance related

variables were frequently important explanatory variables in these

models (Table 4). The Full Region models, with the exception of

NonInsectR, only had one natural landscape variable out of the

four to six variables in each of the final models. Some Individual

Ecoregion BRT models did show significant improvement in
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Figure 4. Partial dependency plots for variables in BRT model for RichTOL for Ridge and Valley Region. Boosted regression tree partial
dependency plots show the response form of average taxa tolerance (y-axis = fitted function of RichTOL) based on the effect of individual
explanatory variables with the response of all other variables removed (development data set). Shown in order of model importance: (A) percent
manmade channels, (B) percent riparian forests, (C) maximum November runoff (mm) and (D) population density (#/km2), model R2 = 0.81. The
relative contribution of each explanatory variable is reported in parentheses. Refer to Table 1 for variable definitions. Three of the four variables
measure the effects of disturbance, two measure the response to urban land use and the other disturbance in the riparian zone due to either
agriculture or urbanization. The fourth variable shows the response due to maximum November runoff.
doi:10.1371/journal.pone.0090944.g004
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model performance (e.g., gains ranged from a minimum in R2 of

0.01 for the Northeastern Highlands to a maximum of 0.13 for

Northern Piedmont); however, natural landscape variables were

equally as common in the Individual Ecoregion models as they

were in the Full Region models. One possible explanation for why

these findings tended not to coincide with our original hypothesis

may be that the Individual Ecoregions used in this study did not

have as strong a biogeographic gradient when compared to

regions modeled in other recent studies (e.g., Western U.S. in

[14],[17]) or perhaps the larger sample size used to develop the

Full Region models resulted in longer and more defined

disturbance gradients for model development. In either case, our

results may indicate that models of broader spatial extent, such as

the Full Region models evaluated in this study, could represent an

important starting point for prediction of changes in macroinver-

tebrate response at unsampled stream sites. These results tend to

support the need to develop models at the larger regional scales,

but also indicate that some improvement in model performance

may be provided by smaller scale efforts using Individual

Ecoregions or other common surrogates (e.g., physiographic

provinces). The extent of improvement, however, may directly

depend upon the extent of the gradient encapsulated by the data

set relative to the scale of the investigation and in the synchronicity

in scales between the biota and the landscape (i.e., are the biota

responding at one scale while landscape data and related

variability occurs at another scale).

Even though the validation data set was not ideal since it was

created from ‘‘left over’’ nested sites and not sites randomly subset

from a larger pool of sites, it still provides a measure of how well

the models are likely able to predict at unsampled sites. Fifteen out

of the 20 validation models had R2 values that were no lower than

five points less than the development models or had values that

were actually higher. The Full Region and N_Pied region still had

some of the higher R2 values for the validation data than the other

regions but there was more variability among the metrics within a

region and among regions as to which had the higher performing

validation models. Looking at the Observed vs Predicted plots for

the development and validation models, it becomes clear that even

the strongest models have bias at the low and high ends of the

metric ranges and that the validation data had a slightly different

range in observed values than the development data (Figure 9 and

supplemental material). For example, the models frequently would

over predict richness values at low values (three metrics were based

on richness), rarely predicting zero or one’s even though these

were observed in the two data sets (seen as values above the 1:1

line in plots). The opposite occurred at higher values, the models

often under predicted at the higher ranges (seen as values below

the 1:1 line in plots). As would be expected, this bias was directly

related to measures of model performance, models with higher R2

had less low and high bias than those models with lower R2 values.

However, a lot could be learned by investigating why some sites

were predicted to have poor or higher invertebrate values than

Figure 5. Partial dependency plots for variables in BRT model for RichTOL for NE Highlands Region. Boosted regression tree partial
dependency plots show the response form of average taxa tolerance (y-axis = fitted function of RichTOL) based on the effect of individual
explanatory variables with the response of all other variables removed (development data set). Shown in order of model importance: (A) average
March runoff (mm), (B) percent riparian wetlands, (C) percent urban and (D) road density (km/km2), model R2 = 0.80. The relative contribution of each
explanatory variable is reported in parentheses. Refer to Table 1 for variable definitions. All four explanatory variables modeled can be interpreted as
an urbanization land use effect. Average March is expected to increase due to higher imperviousness with higher urbanization and percent riparian
wetlands we believe is acting as a surrogate for urbanization; higher wetlands commonly occur in lower elevation valleys where there is commonly
more urban development. The last two variables measure urban land use directly.
doi:10.1371/journal.pone.0090944.g005
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were observed. Since the models primarily use land use at the

watershed and riparian scales, perhaps these sites were better or

worse than expected in water quality or habitat condition than

most sites with similar land use condition. Across all models, the

more conservative CV R2 showed significant decrease in values

compared to the standard adjusted R2 model performance

measure, suggesting that there may be some level of over-fitting

in the models.

Across all the models, two clear patterns emerged: (1) some

measure of urbanization, the amount of riparian disturbance (e.g.,

percent riparian forest, riparian population density), and hydro-

logic runoff were important explanatory variables, and (2) many of

the explanatory variables showed a distinct threshold-type

response (shown in the PDPs as transition points in ecological

condition [53–55]). For example, a threshold response was

commonly seen for the metric RichTOL as predicted by

population density, percent urbanization, and percent manmade

channels (Figs. 2A, 5C, and 6B, respectively). Note that these are

only potential thresholds; more analysis and evaluation would

have to be conducted to determine if there are actual thresholds in

this data [55]. Land use in parts of the Northeast tends to be

dominated by urbanization rather than agriculture, so it is not

unexpected that variables representing urbanization or urban-

related disturbance processes (e.g., population density and road

density) were dominant factors in many of the predictive models

developed in this study. The effects of urbanization have been well

documented by other researchers ([16],[18],[19],[56–61], and

many more); therefore, that topic will not be addressed here. The

amount of stream channel alteration characterized in this study by

the percentage of manmade channels, however, is seldom

discussed in the urbanization literature, yet it was one of the

variables commonly modeled in this study and represents an

important anthropogenic pathway affecting stream communities

that needs to be more broadly considered in future ecological

modeling studies. In addition, more research is emerging on the

importance of riparian integrity related to stream condition (e.g.,

[17],[51],[52],[62]) thus revealing riparian’s critical influence on

stream integrity. For example, Clapcott et al. [5] recently found

that the amount of native riparian vegetation was the dominant

variable in BRT models describing macroinvertebrate metrics in

New Zealand and that riparian and urbanization variables showed

threshold responses, similar to the responses seen for urbanization-

related and riparian variables in this study. However, variables like

population and road density and percent manmade channels,

which are frequently highly skewed, are notoriously difficult to

analyze via linear parametric techniques like MLR and this

difference may be another reason why BRT models generally

outperform MLR models.

Figure 6. Partial dependency plots for variables in BRT model for RichTOL for Northern Piedmont Region. Boosted regression tree
partial dependency plots show the response form of average taxa tolerance (y-axis = fitted function of RichTOL) based on the effect of individual
explanatory variables with the response of all other variables removed (development data set). Shown in order of model importance: (A) mean
elevation (m), (B) percent manmade channels, (C) percent urban and (D) percent riparian forest, model R2 = 0.84. The relative contribution of each
explanatory variable is reported in parentheses. Refer to Table 1 for variable definitions. This was the only model that had a natural factor as the top
explanatory variable, however, we believe elevation is acting as a strong surrogate in this region for urbanization, though it is likely more complex
than a strictly one for one surrogate. The other three variables all measure directly or indirectly urban land use disturbance and show a relatively
strong potential threshold type response.
doi:10.1371/journal.pone.0090944.g006
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The average tolerance of all the taxa in a sample (RichTOL)

generally had the best model performance (highest R2) across all

regions when compared to the other metrics. The richness of

Ephemeroptera, Plecoptera, and Trichoptera taxa (EPTR), a

common component of multimetric indices in the northeastern

U.S., on the other hand, generally had the worst performance

across all regions when compared to the other metrics. This is in

contrast to what we found in development of models in the western

U.S., where some measure of EPT richness and RichTOL were

the two best response variables of all the macroinvertebrate

metrics tested [11]. Most water resource agencies in the U.S. use a

multimetric approach to evaluate the effect of anthropogenic

stressors on aquatic systems [45], primarily because multimetric

indices (MMIs) incorporate information from a number of metrics

to provide a meaningful measure of overall biological condition. In

addition, most state agencies that develop MMIs use some form of

EPT as a component metric (e.g., percent EPT or EPT richness).

Our finding that RichTOL was the most predictive metric is

interesting (and to some degree confounding) because it may

indicate that RichTOL could potentially be a highly useful

component of state MMIs or BIBIs, especially given its strong

predictive capability across all northeastern ecoregions studied.

RichTOL, although sometimes considered in MMI development,

is seldom used as a component of MMIs, more often a measure of

total taxa richness or Hilsenhoff’s Biotic Index [63] is used instead

(e.g., New Jersey Impairment Score [40] and Pennsylvania Index

of Biotic Integrity [64]). Bioassessment programs are continuously

trying to improve criteria in support of MMI development and

BRT models that explicitly show the utility of metrics such as

RichTOL for predicting ecological changes along a disturbance

gradient further support such efforts.

Because many of the variables used in the analysis did not follow

a linear response form (see Figures 2–6), they are not likely to be

identified as significant in multiple linear regression models, even

when transformed. Therefore, it is possible that since MLR models

assume linearity that they may sometimes underestimate the

explanatory power of nonlinear relations in some variables. BRT

is more robust and allows the inclusion of more variables in the

model building phase than MLR, which permits easier testing for

interaction effects and produces a list of variables explaining the

importance of variation in the response variable. In addition,

partial dependency plots from BRT can offer valuable insight into

the pattern or form of the response based on select explanatory

variables, thus improving model interpretation. Although BRT

models have only recently begun to be applied in ecology, a

number of researchers have shown the strength and promise of this

Figure 7. Interaction of manmade streams and mean elevation on RichTOL for Northern Piedmont BRT model. Boosted regression tree
partial dependency plot shows the response form of average taxa tolerance (y-axis = fitted function of RichTOL) based on the effect of the
interaction of two individual explanatory variables along the response variable (all other variable responses removed). There is a relatively strong
interaction acting on RichTOL at low values of mean elevation and high values of percent manmade streams that cause high values of tolerant taxa to
occur. This is a common pattern, higher urbanization occurring in the lower elevation valleys.
doi:10.1371/journal.pone.0090944.g007
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modeling technique compared to other methods [5],[17],[26]–

[28],[46]. It is evident from the results of this and other studies that

BRT represents a more powerful modeling technique than MLR

(and many other methods) for evaluating the effects of human

alteration of the environment on aquatic communities.

For this study, we were also interested in determining whether

predictive models could be improved by breaking the sites up into

three distinct watershed size classes. Recent studies have shown

that human disturbance variables (i.e., land use and water quality)

in combination with natural landscape factors such as climate,

stream size, and elevation may help account for the greatest

amount of variation in biotic indicators [5],[11],[46],[65]. Thus, to

broaden our understanding of scale effects on macroinvertebrate

response model development and prediction, we felt it important

to take factors such as stream size into account as it is well

established that processes along the river continuum, including

variation in landscape and riparian disturbance, water quality,

habitat, and streamflow, affect the distribution and abundance of

macroinvertebrates ([29] and numerous other authors). However,

BRT models developed for the individual watershed size classes

did not greatly improve overall model performance when

compared to the Full Region model results (Table 5). Two

plausible explanations for this are (1) the range in watershed size

classes (8.0–777.0 km2) were not large enough to elicit a significant

response and (2) changes along the stream size gradient tended to

follow changes in landscape disturbance and elevation. Although

stream size range was not extreme, it was large enough that we

anticipated we would see an improved response; however, human

landscape disturbance often follows an elevation gradient that may

be acting as a surrogate for stream size. That is, smaller headwater

streams tend to be in higher gradient areas (foothills and

mountains) and larger streams are often in low elevation valleys

[10],[11],[66]. However, we also tested model performance for

three classes of elevation (mean elevation: 23–225, 225–450, and

. 450 m) and similar to the result for models for watershed size

classes, found little or no improvement compared to the Full

Region models (data not shown). On its own, the range in

elevation in this study did not seem to affect model performance;

nevertheless, we believe there was interaction between elevation

and land use variables that was important. This was exemplified in

the PDPs, where there was interaction between elevation (and by

extension, stream size) and percent man-made channels, a

surrogate for urbanization. This interaction between elevation or

other natural landscape variables and land use variables, which

Figure 8. Interaction of riparian wetlands and average March runoff (mm) on RichTOL for N.E Highlands BRT model. Boosted
regression tree partial dependency plot shows the response form of average taxa tolerance (y-axis = fitted function of RichTOL) based on the effect
of the interaction of two individual explanatory variables along the response variable (all other variable responses removed). There is a relatively large
interaction at high values of average March runoff when there are also high values of percent riparian wetland thus resulting in higher values of
tolerant taxa (RichTOL) than would be expected. We believe that high values of riparian wetland are acting as a surrogate for high values of percent
urban land use.
doi:10.1371/journal.pone.0090944.g008
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Figure 9. Observed versus predicted plots for BRT models for development (left) and validation (right) data sets. The observed versus
predicted plots are based on the boosted regression models developed for average taxa tolerance (RichTOL) for five models: Full Region and four
individual ecoregions (NC Appalachian, Ridge and Valley, NE Highlands, and N. Piedmont). The Full Region and N. Piedmont region plot relatively
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was common in this study, has also been shown in many other

recent studies [6],[10],[11],[19],[22]. In essence, the greater

predictability anticipated by developing models based on water-

shed size classes, was largely obscured by the interaction between

watershed elevation and human disturbance. In the Northern

Piedmont, elevation and urbanization closely follow each other, so

even though there is not a large range in elevation in this region,

elevation was the most important variable because it also expresses

the effects of urbanization.

Stream hydrology, as represented by the proportion of

hydrologic runoff, was an integral component of many of the

predictive BRT models developed for this study (Table 4). The

relation between aquatic community response and changes in

hydrologic processes is well established. Poff et al. [67] emphasized

the fundamental importance of inter- and intra-annual hydrologic

variation as the primary controlling factor for sustaining the

ecological integrity of streams, and nearly two decades of

hydroecological research (see review by [68]) have substantiated

this connection. Previous predictive modeling studies in the

western U.S. using BRT (e.g., [11],[17],[22]) did not include

hydrologic variables in their models predicting macroinvertebrate

metrics or BIBIs, respectively, due to a dearth of hydrologic data

availability across the region of study. Although speculative, it may

have been possible to improve model performance in these studies

by the inclusion of hydrologic attributes, especially hydrologic

attributes that are commonly altered by anthropogenic processes.

Many of the hydrologic runoff variables identified in this study

were an integral part of the models developed and were strong

predictors of macroinvertebrate-assemblage composition. For

example, 75.0% of the Full Region and 56.3% Individual

Ecoregion models developed included a hydrologic runoff variable

with a high degree of predictive power and high relative variable

importance (Table 4). These findings are highly consistent with the

results of other studies that point to changes in annual streamflow

processes as being a significant driver of changes in assemblage

structure and function (e.g., [7],[69–75]. In some cases, hydrologic

runoff was the most important variable (e.g., Average March and

Maximum April for the NE_High and N_Pied, respectively) and

notably, many of these hydrologic runoff variables represent

periods of annual streamflow variability that are important to the

timing of macroinvertebrate emergence and reproduction (spring

high and low flows; maximum and minimum April, average

March, and maximum May runoff; Table 4). Changes in

assemblage structure due to modified annual flow patterns have

been commonly associated with a disruption or alteration of life-

history or behavioral cues [76–78]. For example, emergence

periods for more sensitive taxa (taxa with less plastic life histories)

like Ephemeroptera, Plecoptera, and some Trichoptera may be

affected by alterations in mean annual spring runoff. Therefore, it

is no surprise that in three of five EPTR and four of five

NoninsectR predictive models (Table 4), hydrologic runoff was of

high relative importance and in a number of cases was either the

first or second most important variable. This finding further

emphasizes the importance of developing models that include

streamflow attributes, which encapsulate variability across the full

hydrologic regime, especially for parts of the hydroperiod that are

critical to the health and survival of aquatic communities.

Implications
Even though spatial scale of the Full Region modeling area in

this study was not extensive (i.e., it did not encapsulate the entire

northeastern U.S.), it did include parts of four eastern U.S. states

and contained four proximal ecoregions. In contrast to our initial

hypothesis, however, we found that the Full Region models did

almost as well in predicting macroinvertebrate structure as the

more area specific Individual Ecoregion models. It may, therefore,

be valuable for large regional models to be developed as a good

preliminary assessment of major factors affecting the biological

condition of streams in a geographic region as long as the range in

natural landscape variability (e.g., climate, slope, elevation) can be

minimized. The regional models can then be tested and compared

against smaller subregional or watershed models to determine

whether there is a large enough improvement in model

performance or variable specificity to justify the general applica-

tion of the regional models or more specificity is needed from local

models.

tight to the 1:1 line for both the development and validation models indicating a good predictive fit with only slight bias at high and low values of
RichTOL. The other regions in general showed more scatter and the N.C. Appalachian region which had the lowest modeled R2, had had the shortest
disturbance gradient (narrow range of RichTOL values) compared to the other regions.
doi:10.1371/journal.pone.0090944.g009

Table 5. Comparison of model evaluation statistics for four macroinvertebrate metrics for three watershed size classes, number of
variables in final model in parentheses.*

Macroinvertebrates
Model
Type

Model
Statistic Full Region

WS Size Class 1
(8 – 27 km2)

WS Size Class 2
(.27,66 km2)

WS Size Class 3
(. 66,777 km2)

n = 591 n = 282 n = 188 n = 121

EPT Richness BRT R2 0.63 (6) 0.64 (5) 0.69 (4) 0.65 (4)

(EPTR) RMSE 2.34 2.68 2.30 2.18

Average Tolerance of BRT R2 0.77 (5) 0.78 (4) 0.83 (4) 0.68 (4)

all Taxa (RichTOL) RMSE 0.53 0.58 0.46 0.39

Richness of Intolerant BRT R2 0.66 (5) 0.68 (4) 0.67 (4) 0.63 (4)

Taxa (INTOL_RICH) RMSE 2.36 2.55 2.12 2.09

Noninsect Richness BRT R2 0.68 (4) 0.77 (4) 0.73 (4) 0.72 (4)

(NonInsectR) RMSE 1.39 1.28 1.25 2.09

*BRT – Boosted Regression Trees. R2–adjusted R-squared, CV R2—cross-validation R2, EPTR–Total taxa richness of Ephemeroptera, Plecoptera and Trichoptera.
doi:10.1371/journal.pone.0090944.t005
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There is an obvious trade-off in development time and model

specificity between the Full Region and Individual Ecoregion

models. In some instances, the Full Region model may be

sufficient for understanding broader implications of human-

derived disturbance; however; smaller subregional or local models

that provide more detailed information on cause-effect processes

(e.g., exemplify the utility of specific metrics such as RichTOL) are

generally more advantageous for bioassessment programs and may

ultimately be more useful from a management or regulatory

perspective. We cannot emphasize enough the importance and

critical nature of riparian vegetation related to stream integrity

revealed in this and other studies. Although our models were

relatively successful in predicting macroinvertebrate metrics based

on land use and hydrologic runoff, there may be additional

explanatory variables that we did not use that could improve

model prediction (other landscape data, instream habitat, water

chemistry, etc.). These additional variables would not typically be

available for all unsampled streams, where one of the benefits of

the models developed in this study is that they can be used to

develop maps of macroinvertebrate metric response at unsampled

stream reaches while including some measure of error. This last

point is where future modeling assessments could benefit both the

science and management communities: development and testing

of models predicting biological condition at unsampled streams

under various scenarios. If possible, models should be tested on

independent validation data sets to assess potential over-fitting and

model bias.
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Figure S1 Partial dependency plots for variables in BRT
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of invertebrate metric) based on the effect of individual

explanatory variables with the response of all other variables

removed (development data set); variables shown in order of

model importance. The relative contribution of each explanatory

variable is reported in parentheses. Refer to Table 1 for variable

definitions.
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observed versus predicted plots are based on individual boosted
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